Search results for: social media filtering sentiment analysis
35062 Sentiment Classification of Documents
Authors: Swarnadip Ghosh
Abstract:
Sentiment Analysis is the process of detecting the contextual polarity of text. In other words, it determines whether a piece of writing is positive, negative or neutral.Sentiment analysis of documents holds great importance in today's world, when numerous information is stored in databases and in the world wide web. An efficient algorithm to illicit such information, would be beneficial for social, economic as well as medical purposes. In this project, we have developed an algorithm to classify a document into positive or negative. Using our algorithm, we obtained a feature set from the data, and classified the documents based on this feature set. It is important to note that, in the classification, we have not used the independence assumption, which is considered by many procedures like the Naive Bayes. This makes the algorithm more general in scope. Moreover, because of the sparsity and high dimensionality of such data, we did not use empirical distribution for estimation, but developed a method by finding degree of close clustering of the data points. We have applied our algorithm on a movie review data set obtained from IMDb and obtained satisfactory results.Keywords: sentiment, Run's Test, cross validation, higher dimensional pmf estimation
Procedia PDF Downloads 40235061 Presenting an Integrated Framework for the Introduction and Evaluation of Social Media in Enterprises
Authors: Gerhard Peter
Abstract:
In this paper, we present an integrated framework that governs the introduction of social media into enterprises and its evaluation. It is argued that the framework should address the following issues: (1) the contribution of social media for increasing efficiency and improving the quality of working life; (2) the level on which this contribution happens (i.e., individual, team, or organisation); (3) a description of the processes for implementing and evaluating social media; and the role of (4) organisational culture and (5) management. We also report the results of a case study where the framework has been employed to introduce a social networking platform at a German enterprise. This paper only considers the internal use of social media.Keywords: case study, enterprise 2.0, framework, introducing and evaluating social media, social media
Procedia PDF Downloads 36735060 Analyzing the Perception of Students and Faculty Members on Social Media Use in Academic Activities: A Case Study of Beijing Normal University
Authors: Mcjerry A. Bekoe, Emile Uwamahoro
Abstract:
Social media has become the order of the day, in particular among the youth. It is widely used both formally and informally in the university communities with varied definitions both in the academic circles and in the public domain. In simple terms, it is a media upon which social interactions are carried. In this work social media denote mobile phones, and web-base applications use by students and institutions to construct, partake, and distribute both existing and new information in a digital setting through internet communication. The basic aim of conducting this study was to analyze the perception of students and faculty members Beijing Normal University on social media use in the academic setting and to contribute to the understanding of how university students use social media, the advantages and disadvantages of social media in education. The study was qualitative and employed open-ended interview questions developed to seek students’ perception of the effects of social media and administered based on purposive sampling. Document analysis was also done because of triangulation to ensure validity and reliability. The results show there are positive and negative impacts of social media use depending on how one uses it. Social media have the capability to become a priceless asset to aid their educational communication.Keywords: academics, high education, interactions, social media
Procedia PDF Downloads 34035059 Infodemic Detection on Social Media with a Multi-Dimensional Deep Learning Framework
Authors: Raymond Xu, Cindy Jingru Wang
Abstract:
Social media has become a globally connected and influencing platform. Social media data, such as tweets, can help predict the spread of pandemics and provide individuals and healthcare providers early warnings. Public psychological reactions and opinions can be efficiently monitored by AI models on the progression of dominant topics on Twitter. However, statistics show that as the coronavirus spreads, so does an infodemic of misinformation due to pandemic-related factors such as unemployment and lockdowns. Social media algorithms are often biased toward outrage by promoting content that people have an emotional reaction to and are likely to engage with. This can influence users’ attitudes and cause confusion. Therefore, social media is a double-edged sword. Combating fake news and biased content has become one of the essential tasks. This research analyzes the variety of methods used for fake news detection covering random forest, logistic regression, support vector machines, decision tree, naive Bayes, BoW, TF-IDF, LDA, CNN, RNN, LSTM, DeepFake, and hierarchical attention network. The performance of each method is analyzed. Based on these models’ achievements and limitations, a multi-dimensional AI framework is proposed to achieve higher accuracy in infodemic detection, especially pandemic-related news. The model is trained on contextual content, images, and news metadata.Keywords: artificial intelligence, fake news detection, infodemic detection, image recognition, sentiment analysis
