Search results for: objective self-awareness
6788 Multi-Objective Production Planning Problem: A Case Study of Certain and Uncertain Environment
Authors: Ahteshamul Haq, Srikant Gupta, Murshid Kamal, Irfan Ali
Abstract:
This case study designs and builds a multi-objective production planning model for a hardware firm with certain & uncertain data. During the time of interaction with the manager of the firm, they indicate some of the parameters may be vague. This vagueness in the formulated model is handled by the concept of fuzzy set theory. Triangular & Trapezoidal fuzzy numbers are used to represent the uncertainty in the collected data. The fuzzy nature is de-fuzzified into the crisp form using well-known defuzzification method via graded mean integration representation method. The proposed model attempts to maximize the production of the firm, profit related to the manufactured items & minimize the carrying inventory costs in both certain & uncertain environment. The recommended optimal plan is determined via fuzzy programming approach, and the formulated models are solved by using optimizing software LINGO 16.0 for getting the optimal production plan. The proposed model yields an efficient compromise solution with the overall satisfaction of decision maker.Keywords: production planning problem, multi-objective optimization, fuzzy programming, fuzzy sets
Procedia PDF Downloads 2136787 Bounded Solution Method for Geometric Programming Problem with Varying Parameters
Authors: Abdullah Ali H. Ahmadini, Firoz Ahmad, Intekhab Alam
Abstract:
Geometric programming problem (GPP) is a well-known non-linear optimization problem having a wide range of applications in many engineering problems. The structure of GPP is quite dynamic and easily fit to the various decision-making processes. The aim of this paper is to highlight the bounded solution method for GPP with special reference to variation among right-hand side parameters. Thus this paper is taken the advantage of two-level mathematical programming problems and determines the solution of the objective function in a specified interval called lower and upper bounds. The beauty of the proposed bounded solution method is that it does not require sensitivity analyses of the obtained optimal solution. The value of the objective function is directly calculated under varying parameters. To show the validity and applicability of the proposed method, a numerical example is presented. The system reliability optimization problem is also illustrated and found that the value of the objective function lies between the range of lower and upper bounds, respectively. At last, conclusions and future research are depicted based on the discussed work.Keywords: varying parameters, geometric programming problem, bounded solution method, system reliability optimization
Procedia PDF Downloads 1336786 Performance Analysis and Multi-Objective Optimization of a Kalina Cycle for Low-Temperature Applications
Authors: Sadegh Sadeghi, Negar Shabani
Abstract:
From a thermal point of view, zeotropic mixtures are likely to be more efficient than azeotropic fluids in low-temperature thermodynamic cycles due to their suitable boiling characteristics. In this study, performance of a low-temperature Kalina cycle with R717/water working fluid used in different existing power plants is mathematically investigated. To analyze the behavior of the cycle, mass conservation, energy conservation, and exergy balance equations are presented. With regard to the similarity in molar mass of R717 (17.03 gr/mol) and water (18.01 gr/mol), there is no need to alter the size of Kalina system components such as turbine and pump. To optimize the cycle energy and exergy efficiencies simultaneously, a constrained multi-objective optimization is carried out applying an Artificial Bee Colony algorithm. The main motivation behind using this algorithm lies on its robustness, reliability, remarkable precision and high–speed convergence rate in dealing with complicated constrained multi-objective problems. Convergence rates of the algorithm for calculating the optimal energy and exergy efficiencies are presented. Subsequently, due to the importance of exergy concept in Kalina cycles, exergy destructions occurring in the components are computed. Finally, the impacts of pressure, temperature, mass fraction and mass flow rate on the energy and exergy efficiencies are elaborately studied.Keywords: artificial bee colony algorithm, binary zeotropic mixture, constrained multi-objective optimization, energy efficiency, exergy efficiency, Kalina cycle
Procedia PDF Downloads 1536785 Multi-Objective Four-Dimensional Traveling Salesman Problem in an IoT-Based Transport System
Authors: Arindam Roy, Madhushree Das, Apurba Manna, Samir Maity
Abstract:
In this research paper, an algorithmic approach is developed to solve a novel multi-objective four-dimensional traveling salesman problem (MO4DTSP) where different paths with various numbers of conveyances are available to travel between two cities. NSGA-II and Decomposition algorithms are modified to solve MO4DTSP in an IoT-based transport system. This IoT-based transport system can be widely observed, analyzed, and controlled by an extensive distribution of traffic networks consisting of various types of sensors and actuators. Due to urbanization, most of the cities are connected using an intelligent traffic management system. Practically, for a traveler, multiple routes and vehicles are available to travel between any two cities. Thus, the classical TSP is reformulated as multi-route and multi-vehicle i.e., 4DTSP. The proposed MO4DTSP is designed with traveling cost, time, and customer satisfaction as objectives. In reality, customer satisfaction is an important parameter that depends on travel costs and time reflects in the present model.Keywords: multi-objective four-dimensional traveling salesman problem (MO4DTSP), decomposition, NSGA-II, IoT-based transport system, customer satisfaction
Procedia PDF Downloads 1106784 A Fuzzy Multiobjective Model for Bed Allocation Optimized by Artificial Bee Colony Algorithm
Authors: Jalal Abdulkareem Sultan, Abdulhakeem Luqman Hasan
Abstract:
