Search results for: nonlinear Schrodinger Equation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3114

Search results for: nonlinear Schrodinger Equation

3024 The Solution of Nonlinear Partial Differential Equation for The Phenomenon of Instability in Homogeneous Porous Media by Homotopy Analysis Method

Authors: Kajal K. Patel, M. N. Mehta, T. R. Singh

Abstract:

When water is injected in oil formatted area in secondary oil recovery process the instability occurs near common interface due to viscosity difference of injected water and native oil. The governing equation gives rise to the non-linear partial differential equation and its solution has been obtained by Homotopy analysis method with appropriate guess value of the solution together with some conditions and standard relations. The solution gives the average cross-sectional area occupied by the schematic fingers during the occurs of instability phenomenon. The numerical and graphical presentation has developed by using Maple software.

Keywords: capillary pressure, homotopy analysis method, instability phenomenon, viscosity

Procedia PDF Downloads 496
3023 Super Harmonic Nonlinear Lateral Vibration of an Axially Moving Beam with Rotating Prismatic Joint

Authors: M. Najafi, S. Bab, F. Rahimi Dehgolan

Abstract:

The motion of an axially moving beam with rotating prismatic joint with a tip mass on the end is analyzed to investigate the nonlinear vibration and dynamic stability of the beam. The beam is moving with a harmonic axially and rotating velocity about a constant mean velocity. A time-dependent partial differential equation and boundary conditions with the aid of the Hamilton principle are derived to describe the beam lateral deflection. After the partial differential equation is discretized by the Galerkin method, the method of multiple scales is applied to obtain analytical solutions. Frequency response curves are plotted for the super harmonic resonances of the first and the second modes. The effects of non-linear term and mean velocity are investigated on the steady state response of the axially moving beam. The results are validated with numerical simulations.

Keywords: super harmonic resonances, non-linear vibration, axially moving beam, Galerkin method

Procedia PDF Downloads 392
3022 Static Properties of Ge and Sr Isotopes in the Cluster Model

Authors: Mohammad Reza Shojaei, Mahdeih Mirzaeinia

Abstract:

We have studied the cluster structure of even-even stable isotopes of Ge and Sr. The Schrodinger equation has been solved using the generalized parametric Nikiforov-Uvarov method with a phenomenological potential. This potential is the sum of the attractive Yukawa-like potential, a Manning-Rosen-type potential, and the repulsive Yukawa potential for interaction between the cluster and the core. We have shown that the available experimental data of the first rotational band energies can be well described by assuming a binary system of the α cluster and the core and using an analytical solution. Our results were consistent with experimental values. Hence, this model can be applied to study the other even-even isotopes

Keywords: cluser model, NU method, ge and Sr, potential central

Procedia PDF Downloads 76
3021 Continuous Adaptive Robust Control for Non-Linear Uncertain Systems

Authors: Dong Sang Yoo

Abstract:

We consider nonlinear uncertain systems such that a priori information of the uncertainties is not available. For such systems, we assume that the upper bound of the uncertainties is represented as a Fredholm integral equation of the first kind and we propose an adaptation law that is capable of estimating the upper bound and design a continuous robust control which renders nonlinear uncertain systems ultimately bounded.

Keywords: adaptive control, estimation, Fredholm integral, uncertain system

Procedia PDF Downloads 483
3020 Exact Energy Spectrum and Expectation Values of the Inverse Square Root Potential Model

Authors: Benedict Ita, Peter Okoi

Abstract:

In this work, the concept of the extended Nikiforov-Uvarov technique is discussed and employed to obtain the exact bound state energy eigenvalues and the corresponding normalized eigenfunctions of the inverse square root potential. With expressions for the exact energy eigenvalues and corresponding eigenfunctions, the expressions for the expectation values of the inverse separation-squared, kinetic energy, and the momentum-squared of the potential are presented using the Hellmann Feynman theorem. For visualization, algorithms written and implemented in Python language are used to generate tables and plots for l-states of the energy eigenvalues and some expectation values. The results obtained here may find suitable applications in areas like atomic and molecular physics, chemical physics, nuclear physics, and solid-state physics.