Procedia PDF Downloads 25435058 Winning Consumers and Influencing Them Using Social Media: A Cross Generational Impact Case Study
Authors: J. Garfield, B. O'Hare, V. Bell
Abstract:
The use of social media is continuing to grow and is now widely used for product and service advertising. This research investigated the social media usage across all age ranges in the United Kingdom to determine the impact on purchasing habits. A questionnaire was distributed to people of different ages and with different experiences of social media usage. The results showed that Facebook continues to be the most popular social media network. Respondents in the younger age group were more likely to be influenced by brand marketing and advertising, but the study concluded that celebrity endorsements had little or no influence.Keywords: social media advertising, social networking sites, electronic word of mouth, celebrity endorsements
Procedia PDF Downloads 13035057 Automatic Lead Qualification with Opinion Mining in Customer Relationship Management Projects
Authors: Victor Radich, Tania Basso, Regina Moraes
Abstract:
Lead qualification is one of the main procedures in Customer Relationship Management (CRM) projects. Its main goal is to identify potential consumers who have the ideal characteristics to establish a profitable and long-term relationship with a certain organization. Social networks can be an important source of data for identifying and qualifying leads since interest in specific products or services can be identified from the users’ expressed feelings of (dis)satisfaction. In this context, this work proposes the use of machine learning techniques and sentiment analysis as an extra step in the lead qualification process in order to improve it. In addition to machine learning models, sentiment analysis or opinion mining can be used to understand the evaluation that the user makes of a particular service, product, or brand. The results obtained so far have shown that it is possible to extract data from social networks and combine the techniques for a more complete classification.Keywords: lead qualification, sentiment analysis, opinion mining, machine learning, CRM, lead scoring
Procedia PDF Downloads 8535056 Analyzing Global User Sentiments on Laptop Features: A Comparative Study of Preferences Across Economic Contexts
Authors: Mohammadreza Bakhtiari, Mehrdad Maghsoudi, Hamidreza Bakhtiari
Abstract:
The widespread adoption of laptops has become essential to modern lifestyles, supporting work, education, and entertainment. Social media platforms have emerged as key spaces where users share real-time feedback on laptop performance, providing a valuable source of data for understanding consumer preferences. This study leverages aspect-based sentiment analysis (ABSA) on 1.5 million tweets to examine how users from developed and developing countries perceive and prioritize 16 key laptop features. The analysis reveals that consumers in developing countries express higher satisfaction overall, emphasizing affordability, durability, and reliability. Conversely, users in developed countries demonstrate more critical attitudes, especially toward performance-related aspects such as cooling systems, battery life, and chargers. The study employs a mixed-methods approach, combining ABSA using the PyABSA framework with expert insights gathered through a Delphi panel of ten industry professionals. Data preprocessing included cleaning, filtering, and aspect extraction from tweets. Universal issues such as battery efficiency and fan performance were identified, reflecting shared challenges across markets. However, priorities diverge between regions, while users in developed countries demand high-performance models with advanced features, those in developing countries seek products that offer strong value for money and long-term durability. The findings suggest that laptop manufacturers should adopt a market-specific strategy by developing differentiated product lines. For developed markets, the focus should be on cutting-edge technologies, enhanced cooling solutions, and comprehensive warranty services. In developing markets, emphasis should be placed on affordability, versatile port options, and robust designs. Additionally, the study highlights the importance of universal charging solutions and continuous sentiment monitoring to adapt to evolving consumer needs. This research offers practical insights for manufacturers seeking to optimize product development and marketing strategies for global markets, ensuring enhanced user satisfaction and long-term competitiveness. Future studies could explore multi-source data integration and conduct longitudinal analyses to capture changing trends over time.Keywords: consumer behavior, durability, laptop industry, sentiment analysis, social media analytics
Procedia PDF Downloads 1535055 Meeting the Parents on Facebook : A Case Study of the Swedish Social Insurance Agency’s Social Media Use
Authors: Cecilia Teljas
Abstract:
Many government agencies use social media to supplement their traditional communication channels. Government agencies are typically risk-averse, which makes social media practices problematic. However, this case study of the social media use of the Swedish social insurance agency shows considerable bi-directional communication between the agency and the public. On one hand, the agency’s aims, strategies, ways of working and experiences related to its social media communication practice are analyzed. On the other hand, the communication by both the agency and the public is studied on one of the agency’s Facebook pages. The results showed that it is possible for an agency to provide relevant and accurate information in real-time in social media if identifying and addressing different segments separately. Furthermore, as a result of context adaption this communication was rather informal and the practice can be considered to manifest positive democratic effects due to the increased availability and inclusion.Keywords: e-government, social media, case study, discourse analysis
Procedia PDF Downloads 42935054 Analysis of the 2023 Karnataka State Elections Using Online Sentiment
Authors: Pranav Gunhal
Abstract:
This paper presents an analysis of sentiment on Twitter towards the Karnataka elections held in 2023, utilizing transformer-based models specifically designed for sentiment analysis in Indic languages. Through an innovative data collection approach involving a combination of novel methods of data augmentation, online data preceding the election was analyzed. The study focuses on sentiment classification, effectively distinguishing between positive, negative, and neutral posts while specifically targeting the sentiment regarding the loss of the Bharatiya Janata Party (BJP) or the win of the Indian National Congress (INC). Leveraging high-performing transformer architectures, specifically IndicBERT, coupled with specifically fine-tuned hyperparameters, the AI models employed in this study achieved remarkable accuracy in predicting the INC’s victory in the election. The findings shed new light on the potential of cutting-edge transformer-based models in capturing and analyzing sentiment dynamics within the Indian political landscape. The implications of this research are far-reaching, providing invaluable insights to political parties for informed decision-making and strategic planning in preparation for the forthcoming 2024 Lok Sabha elections in the nation.Keywords: sentiment analysis, twitter, Karnataka elections, congress, BJP, transformers, Indic languages, AI, novel architectures, IndicBERT, lok sabha elections
Procedia PDF Downloads 8435053 Composite Kernels for Public Emotion Recognition from Twitter
Authors: Chien-Hung Chen, Yan-Chun Hsing, Yung-Chun Chang
Abstract:
The Internet has grown into a powerful medium for information dispersion and social interaction that leads to a rapid growth of social media which allows users to easily post their emotions and perspectives regarding certain topics online. Our research aims at using natural language processing and text mining techniques to explore the public emotions expressed on Twitter by analyzing the sentiment behind tweets. In this paper, we propose a composite kernel method that integrates tree kernel with the linear kernel to simultaneously exploit both the tree representation and the distributed emotion keyword representation to analyze the syntactic and content information in tweets. The experiment results demonstrate that our method can effectively detect public emotion of tweets while outperforming the other compared methods.Keywords: emotion recognition, natural language processing, composite kernel, sentiment analysis, text mining
Procedia PDF Downloads 21835052 Calm, Confusing and Chaotic: Investigating Humanness through Sentiment Analysis of Abstract Artworks
Authors: Enya Autumn Trenholm-Jensen, Hjalte Hviid Mikkelsen
Abstract:
This study was done in the pursuit of nuancing the discussion surrounding what it means to be human in a time of unparalleled technological development. Subjectivity was deemed to be an accessible example of humanity to study, and art was a fitting medium through which to probe subjectivity. Upon careful theoretical consideration, abstract art was found to fit the parameters of the study with the added bonus of being, as of yet, uninterpretable from an AI perspective. It was hypothesised that dissimilar appraisals of the art stimuli would be found through sentiment and terminology. Opinion data was collected through survey responses and analysed using Valence Aware Dictionary for sEntiment Reasoning (VADER) sentiment analysis. The results reflected the enigmatic nature of subjectivity through erratic ratings of the art stimuli. However, significant themes were found in the terminology used in the responses. The implications of the findings are discussed in relation to the uniqueness, or lack thereof, of human subjectivity, and directions for future research are provided.Keywords: abstract art, artificial intelligence, cognition, sentiment, subjectivity
Procedia PDF Downloads 11635051 Social Media as a Tool for Political Communication: A Case Study of India
Authors: Srikanth Bade
Abstract:
This paper discusses how the usage of social media has altered certain discourses and communicated with the political institutions for major actions in Indian scenario. The advent of new technology in the form of social media has engrossed the general public to discuss in the open forum. How they promulgated their ideas into action is captured in this study. Moreover, these discourses happening in the social media is analyzed from certain philosophical traditions by adopting a framework. Hence, this paper analyses the role of social media in political communication and change the political discourse. Also, this paper tries to address the issue that whether the deliberation made through social media had indeed communicated the issue of political matters to the decision making authorities.Keywords: collective action and social capital, political communication, political discourse, social media
Procedia PDF Downloads 15835050 Social Media Utilisation and Addiction among Students in Nigerian Universities
Authors: Kolawole Akinjide Aramide, Razaq Oyewo
Abstract:
This study investigates social media utilisation and addiction among students in Nigerian universities. Three hundred and twenty seven (327) students were randomly selected across five selected universities in Nigeria but only 215 provided useful responses for the study. The study revealed regular use of social media for the purpose of communicating and connecting with friends only while Picassa, Twitter, Flickr, Youtube, MySpace, Blogger, Linkedln and LibraryThing were found to top the list of social media being used on regular basis by the students. The level of social media addiction among the students was found to be low. A significant difference was established between undergraduate and postgraduate students’ utilization of social media as the undergraduate students were found to utilise social media more than the postgraduate students. However, no significant difference was found in the level of addiction to social media between the undergraduate and postgraduate students.Keywords: social media utilisation, social media addiction, Nigerian students, universities
Procedia PDF Downloads 50635049 An Analysis of Iranian Social Media Users’ Perceptions of Published Images of Coronavirus Deaths
Authors: Ali Gheshmi
Abstract:
The highest rate of death, after World War II, is due to the Coronavirus epidemic and more than 2 million people have died since the epidemic outbreak in December 2019, so the word “death” is one of the highest frequency words in social media; moreover, the use of social media has grown due to quarantine and successive restrictions and lockdowns. The most important aspects of the approach used by this study include the analysis of Iranian social media users’ reactions to the images of those who died due to Coronavirus, investigating if seeing such images via social media is effective on the users’ perception of the closeness of death, and evaluating the extent to which the fear of Coronavirus death is instrumental in persuading users to observe health protocols or causing mental problems in social media users. Since the goal of this study is to discover how social media users perceive and react to the images of people who died of Coronavirus, the cultural studies approach is used Receipt analysis method and in-depth interviews will be used for collecting data from Iranian users; also, snowball sampling is used in this study. The probable results would show that cyberspace users experience the closeness of “death” more than any time else and to cope with these annoying images, avoid viewing them or if they view, it will lead them to suffer from mental problems.Keywords: death, receipt analysis method, mental health, social media, Covid-19
Procedia PDF Downloads 15535048 Sentiment Classification Using Enhanced Contextual Valence Shifters
Authors: Vo Ngoc Phu, Phan Thi Tuoi
Abstract:
We have explored different methods of improving the accuracy of sentiment classification. The sentiment orientation of a document can be positive (+), negative (-), or neutral (0). We combine five dictionaries from [2, 3, 4, 5, 6] into the new one with 21137 entries. The new dictionary has many verbs, adverbs, phrases and idioms, that are not in five ones before. The paper shows that our proposed method based on the combination of Term-Counting method and Enhanced Contextual Valence Shifters method has improved the accuracy of sentiment classification. The combined method has accuracy 68.984% on the testing dataset, and 69.224% on the training dataset. All of these methods are implemented to classify the reviews based on our new dictionary and the Internet Movie data set.Keywords: sentiment classification, sentiment orientation, valence shifters, contextual, valence shifters, term counting
Procedia PDF Downloads 50335047 Some Aspects of Social Media Marketing (Georgian Case)
Authors: Nugzar Todua, Charita Jashi
Abstract:
This paper is focusing on the attitude of Georgian consumers toward social media, influence of social media on consumer buying behavior. The purpose of this paper is to explore the impact and usage of social media marketing strategies for Georgian companies and consumers in the new reality of Georgia. There is a lack of research on social media marketing in Georgia, especially the topic which analyzes the possible purchase influence of consumers. The result of marketing research has revealed that social webs are mostly used by Georgian consumers, but they have little impact on the buying decision. The research method was exploratory in nature in the sense that there is no previous academic research about consumers’ attitude towards social media marketing.Keywords: marketing research, purchasing behavior, social media marketing, social networking sites