With the development of health care systems competition, hospitals face more and more pressures. Meanwhile, resource allocation has a vital effect on achieving competitive advantages in hospitals. Selecting the appropriate number of beds is one of the most important sections in hospital management. However, in real situation, bed allocation selection is a multiple objective problem about different items with vagueness and randomness of the data. It is very complex. Hence, research about bed allocation problem is relatively scarce under considering multiple departments, nursing hours, and stochastic information about arrival and service of patients. In this paper, we develop a fuzzy multiobjective bed allocation model for overcoming uncertainty and multiple departments. Fuzzy objectives and weights are simultaneously applied to help the managers to select the suitable beds about different departments. The proposed model is solved by using Artificial Bee Colony (ABC), which is a very effective algorithm. The paper describes an application of the model, dealing with a public hospital in Iraq. The results related that fuzzy multi-objective model was presented suitable framework for bed allocation and optimum use.Keywords: bed allocation problem, fuzzy logic, artificial bee colony, multi-objective optimization
Procedia PDF Downloads 3246783 A Mean–Variance–Skewness Portfolio Optimization Model
Authors: Kostas Metaxiotis
Abstract:
Portfolio optimization is one of the most important topics in finance. This paper proposes a mean–variance–skewness (MVS) portfolio optimization model. Traditionally, the portfolio optimization problem is solved by using the mean–variance (MV) framework. In this study, we formulate the proposed model as a three-objective optimization problem, where the portfolio's expected return and skewness are maximized whereas the portfolio risk is minimized. For solving the proposed three-objective portfolio optimization model we apply an adapted version of the non-dominated sorting genetic algorithm (NSGAII). Finally, we use a real dataset from FTSE-100 for validating the proposed model.Keywords: evolutionary algorithms, portfolio optimization, skewness, stock selection
Procedia PDF Downloads 1986782 Congenital Sublingual Dermoid Cyst with Cutaneous Fistula
Authors: Rafael Ricieri, Rogerio Barros, Francisco Clovis
Abstract:
Objective– The Objective of this is study is to report a rare case of dermoid cyst, with a sublingual location and cutaneous fistula in a 4 year-old child.Methods: This study is a case report. The main study instrument was the medical record and the radiological and intraoperative image bank. Results: Infants with congenital cervical lesions eventually need tomography for diagnostic elucidation, and health services should be structured to perform sedation and thin tomographic sections in order to reduce morbidity.Keywords: congenital, sublingual dermoid cyst, fistula, pediatric surgery, head and kneck surgery
Procedia PDF Downloads 916781 Multi-Objective Optimization of Intersections
Authors: Xiang Li, Jian-Qiao Sun
Abstract:
As the crucial component of city traffic network, intersections have significant impacts on urban traffic performance. Despite of the rapid development in transportation systems, increasing traffic volumes result in severe congestions especially at intersections in urban areas. Effective regulation of vehicle flows at intersections has always been an important issue in the traffic control system. This study presents a multi-objective optimization method at intersections with cellular automata to achieve better traffic performance. Vehicle conflicts and pedestrian interference are considered. Three categories of the traffic performance are studied including transportation efficiency, energy consumption and road safety. The left-turn signal type, signal timing and lane assignment are optimized for different traffic flows. The multi-objective optimization problem is solved with the cell mapping method. The optimization results show the conflicting nature of different traffic performance. The influence of different traffic variables on the intersection performance is investigated. It is observed that the proposed optimization method is effective in regulating the traffic at the intersection to meet multiple objectives. Transportation efficiency can be usually improved by the permissive left-turn signal, which sacrifices safety. Right-turn traffic suffers significantly when the right-turn lanes are shared with the through vehicles. The effect of vehicle flow on the intersection performance is significant. The display pattern of the optimization results can be changed remarkably by the traffic volume variation. Pedestrians have strong interference with the traffic system.Keywords: cellular automata, intersection, multi-objective optimization, traffic system
Procedia PDF Downloads 5806780 Compare the Effectiveness of Web Based and Blended Learning on Paediatric Basic Life Support
Authors: Maria Janet, Anita David, P. Vijayasamundeeswarimaria
Abstract:
Introduction: The main purpose of this study is to compare the effectiveness of web-based and blended learning on Paediatric Basic Life Support on competency among undergraduate nursing students in selected nursing colleges in Chennai. Materials and methods: A descriptive pre-test and post-test study design were used for this study. Samples of 100 Fourth year B.Sc., nursing students at Sri Ramachandra Faculty of Nursing SRIHER, Chennai, 100 Fourth year B.Sc., nursing students at Apollo College of Nursing, Chennai, were selected by purposive sampling technique. The instrument used for data collection was Knowledge Questionnaire on Paediatric Basic Life Support (PBLS). It consists of 29 questions on the general expansion of Basic Life Support and Cardiopulmonary Resuscitation, Prerequisites of Basic Life Support, and Knowledge on Paediatric Basic Life Support in which each question has four multiple choices answers, each right answer carrying one mark and no negative scoring. This questionnaire was formed with reference to AHA 2020 (American Heart Association) revised guidelines. Results: After the post-test, in the web-based learning group, 58.8% of the students had an inadequate level of objective performance score, while 41.1% of them had an adequate level of objective performance score. In the blended learning group, 26.5% of the students had an inadequate level of an objective performance score, and 73.4% of the students had an adequate level of an objective performance score. There was an association between the post-test level of knowledge and the demographic variables of undergraduate nursing students undergoing blended learning. The age was significant at a p-value of 0.01, and the performance of BLS before was significant at a p-value of 0.05. The results show that there was a significant positive correlation between knowledge and objective performance score of undergraduate nursing students undergoing web-based learning on paediatric basic life support.Keywords: basic life support, paediatric basic life support, web-based learning, blended learning
Procedia PDF Downloads 696779 The Effects of Subjective and Objective Indicators of Inequality on Life Satisfaction in a Comparative Perspective Using a Multi-Level Analysis
Authors: Atefeh Bagherianziarat, Dana Hamplova
Abstract:
The inverse social gradient in life satisfaction (LS) is a well-established research finding. To estimate the influence of inequality on LS, most of the studies have explored the effect of the objective aspects of inequality or individuals’ socioeconomic status (SES). However, relatively fewer studies have confirmed recently the significant effect of the subjective aspect of inequality or subjective socioeconomic status (SSS) on life satisfaction over and above SES. In other words, it is confirmed by some studies that individuals’ perception of their unequal status in society or SSS can moderate the impact of their absolute unequal status on their life satisfaction. Nevertheless, this newly confirmed moderating link has not been affirmed to work likewise in societies with different levels of social inequality and also for people who believe in the value of equality, at different levels. In this study, we compared the moderative influence of subjective inequality on the link between objective inequality and life satisfaction. In particular, we focus on differences across welfare state regimes based on Esping-Andersen's theory. Also, we explored the moderative role of believing in the value of equality on the link between objective and subjective inequality on LS in the given societies. Since our studied variables were measured at both individual and country levels, we applied a multilevel analysis to the European Social Survey data (round 9). The results showed that people in deferent regimes reported statistically meaningful different levels of life satisfaction that is explained to different extends by their household income and their perception of their income inequality. The findings of the study supported the previous findings of the moderator influence of perceived inequality on the link between objective inequality and LS. However, this link is different in various welfare state regimes. The results of the multilevel modeling showed that country-level subjective equality is a positive predictor for individuals’ life satisfaction, while the GINI coefficient that was considered as the indicator of absolute inequality has a smaller effect on life satisfaction. Also, country-level subjective equality moderates the confirmed link between individuals’ income and their life satisfaction. It can be concluded that both individual and country-level subjective inequality slightly moderate the effect of individuals’ income on their life satisfaction.Keywords: individual values, life satisfaction, multilevel analysis, objective inequality, subjective inequality, welfare regimes status
Procedia PDF Downloads 986778 Anti-Gravity to Neo-Concretism: The Epodic Spaces of Non-Objective Art
Authors: Alexandra Kennedy
Abstract:
Making use of the notion of ‘epodic spaces’ this paper presents a reconsideration of non-objective art practices, proposing alternatives to established materialist, formalist, process-based conceptualist approaches to such work. In his Neo-Concrete Manifesto (1959) Ferreira Gullar (1930-2016) sought to create a distinction between various forms of non-objective art. He distinguished the ‘geometric’ arts of neoplasticism, constructivism, and suprematism – which he described as ‘dangerously acute rationalism’ – from other non-objective practices. These alternatives, he proposed, have an expressive potential lacking in the former and this formed the basis for their categorisation as neo-concrete. Gullar prioritized the phenomenological over the rational, with an emphasis on the role of the spectator (a key concept of minimalism). Gullar highlighted the central role of sensual experience, colour and the poetic in such work. In the early twentieth century, Russian Cosmism – an esoteric philosophical movement – was highly influential on Russian avant-garde artists and can account for suprematist artists’ interest in, and approach to, planar geometry and four-dimensional space as demonstrated in the abstract paintings of Kasimir Malevich (1879-1935). Nikolai Fyodorov (1823-1903) promoted the idea of anti-gravity and cosmic space as the field for artistic activity. The artist and writer Kuzma Petrov-Vodkin (1878-1939) wrote on the concept of Euclidean space, the overcoming of such rational conceptions of space and the breaking free from the gravitational field and the earth’s sphere. These imaginary spaces, which also invoke a bodily experience, present a poetic dimension to the work of the suprematists. It is a dimension that arguably aligns more with Gullar’s formulation of his neo-concrete rather than that of his alignment of Suprematism with rationalism. While found in experiments with planar geometry, the interest in forms suggestive of an experience of breaking free–both physically from the earth and conceptually from rational, mathematical space (in a pre-occupation with non-Euclidean space and anti-geometry) and in their engagement with the spatial properties of colour, Suprematism presents itself as imaginatively epodic. The paper discusses both historical and contemporary non-objective practices in this context, drawing attention to the manner in which the category of the non-objective is used to categorise art works which are, arguably, qualitatively different.Keywords: anti-gravity, neo-concrete, non-Euclidian geometry, non-objective painting
Procedia PDF Downloads 1786777 Multi-Objective Optimization for Aircraft Fleet Management: A Parametric Approach
Authors: Xin-Yu Li, Dung-Ying Lin
Abstract:
Fleet availability is a crucial indicator for an aircraft fleet. However, in practice, fleet planning involves many resource and safety constraints, such as annual and monthly flight training targets and maximum engine usage limits. Due to safety considerations, engines must be removed for mandatory maintenance and replacement of key components. This situation is known as the "threshold." The annual number of thresholds is a key factor in maintaining fleet availability. However, the traditional method heavily relies on experience and manual planning, which may result in ineffective engine usage and affect the flight missions. This study aims to address the challenges of fleet planning and availability maintenance in aircraft fleets with resource and safety constraints. The goal is to effectively optimize engine usage and maintenance tasks. This study has four objectives: minimizing the number of engine thresholds, minimizing the monthly lack of flight hours, minimizing the monthly excess of flight hours, and minimizing engine disassembly frequency. To solve the resulting formulation, this study uses parametric programming techniques and ϵ-constraint method to reformulate multi-objective problems into single-objective problems, efficiently generating Pareto fronts. This method is advantageous when handling multiple conflicting objectives. It allows for an effective trade-off between these competing objectives. Empirical results and managerial insights will be provided.Keywords: aircraft fleet, engine utilization planning, multi-objective optimization, parametric method, Pareto optimality