Procedia PDF Downloads 51635046 Rethinking the Public Sphere: Group Polarization on Social Media
Authors: Tianji Jiang
Abstract:
Habermas' definition of public sphere is a classical and well-regarded theory of the formation of public opinions, laying the foundation for many researches on public opinions and public media. In recent decades, public media have been changing rapidly as social media are gaining increasing importance. However, the occurrence of group polarization on social media, which is a hot issue today, is challenging Habermas' theory of the public sphere. This article reviews the public sphere theory and studies group polarization and social media. It proposes ideas on how to understand group polarization within the public sphere and comes up with some suggestions and ideas to reduce polarization on social media.Keywords: public sphere, social media, group polarization, echo chamber, public opinion
Procedia PDF Downloads 11135045 Sentiment Analysis on the East Timor Accession Process to the ASEAN
Authors: Marcelino Caetano Noronha, Vosco Pereira, Jose Soares Pinto, Ferdinando Da C. Saores
Abstract:
One particularly popular social media platform is Youtube. It’s a video-sharing platform where users can submit videos, and other users can like, dislike or comment on the videos. In this study, we conduct a binary classification task on YouTube’s video comments and review from the users regarding the accession process of Timor Leste to become the eleventh member of the Association of South East Asian Nations (ASEAN). We scrape the data directly from the public YouTube video and apply several pre-processing and weighting techniques. Before conducting the classification, we categorized the data into two classes, namely positive and negative. In the classification part, we apply Support Vector Machine (SVM) algorithm. By comparing with Naïve Bayes Algorithm, the experiment showed SVM achieved 84.1% of Accuracy, 94.5% of Precision, and Recall 73.8% simultaneously.Keywords: classification, YouTube, sentiment analysis, support sector machine
Procedia PDF Downloads 10835044 Representation of “Gezi Parkı Actions” in Media and Resistance
Authors: Sibel Özkan
Abstract:
This study aims to set forth the perception of young people in Turkey about “Gezi Parkı Actions” which has been represented by different views on social and traditional media. In-depth interview method was carried out with all of the participants who consisted of high school students. All interviews has been conducted in areas where the actions take place and the numbers of participants who are using and not using social media were equal. There are minor differences between young people who are using and not using social media. Participants who are not using social media had an opinion only about saving nature aspect of Gezi Parkı Actions. On the other hand, people who are using social media had another reasons such as freedom of expression, respect to the lifestyles etc. to join Gezi Parkı Actions. It was found that young people do not completely trust traditional media anymore.Keywords: Gezi Parkı, resistance, social media, hegemony
Procedia PDF Downloads 43735043 Sentiment Analysis of Chinese Microblog Comments: Comparison between Support Vector Machine and Long Short-Term Memory
Authors: Xu Jiaqiao
Abstract:
Text sentiment analysis is an important branch of natural language processing. This technology is widely used in public opinion analysis and web surfing recommendations. At present, the mainstream sentiment analysis methods include three parts: sentiment analysis based on a sentiment dictionary, based on traditional machine learning, and based on deep learning. This paper mainly analyzes and compares the advantages and disadvantages of the SVM method of traditional machine learning and the Long Short-term Memory (LSTM) method of deep learning in the field of Chinese sentiment analysis, using Chinese comments on Sina Microblog as the data set. Firstly, this paper classifies and adds labels to the original comment dataset obtained by the web crawler, and then uses Jieba word segmentation to classify the original dataset and remove stop words. After that, this paper extracts text feature vectors and builds document word vectors to facilitate the training of the model. Finally, SVM and LSTM models are trained respectively. After accuracy calculation, it can be obtained that the accuracy of the LSTM model is 85.80%, while the accuracy of SVM is 91.07%. But at the same time, LSTM operation only needs 2.57 seconds, SVM model needs 6.06 seconds. Therefore, this paper concludes that: compared with the SVM model, the LSTM model is worse in accuracy but faster in processing speed.Keywords: sentiment analysis, support vector machine, long short-term memory, Chinese microblog comments
Procedia PDF Downloads 9435042 Understanding Ambivalent Behaviors of Social Media Users toward the 'Like' Function: A Social Capital Perspective
Abstract:
The 'Like' function in social media platforms represents the immediate responses of social media users to postings and other users. A large number of 'likes' is often attributed to fame, agreement, and support from others that many users are proud of and happy with. However, what 'like' implies exactly in social media context is still in discussion. Some argue that it is an accurate parameter of the preferences of social media users, whereas others refute that it is merely an instant reaction that is volatile and vague. To address this gap, this study investigates how social media users perceive the 'like' function and behave differently based on their perceptions. This study posits the following arguments. First, 'like' is interpreted as a quantified form of social capital that resides in social media platforms. This incarnated social capital rationalizes the attraction of people to social media and belief that social media platforms bring benefits to their relationships with others. This social capital is then conceptualized into cognitive and emotive dimensions, where social capital in the cognitive dimension represents the awareness of the 'likes' quantitatively, whereas social capital in the emotive dimension represents the receptions of the 'likes' qualitatively. Finally, the ambivalent perspective of the social media users on 'like' (i.e., social capital) is applied. This view rationalizes why social media users appreciate the reception of 'likes' from others but are aware that those 'likes' can distort the actual responses of other users by sending erroneous signals. The rationale on this ambivalence is based on whether users perceive social media as private or public spheres. When social media is more publicized, the ambivalence is more strongly observed. By combining the ambivalence and dimensionalities of the social capital, four types of social media users with different mechanisms on liking behaviors are identified. To validate this work, a survey with 300 social media users is conducted. The analysis results support most of the hypotheses and confirm that people have ambivalent perceptions on 'like' as a social capital and that perceptions influence behavioral patterns. The implication of the study is clear. First, this study explains why social media users exhibit different behaviors toward 'likes' in social media. Although most of the people believe that the number of 'likes' is the simplest and most frank measure of supports from other social media users, this study introduces the users who do not trust the 'likes' as a stable and reliable parameter of social media. In addition, this study links the concept of social media openness to explain the different behaviors of social media users. Social media openness has theoretical significance because it defines the psychological boundaries of social media from the perspective of users.Keywords: ambivalent attitude, like function, social capital, social media
Procedia PDF Downloads 24135041 The Nexus between Social Media Usage and Overtourism: A Survey Study Applied to Hangzhou in China
Authors: Song Qingfeng
Abstract:
This research aims to seek the relationship between social media usage and overtourism from the perspective of tourists based on the theory of Maslow’s hierarchy needs. A questionnaire is formulated to collect data from 400 tourists who have visited the Hangzhou city in China in the last 12 months. Structural Equation Model (SEM) is employed to analysis data. The finding is that social media usage aggravates overtourism. Specifically, social media is used by tourists to information-seeking, entertainment, self-presentation, and socialization for traveling. These roles of social media would evoke the traveling intention to a specific destination at a certain time, which further influences the tourist flow. When the tourist flow concentrate, the overtourism would be aggravated. This study contributes to the destination managers to deep-understand the cause-effect relationship between social media and overtourism in order to address this problem.Keywords: social media, overtourism, tourist flow, SEM, Maslow’s hierarchy of needs, Hangzhou
Procedia PDF Downloads 13535040 Descriptive Analysis: New Media Influence on Decision Makers
Authors: Bashaiar Alsanaa
Abstract:
The process of decision making requires environment surveillance and public opinion monitoring, both of which can be attained through effective use of social media. This study aims to investigate the extent to which new media influence the decision making process by the Kuwaiti government. The research explores how unprecedented access to information as well as dynamic user-interaction made possible by new technologies play a significant role in all aspects of decision making whether on the end of the public or decision makers themselves. The research analyzes two case studies where public opinion was forceful on social media in order to explore how such media create interactive and liberal environments for individuals to participate in the process of taking action with regards to political, economic and social issues. The findings of this descriptive study indicate the overwhelming extent to which social media are being used in Kuwait to create new social reform by the government based on citizen interaction with current topics.Keywords: communication, descriptive, new media technologies, social media.
Procedia PDF Downloads 11835039 Leveraging Sentiment Analysis for Quality Improvement in Digital Healthcare Services
Authors: Naman Jain, Shaun Fernandes
Abstract:
With the increasing prevalence of online healthcare services, selecting the most suitable doctor has become a complex task, requiring careful consideration of both public sentiment and personal preferences. This paper proposes a sentiment analysis-driven method that integrates public reviews with user-specific criteria and correlated attributes to recommend online doctors. By leveraging Natural Language Processing (NLP) techniques, public sentiment is extracted from online reviews, which is then combined with user-defined preferences such as specialty, years of experience, location, and consultation fees. Additionally, correlated attributes like education and certifications are incorporated to enhance the recommendation accuracy. Experimental results demonstrate that the proposed system significantly improves user satisfaction by providing personalized doctor recommendations that align with both public opinion and individual needs.Keywords: sentiment analysis, online doctors, personal preferences, correlated attributes, recommendation system, healthcare, natural language processing
Procedia PDF Downloads 435038 Antecedents and Consequences of Social Media Adoption in Travel and Tourism: Evidence from Customers and Industry
Authors: Mohamed A. Abou-Shouk, Mahamoud M. Hewedi
Abstract:
This study extends technology acceptance model (TAM) to investigate the antecedents and consequences of social media adoption by tourists and travel agents. It compares their perceptions on social media adoption and its consequences. Online survey was addressed to tourists and travel agents for data collection purposes. Structural equation modelling was employed for analysis purposes. The findings revealed that the majority of tourists and travel agents involved in the study believe in the usefulness of social media adoption for travel planning and marketing purposes. They agree that adopting social media could change the attitude of tourists towards specific destination or attraction and influence their purchasing decisions. This study contributes to knowledge by extending TAM and provides some managerial implication to marketers.Keywords: TAM, social media, travel and tourism, travel agents
Procedia PDF Downloads 41235037 Students’ Perceptions of the Use of Social Media in Higher Education in Saudi Arabia
Authors: Omar Alshehri, Vic Lally
Abstract:
This paper examined the attitudes of using social media tools to support learning at a university in Saudi Arabia. Moreover, it investigated the students’ current usage of these tools and examined the barriers they could face during the use of social media tools in the education process. Participants in this study were 42 university students. A web-based survey was used to collect data for this study. The results indicate that all of the students were familiar with social media and had used at least one type of social media for learning. It was found out that all students had very positive attitudes towards the use of social media and welcomed using these tools as a supplementary to the curriculum. However, the results indicated that the major barriers to using these tools in learning were distraction, opposing Islamic religious teachings, privacy issues, and cyberbullying. The study recommended that this study could be replicated at other Saudi universities to investigate factors and barriers that might affect Saudi students’ attitudes toward using social media to support learning.Keywords: barriers to social media use, benefits of social media use, higher education, Saudi Arabia, social media
Procedia PDF Downloads 16735036 Social Media Marketing in Russia
Authors: J. A. Ageeva, Z. S. Zavyalova
Abstract:
The article considers social media as a tool for business promotion. We analyze and compare the SMM experience in the western countries and Russia. A short review of Russian social networks are given including their peculiar features, and the main problems and perspectives of Russian SMM are described.Keywords: social media, social networks, marketing, SMM
Procedia PDF Downloads 55635035 Contextual Sentiment Analysis with Untrained Annotators
Authors: Lucas A. Silva, Carla R. Aguiar
Abstract:
This work presents a proposal to perform contextual sentiment analysis using a supervised learning algorithm and disregarding the extensive training of annotators. To achieve this goal, a web platform was developed to perform the entire procedure outlined in this paper. The main contribution of the pipeline described in this article is to simplify and automate the annotation process through a system of analysis of congruence between the notes. This ensured satisfactory results even without using specialized annotators in the context of the research, avoiding the generation of biased training data for the classifiers. For this, a case study was conducted in a blog of entrepreneurship. The experimental results were consistent with the literature related annotation using formalized process with experts.Keywords: sentiment analysis, untrained annotators, naive bayes, entrepreneurship, contextualized classifier
Procedia PDF Downloads 39635034 Analyzing the Usage of Social Media: A Study on Elderly in Malaysia
Authors: Chan Eang Teng, Tang Mui Joo
Abstract:
In the beginning of the prevalence of social media, it would be an obvious trend that the young adult age group has the highest population among the users on social media. However, apart from the age group of the users are becoming younger and younger, the elderly group has become a new force on social media, and this age group has increased rapidly. On top of that, the influence of social media towards the elderly is becoming more significant and it is even trending among them. This is because basic computer knowledge is not instilled into their life when they were young. This age group tends to be engrossed more than the young as this is something new for them, and they have the mindset that it is a new platform to approach things, and they tend to be more engrossed when they start getting in touch with the social media. Generally, most of the social media has been accepted and accessed by teenagers and young adult, but it is reasonable to believe that the social media is not really accepted among the elderly. Surprisingly, the elderlies are more addicted to the social media than the teenagers. Therefore, this study is to determine and understand the relationship between the elderly and social media, and how they employ social media in their lives. An online survey on 200 elderly aged 45-80 and an interview with a media expert are conducted to answer the main questions in the research paper. Uses and Gratification Approach is employed in theoretical framework. Finding revealed that majority of the respondents use social media to connect with family, friends, and for leisure purposes. The finding concluded that the elderly use social media differently according to their needs and wants which is in par with the highlight of Uses and Gratification theory. Considering the significantly large role social media plays in our culture and daily life today, the finding will shed some light on the effect of social media on the elderly or senior citizens who are usually relegated into a minority group in today’s age where the internet and social media are of great importance to our society and humanity in general. This may also serve to be useful in understanding behavioral patterns and preference in terms of social media usage among the elderly.Keywords: elderly, Facebook, Malaysia, social media
Procedia PDF Downloads 36535033 Polarity Classification of Social Media Comments in Turkish
Authors: Migena Ceyhan, Zeynep Orhan, Dimitrios Karras
Abstract:
People in modern societies are continuously sharing their experiences, emotions, and thoughts in different areas of life. The information reaches almost everyone in real-time and can have an important impact in shaping people’s way of living. This phenomenon is very well recognized and advantageously used by the market representatives, trying to earn the most from this means. Given the abundance of information, people and organizations are looking for efficient tools that filter the countless data into important information, ready to analyze. This paper is a modest contribution in this field, describing the process of automatically classifying social media comments in the Turkish language into positive or negative. Once data is gathered and preprocessed, feature sets of selected single words or groups of words are build according to the characteristics of language used in the texts. These features are used later to train, and test a system according to different machine learning algorithms (Naïve Bayes, Sequential Minimal Optimization, J48, and Bayesian Linear Regression). The resultant high accuracies can be important feedback for decision-makers to improve the business strategies accordingly.Keywords: feature selection, machine learning, natural language processing, sentiment analysis, social media reviews
Procedia PDF Downloads 146