Procedia PDF Downloads 236776 Analytic Hierarchy Process and Multi-Criteria Decision-Making Approach for Selecting the Most Effective Soil Erosion Zone in Gomati River Basin
Authors: Rajesh Chakraborty, Dibyendu Das, Rabindra Nath Barman, Uttam Kumar Mandal
Abstract:
In the present study, the objective is to find out the most effective zone causing soil erosion in the Gumati river basin located in the state of Tripura, a north eastern state of India using analytical hierarchy process (AHP) and multi-objective optimization on the basis of ratio analysis (MOORA).The watershed is segmented into 20 zones based on Area. The watershed is considered by pointing the maximum elevation from sea lever from Google earth. The soil erosion is determined using the universal soil loss equation. The different independent variables of soil loss equation bear different weightage for different soil zones. And therefore, to find the weightage factor for all the variables of soil loss equation like rainfall runoff erosivity index, soil erodibility factor etc, analytical hierarchy process (AHP) is used. And thereafter, multi-objective optimization on the basis of ratio analysis (MOORA) approach is used to select the most effective zone causing soil erosion. The MCDM technique concludes that the maximum soil erosion is occurring in the zone 14.Keywords: soil erosion, analytic hierarchy process (AHP), multi criteria decision making (MCDM), universal soil loss equation (USLE), multi-objective optimization on the basis of ratio analysis (MOORA)
Procedia PDF Downloads 5386775 Mathematical Modeling Pressure Losses of Trapezoidal Labyrinth Channel and Bi-Objective Optimization of the Design Parameters
Authors: Nina Philipova
Abstract:
The influence of the geometric parameters of trapezoidal labyrinth channel on the pressure losses along the labyrinth length is investigated in this work. The impact of the dentate height is studied at fixed values of the dentate angle and the dentate spacing. The objective of the work presented in this paper is to derive a mathematical model of the pressure losses along the labyrinth length depending on the dentate height. The numerical simulations of the water flow movement are performed by using Commercial codes ANSYS GAMBIT and FLUENT. Dripper inlet pressure is set up to be 1 bar. As a result, the mathematical model of the pressure losses is determined as a second-order polynomial by means Commercial code STATISTIKA. Bi-objective optimization is performed by using the mean algebraic function of utility. The optimum value of the dentate height is defined at fixed values of the dentate angle and the dentate spacing. The derived model of the pressure losses and the optimum value of the dentate height are used as a basis for a more successful emitter design.Keywords: drip irrigation, labyrinth channel hydrodynamics, numerical simulations, Reynolds stress model
Procedia PDF Downloads 1546774 Stochastic Optimization of a Vendor-Managed Inventory Problem in a Two-Echelon Supply Chain
Authors: Bita Payami-Shabestari, Dariush Eslami
Abstract:
The purpose of this paper is to develop a multi-product economic production quantity model under vendor management inventory policy and restrictions including limited warehouse space, budget, and number of orders, average shortage time and maximum permissible shortage. Since the “costs” cannot be predicted with certainty, it is assumed that data behave under uncertain environment. The problem is first formulated into the framework of a bi-objective of multi-product economic production quantity model. Then, the problem is solved with three multi-objective decision-making (MODM) methods. Then following this, three methods had been compared on information on the optimal value of the two objective functions and the central processing unit (CPU) time with the statistical analysis method and the multi-attribute decision-making (MADM). The results are compared with statistical analysis method and the MADM. The results of the study demonstrate that augmented-constraint in terms of optimal value of the two objective functions and the CPU time perform better than global criteria, and goal programming. Sensitivity analysis is done to illustrate the effect of parameter variations on the optimal solution. The contribution of this research is the use of random costs data in developing a multi-product economic production quantity model under vendor management inventory policy with several constraints.Keywords: economic production quantity, random cost, supply chain management, vendor-managed inventory
Procedia PDF Downloads 1296773 An Audit of the Diagnosis of Asthma in Children in Primary Care and the Emergency Department
Authors: Abhishek Oswal
Abstract:
Background: Inconsistencies between the guidelines for childhood asthma can pose a diagnostic challenge to clinicians. NICE guidelines are the most commonly followed guidelines in primary care in the UK; they state that to be diagnosed with asthma, a child must be more than 5 years old and must have objective evidence of the disease. When diagnoses are coded in general practice (GP), these guidelines may be superseded by communications from secondary care. Hence it is imperative that diagnoses are correct, as per up to date guidelines and evidence, as this affects follow up and management both in primary and secondary care. Methods: A snapshot audit at a general practice surgery was undertaken of children (less than 16 years old) with a coded diagnosis of 'asthma', to review the age at diagnosis and whether any objective evidence of asthma was documented at diagnosis. 50 cases of asthma in children presenting to the emergency department (ED) were then audited to review the age at presentation, whether there was evidence of previous asthma diagnosis and whether the patient was discharged from ED. A repeat audit is planned in ED this winter. Results: In a GP surgery, there were 83 coded cases of asthma in children. 51 children (61%) were diagnosed under 5, with 9 children (11%) who had objective evidence of asthma documented at diagnosis. In ED, 50 cases were collected, of which 4 were excluded as they were referred to the other services, or for incorrect coding. Of the 46 remaining, 27 diagnoses confirmed to NICE guidelines (59%). 33 children (72%) were discharged from ED. Discussion: The most likely reason for the apparent low rate of a correct diagnosis is the significant challenge of obtaining objective evidence of asthma in children. There were a number of patients who were diagnosed from secondary care services and then coded as 'asthma' in GP, without having objective documented evidence. The electronic patient record (EPR) system used in our emergency department (ED) did not allow coding of 'suspected diagnosis' or of 'viral induced wheeze'. This may have led to incorrect diagnoses coded in primary care, of children who had no confirmed diagnosis of asthma. We look forward to the re-audit, as the EPR system has been updated to allow suspected diagnoses. In contrast to the NICE guidelines used here, British Thoracic Society (BTS) guidelines allow for a trial of treatment and subsequent confirmation of diagnosis without objective evidence. It is possible that some of the cases which have been classified as incorrect in this audit may still meet other guidelines. Conclusion: The diagnosis of asthma in children is challenging. Incorrect diagnoses may be related to clinical pressures and the provision of services to allow compliance with NICE guidelines. Consensus statements between the various groups would also aid the decision-making process and diagnostic dilemmas that clinicians face, to allow more consistent care of the patient.Keywords: asthma, diagnosis, primary care, emergency department, guidelines, audit
Procedia PDF Downloads 1446772 State of the Art on the Recommendation Techniques of Mobile Learning Activities
Authors: Nassim Dennouni, Yvan Peter, Luigi Lancieri, Zohra Slama
Abstract:
The objective of this article is to make a bibliographic study on the recommendation of mobile learning activities that are used as part of the field trip scenarios. Indeed, the recommendation systems are widely used in the context of mobility because they can be used to provide learning activities. These systems should take into account the history of visits and teacher pedagogy to provide adaptive learning according to the instantaneous position of the learner. To achieve this objective, we review the existing literature on field trip scenarios to recommend mobile learning activities.Keywords: mobile learning, field trip, mobile learning activities, collaborative filtering, recommendation system, point of interest, ACO algorithm
Procedia PDF Downloads 4466771 Sensitivity Analysis during the Optimization Process Using Genetic Algorithms
Authors: M. A. Rubio, A. Urquia
Abstract:
Genetic algorithms (GA) are applied to the solution of high-dimensional optimization problems. Additionally, sensitivity analysis (SA) is usually carried out to determine the effect on optimal solutions of changes in parameter values of the objective function. These two analyses (i.e., optimization and sensitivity analysis) are computationally intensive when applied to high-dimensional functions. The approach presented in this paper consists in performing the SA during the GA execution, by statistically analyzing the data obtained of running the GA. The advantage is that in this case SA does not involve making additional evaluations of the objective function and, consequently, this proposed approach requires less computational effort than conducting optimization and SA in two consecutive steps.Keywords: optimization, sensitivity, genetic algorithms, model calibration
Procedia PDF Downloads 4366770 Maintenance Performance Measurement Derived Optimization: A Case Study
Authors: James M. Wakiru, Liliane Pintelon, Peter Muchiri, Stanley Mburu
Abstract:
Maintenance performance measurement (MPM) represents an integrated aspect that considers both operational and maintenance related aspects while evaluating the effectiveness and efficiency of maintenance to ensure assets are working as they should. Three salient issues require to be addressed for an asset-intensive organization to employ an MPM-based framework to optimize maintenance. Firstly, the organization should establish important perfomance metric(s), in this case the maintenance objective(s), which they will be focuss on. The second issue entails aligning the maintenance objective(s) with maintenance optimization. This is achieved by deriving maintenance performance indicators that subsequently form an objective function for the optimization program. Lastly, the objective function is employed in an optimization program to derive maintenance decision support. In this study, we develop a framework that initially identifies the crucial maintenance performance measures, and employs them to derive maintenance decision support. The proposed framework is demonstrated in a case study of a geothermal drilling rig, where the objective function is evaluated utilizing a simulation-based model whose parameters are derived from empirical maintenance data. Availability, reliability and maintenance inventory are depicted as essential objectives requiring further attention. A simulation model is developed mimicking a drilling rig operations and maintenance where the sub-systems are modelled undergoing imperfect maintenance, corrective (CM) and preventive (PM), with the total cost as the primary performance measurement. Moreover, three maintenance spare inventory policies are considered; classical (retaining stocks for a contractual period), vendor-managed inventory with consignment stock and periodic monitoring order-to-stock (s, S) policy. Optimization results infer that the adoption of (s, S) inventory policy, increased PM interval and reduced reliance of CM actions offers improved availability and total costs reduction.Keywords: maintenance, vendor-managed, decision support, performance, optimization
Procedia PDF Downloads 1256769 Pragmatic Survey of Precedence as Linguistic 'Déjà Vu' in Political Text and Talk
Authors: Zarine Avetisyan
Abstract:
Both in language and literature there exists the theory of recurrence of text and talk chunks which brings us to the notion of precedence. It must be stated that precedence as a pragma-linguistic phenomenon is yet underknown and it is the main objective of the present research to revisit and reveal it thoroughly. In line with the main research objective, analysis of political text and talk provides abundant relevant data for the illustration of the phenomenon of precedence. The analysis focuses on certain pragmatic universals (e.g. intention) and categories (e.g. speech techniques) which lead to the disclosure of the present object of study.Keywords: intention, precedence, political discourse, pragmatic universals
Procedia PDF Downloads 4306768 Improved Multi-Objective Particle Swarm Optimization Applied to Design Problem
Authors: Kapse Swapnil, K. Shankar
Abstract:
Aiming at optimizing the weight and deflection of cantilever beam subjected to maximum stress and maximum deflection, Multi-objective Particle Swarm Optimization (MOPSO) with Utopia Point based local search is implemented. Utopia point is used to govern the search towards the Pareto Optimal set. The elite candidates obtained during the iterations are stored in an archive according to non-dominated sorting and also the archive is truncated based on least crowding distance. Local search is also performed on elite candidates and the most diverse particle is selected as the global best. This method is implemented on standard test functions and it is observed that the improved algorithm gives better convergence and diversity as compared to NSGA-II in fewer iterations. Implementation on practical structural problem shows that in 5 to 6 iterations, the improved algorithm converges with better diversity as evident by the improvement of cantilever beam on an average of 0.78% and 9.28% in the weight and deflection respectively compared to NSGA-II.Keywords: Utopia point, multi-objective particle swarm optimization, local search, cantilever beam
Procedia PDF Downloads 5196767 Multi-Objective Electric Vehicle Charge Coordination for Economic Network Management under Uncertainty
Authors: Ridoy Das, Myriam Neaimeh, Yue Wang, Ghanim Putrus
Abstract:
Electric vehicles are a popular transportation medium renowned for potential environmental benefits. However, large and uncontrolled charging volumes can impact distribution networks negatively. Smart charging is widely recognized as an efficient solution to achieve both improved renewable energy integration and grid relief. Nevertheless, different decision-makers may pursue diverse and conflicting objectives. In this context, this paper proposes a multi-objective optimization framework to control electric vehicle charging to achieve both energy cost reduction and peak shaving. A weighted-sum method is developed due to its intuitiveness and efficiency. Monte Carlo simulations are implemented to investigate the impact of uncertain electric vehicle driving patterns and provide decision-makers with a robust outcome in terms of prospective cost and network loading. The results demonstrate that there is a conflict between energy cost efficiency and peak shaving, with the decision-makers needing to make a collaborative decision.Keywords: electric vehicles, multi-objective optimization, uncertainty, mixed integer linear programming
Procedia PDF Downloads 1796766 Possibility Theory Based Multi-Attribute Decision-Making: Application in Facility Location-Selection Problem under Uncertain and Extreme Environment
Authors: Bezhan Ghvaberidze
Abstract:
A fuzzy multi-objective facility location-selection problem (FLSP) under uncertain and extreme environments based on possibility theory is developed. The model’s uncertain parameters in the q-rung orthopair fuzzy values are presented and transformed in the Dempster-Shaper’s belief structure environment. An objective function – distribution centers’ selection ranking index as an extension of Dempster’s extremal expectations under discrimination q-rung orthopair fuzzy information is constructed. Experts evaluate each humanitarian aid from distribution centers (HADC) against each of the uncertain factors. HADCs location problem is reduced to the bicriteria problem of partitioning the set of customers by the set of centers: (1) – Minimization of transportation costs; (2) – Maximization of centers’ selection ranking indexes. Partitioning type constraints are also constructed. For an illustration of the obtained results, a numerical example is created from the facility location-selection problem.Keywords: FLSP, multi-objective combinatorial optimization problem, evidence theory, HADC, q-rung orthopair fuzzy set, possibility theory
Procedia PDF Downloads 1196765 Multi-Objective Optimization of Run-of-River Small-Hydropower Plants Considering Both Investment Cost and Annual Energy Generation
Authors: Amèdédjihundé H. J. Hounnou, Frédéric Dubas, François-Xavier Fifatin, Didier Chamagne, Antoine Vianou
Abstract:
This paper presents the techno-economic evaluation of run-of-river small-hydropower plants. In this regard, a multi-objective optimization procedure is proposed for the optimal sizing of the hydropower plants, and NSGAII is employed as the optimization algorithm. Annual generated energy and investment cost are considered as the objective functions, and number of generator units (n) and nominal turbine flow rate (QT) constitute the decision variables. Site of Yeripao in Benin is considered as the case study. We have categorized the river of this site using its environmental characteristics: gross head, and first quartile, median, third quartile and mean of flow. Effects of each decision variable on the objective functions are analysed. The results gave Pareto Front which represents the trade-offs between annual energy generation and the investment cost of hydropower plants, as well as the recommended optimal solutions. We noted that with the increase of the annual energy generation, the investment cost rises. Thus, maximizing energy generation is contradictory with minimizing the investment cost. Moreover, we have noted that the solutions of Pareto Front are grouped according to the number of generator units (n). The results also illustrate that the costs per kWh are grouped according to the n and rise with the increase of the nominal turbine flow rate. The lowest investment costs per kWh are obtained for n equal to one and are between 0.065 and 0.180 €/kWh. Following the values of n (equal to 1, 2, 3 or 4), the investment cost and investment cost per kWh increase almost linearly with increasing the nominal turbine flowrate while annual generated. Energy increases logarithmically with increasing of the nominal turbine flowrate. This study made for the Yeripao river can be applied to other rivers with their own characteristics.Keywords: hydropower plant, investment cost, multi-objective optimization, number of generator units
Procedia PDF Downloads 1576764 Understanding the Interplay between Consumer Knowledge, Trust and Relationship Satisfaction in Financial Services
Authors: Torben Hansen, Lars Gronholdt, Alexander Josiassen, Anne Martensen
Abstract:
Consumers often exhibit a bias in their knowledge; they often think that they know more or less than they do. The concept of 'knowledge over/underconfidence' (O/U) has in previous studies been used to investigate such knowledge bias. O/U appears as a combination of subjective and objective knowledge. Subjective knowledge relates to consumers’ perception of their knowledge, while objective knowledge relates to consumers’ absolute knowledge measured by objective standards. This separation leads to three scenarios: The consumer can either be knowledge calibrated (subjective and objective knowledge are similar), overconfident (subjective knowledge exceeds objective knowledge) or underconfident (objective knowledge exceeds subjective knowledge). Knowledge O/U is a highly useful concept in understanding consumer choice behavior. For example, knowledge overconfident individuals are likely to exaggerate their ability to make right choices, are more likely to opt out of necessary information search, spend less time to carry out a specific task than less knowledge confident consumers, and are more likely to show high financial trading volumes. Through the use of financial services as a case study, this study contributes to previous research by examining how consumer knowledge O/U affects two types of trust (broad-scope trust and narrow-scope trust) and consumer relationship satisfaction. Trust does not only concern consumer trust in individual companies (i.e., narrow.-scope confidence NST), but also concerns consumer confidence in the broader business context in which consumers plan and implement their behavior (i.e., broad scope trust, BST). NST is defined as "the expectation that the service provider can be relied on to deliver on its promises’, while BST is defined as ‘the expectation that companies within a particular business type can generally be relied on to deliver on their promises.’ This study expands our understanding of the interplay between consumer knowledge bias, consumer trust, and relationship marketing in two main ways: First, it is demonstrated that the more knowledge O/U a consumer becomes, the higher/lower NST and levels of relationship satisfaction will be. Second, it is demonstrated that BST has a negative moderating effect on the relationship between knowledge O/U and satisfaction, such that knowledge O/U has a higher positive/negative effect on relationship satisfaction when BST is low vs. high. The data for this study comprises 756 mutual fund investors. Trust is particularly important in consumers’ mutual fund behavior because mutual funds have important responsibilities in providing financial advice and in managing consumers’ funds.Keywords: knowledge, cognitive bias, trust, customer-seller relationships, financial services
Procedia PDF Downloads 3016763 Assessing Walkability in New Cities around Cairo
Authors: Lobna Ahmed Galal
Abstract:
Modal integration has given minimal consideration in cities of developing countries, as well as the declining dominance of public transport, and predominance of informal transport, the modal share of informal taxis in greater Cairo has increased from 6% in 1987 to 37% in 2001 and this has since risen even higher, informal and non-motorized modes of transport acting as a gap filler by feeding other modes of transport, not by design or choice, but often by lack of accessible and affordable public transport. Yet non-motorized transport is peripheral, with minimal priority in urban planning and investments, lacking of strong polices to support non-motorized transport, for authorities development is associated with technology and motorized transport, and promotion of non-motorized transport may be considered corresponding to development, as well as social stigma against non-motorized transport, as it is seen a travel mode for the poor. Cairo as a city of a developing country, has poor quality infrastructure for non-motorized transport, suffering from absence of dedicated corridors, and when existing they are often encroached for commercial purposes, widening traffic lanes at the expense of sidewalks, absence of footpaths, or being overcrowded, poor lighting, making walking unsafe and yet, lack of financial supply to such facilities as it is often considered beyond city capabilities. This paper will deal with the objective measuring of the built environment relating to walking, in some neighborhoods of new cities around Cairo, In addition to comparing the results of the objective measures of the built environment with the level of self-reported survey. The first paper's objective is to show how the index ‘walkability of community neighborhoods’ works in the contexts in neighborhoods of new cities around Cairo. The procedure of objective measuring is of a high potential to be carried out by using GIS.Keywords: assessing, built environment, Cairo, walkability
Procedia PDF Downloads 3836762 Finding Optimal Operation Condition in a Biological Nutrient Removal Process with Balancing Effluent Quality, Economic Cost and GHG Emissions
Authors: Seungchul Lee, Minjeong Kim, Iman Janghorban Esfahani, Jeong Tai Kim, ChangKyoo Yoo
Abstract:
It is hard to maintain the effluent quality of the wastewater treatment plants (WWTPs) under with fixed types of operational control because of continuously changed influent flow rate and pollutant load. The aims of this study is development of multi-loop multi-objective control (ML-MOC) strategy in plant-wide scope targeting four objectives: 1) maximization of nutrient removal efficiency, 2) minimization of operational cost, 3) maximization of CH4 production in anaerobic digestion (AD) for CH4 reuse as a heat source and energy source, and 4) minimization of N2O gas emission to cope with global warming. First, benchmark simulation mode is modified to describe N2O dynamic in biological process, namely benchmark simulation model for greenhouse gases (BSM2G). Then, three types of single-loop proportional-integral (PI) controllers for DO controller, NO3 controller, and CH4 controller are implemented. Their optimal set-points of the controllers are found by using multi-objective genetic algorithm (MOGA). Finally, multi loop-MOC in BSM2G is implemented and evaluated in BSM2G. Compared with the reference case, the ML-MOC with the optimal set-points showed best control performances than references with improved performances of 34%, 5% and 79% of effluent quality, CH4 productivity, and N2O emission respectively, with the decrease of 65% in operational cost.Keywords: Benchmark simulation model for greenhouse gas, multi-loop multi-objective controller, multi-objective genetic algorithm, wastewater treatment plant
Procedia PDF Downloads 5036761 The Impacts of Cost Stickiness on the Profitability of Indonesian Firms
Authors: Dezie L. Warganegara, Dewi Tamara
Abstract:
The objectives of this study are to investigate the existence of the sticky cost behaviour of firms listed in the Indonesia Stock Exchange (IDX) and to find an evidence on the effects of sticky operating expenses (SG&A expenses) on profitability of firms. For the first objective, this study found that the sticky cost behaviour does exist. For the second objective, this study finds that the stickier the operating expenses the less future profitability of the firms. This study concludes that sticky cost affects negatively to the performance and, therefore, firms should include flexibility in designing the cost structure of their firms.Keywords: sticky costs, Indonesia Stock Exchange (IDX), profitability, operating expenses, SG&A
Procedia PDF Downloads 3176760 Strategic Asset Allocation Optimization: Enhancing Portfolio Performance Through PCA-Driven Multi-Objective Modeling
Authors: Ghita Benayad
Abstract:
Asset allocation, which affects the long-term profitability of portfolios by distributing assets to fulfill a range of investment objectives, is the cornerstone of investment management in the dynamic and complicated world of financial markets. This paper offers a technique for optimizing strategic asset allocation with the goal of improving portfolio performance by addressing the inherent complexity and uncertainty of the market through the use of Principal Component Analysis (PCA) in a multi-objective modeling framework. The study's first section starts with a critical evaluation of conventional asset allocation techniques, highlighting how poorly they are able to capture the intricate relationships between assets and the volatile nature of the market. In order to overcome these challenges, the project suggests a PCA-driven methodology that isolates important characteristics influencing asset returns by decreasing the dimensionality of the investment universe. This decrease provides a stronger basis for asset allocation decisions by facilitating a clearer understanding of market structures and behaviors. Using a multi-objective optimization model, the project builds on this foundation by taking into account a number of performance metrics at once, including risk minimization, return maximization, and the accomplishment of predetermined investment goals like regulatory compliance or sustainability standards. This model provides a more comprehensive understanding of investor preferences and portfolio performance in comparison to conventional single-objective optimization techniques. While applying the PCA-driven multi-objective optimization model to historical market data, aiming to construct portfolios better under different market situations. As compared to portfolios produced from conventional asset allocation methodologies, the results show that portfolios optimized using the proposed method display improved risk-adjusted returns, more resilience to market downturns, and better alignment with specified investment objectives. The study also looks at the implications of this PCA technique for portfolio management, including the prospect that it might give investors a more advanced framework for navigating financial markets. The findings suggest that by combining PCA with multi-objective optimization, investors may obtain a more strategic and informed asset allocation that is responsive to both market conditions and individual investment preferences. In conclusion, this capstone project improves the field of financial engineering by creating a sophisticated asset allocation optimization model that integrates PCA with multi-objective optimization. In addition to raising concerns about the condition of asset allocation today, the proposed method of portfolio management opens up new avenues for research and application in the area of investment techniques.Keywords: asset allocation, portfolio optimization, principle component analysis, multi-objective modelling, financial market
Procedia PDF Downloads 476759 Fuzzy Multi-Objective Approach for Emergency Location Transportation Problem
Authors: Bidzina Matsaberidze, Anna Sikharulidze, Gia Sirbiladze, Bezhan Ghvaberidze
Abstract:
In the modern world emergency management decision support systems are actively used by state organizations, which are interested in extreme and abnormal processes and provide optimal and safe management of supply needed for the civil and military facilities in geographical areas, affected by disasters, earthquakes, fires and other accidents, weapons of mass destruction, terrorist attacks, etc. Obviously, these kinds of extreme events cause significant losses and damages to the infrastructure. In such cases, usage of intelligent support technologies is very important for quick and optimal location-transportation of emergency service in order to avoid new losses caused by these events. Timely servicing from emergency service centers to the affected disaster regions (response phase) is a key task of the emergency management system. Scientific research of this field takes the important place in decision-making problems. Our goal was to create an expert knowledge-based intelligent support system, which will serve as an assistant tool to provide optimal solutions for the above-mentioned problem. The inputs to the mathematical model of the system are objective data, as well as expert evaluations. The outputs of the system are solutions for Fuzzy Multi-Objective Emergency Location-Transportation Problem (FMOELTP) for disasters’ regions. The development and testing of the Intelligent Support System were done on the example of an experimental disaster region (for some geographical zone of Georgia) which was generated using a simulation modeling. Four objectives are considered in our model. The first objective is to minimize an expectation of total transportation duration of needed products. The second objective is to minimize the total selection unreliability index of opened humanitarian aid distribution centers (HADCs). The third objective minimizes the number of agents needed to operate the opened HADCs. The fourth objective minimizes the non-covered demand for all demand points. Possibility chance constraints and objective constraints were constructed based on objective-subjective data. The FMOELTP was constructed in a static and fuzzy environment since the decisions to be made are taken immediately after the disaster (during few hours) with the information available at that moment. It is assumed that the requests for products are estimated by homeland security organizations, or their experts, based upon their experience and their evaluation of the disaster’s seriousness. Estimated transportation times are considered to take into account routing access difficulty of the region and the infrastructure conditions. We propose an epsilon-constraint method for finding the exact solutions for the problem. It is proved that this approach generates the exact Pareto front of the multi-objective location-transportation problem addressed. Sometimes for large dimensions of the problem, the exact method requires long computing times. Thus, we propose an approximate method that imposes a number of stopping criteria on the exact method. For large dimensions of the FMOELTP the Estimation of Distribution Algorithm’s (EDA) approach is developed.Keywords: epsilon-constraint method, estimation of distribution algorithm, fuzzy multi-objective combinatorial programming problem, fuzzy multi-objective emergency location/transportation problem
Procedia PDF Downloads 321