Keywords: Schrodinger equation, Nikoforov-Uvarov method, inverse square root potential, diatomic molecules, Python programming, Hellmann-Feynman theorem, second order differential equation, matrix algebra

Procedia PDF Downloads 19
3019 Bright, Dark N-Soliton Solution of Fokas-Lenells Equation Using Hirota Bilinearization Method

Authors: Sagardeep Talukdar, Riki Dutta, Gautam Kumar Saharia, Sudipta Nandy

Abstract:

In non-linear optics, the Fokas-Lenells equation (FLE) is a well-known integrable equation that describes how ultrashort pulses move across the optical fiber. It admits localized wave solutions, just like any other integrable equation. We apply the Hirota bilinearization method to obtain the soliton solution of FLE. The proposed bilinearization makes use of an auxiliary function. We apply the method to FLE with a vanishing boundary condition, that is, to obtain a bright soliton solution. We have obtained bright 1-soliton and 2-soliton solutions and propose a scheme for obtaining an N-soliton solution. We have used an additional parameter that is responsible for the shift in the position of the soliton. Further analysis of the 2-soliton solution is done by asymptotic analysis. In the non-vanishing boundary condition, we obtain the dark 1-soliton solution. We discover that the suggested bilinearization approach, which makes use of the auxiliary function, greatly simplifies the process while still producing the desired outcome. We think that the current analysis will be helpful in understanding how FLE is used in nonlinear optics and other areas of physics.

Keywords: asymptotic analysis, fokas-lenells equation, hirota bilinearization method, soliton

Procedia PDF Downloads 112
3018 Simulation of Mid Infrared Supercontinuum Generation in Silicon Germanium Photonic Waveguides for Gas Spectroscopy

Authors: Proficiency Munsaka, Peter Baricholo, Erich Rohwer

Abstract:

Pulse evolutions along the 5 cm long, 6.0 ×4.2 μm² cross-section silicon germanium (SiGe) photonic waveguides were simulated and compared with experiments. Simulations were carried out by solving a generalized nonlinear Schrodinger equation (GNLSE) for an optical pulse evolution along the length of the SiGe photonic waveguides by the split-step Fourier method (SSFM). The solution obtained from the SSFM gave the pulse envelope in both time and spectral domain calculated at each distance step along the propagation direction. The SiGe photonic waveguides were pumped in an anomalous group velocity dispersion (GVD) regime using a 4.7 μm, 210 fs femtosecond laser to produce a significant supercontinuum (SC). The simulated propagation of ultrafast pulse along the SiGe photonic waveguides produced an SC covering the atmospheric window (2.5-8.5 μm) containing the molecular fingerprints for important gases. Thus, the mid-infrared supercontinuum generation in SiGe photonic waveguides system can be commercialized for gas spectroscopy for detecting gases that include CO₂, CH₄, H₂O, SO₂, SO₃, NO₂, H₂S, CO, and NO at trace level using absorption spectroscopy technique. The simulated profile evolutions are spectrally and temporally similar to those obtained by other researchers. Obtained evolution profiles are characterized by pulse compression, Soliton fission, dispersive wave generation, stimulated Raman Scattering, and Four Wave mixing.

Keywords: silicon germanium photonic waveguide, supercontinuum generation, spectroscopy, mid infrared

Procedia PDF Downloads 131
3017 Pull-In Instability Determination of Microcapacitive Sensor for Measuring Special Range of Pressure

Authors: Yashar Haghighatfar, Shahrzad Mirhosseini

Abstract:

Pull-in instability is a nonlinear and crucial effect that is important for the design of microelectromechanical system devices. In this paper, the appropriate electrostatic voltage range is determined by measuring fluid flow pressure via micro pressure sensor based microbeam. The microbeam deflection contains two parts, the static and perturbation deflection of static. The second order equation regarding the equivalent stiffness, mass and damping matrices based on Galerkin method is introduced to predict pull-in instability due to the external voltage. Also the reduced order method is used for solving the second order nonlinear equation of motion. Furthermore, in the present study, the micro capacitive pressure sensor is designed for measuring special fluid flow pressure range. The results show that the measurable pressure range can be optimized, regarding damping field and external voltage.

Keywords: MEMS, pull-in instability, electrostatically actuated microbeam, reduced order method

Procedia PDF Downloads 229
3016 Modified Newton's Iterative Method for Solving System of Nonlinear Equations in Two Variables

Authors: Sara Mahesar, Saleem M. Chandio, Hira Soomro

Abstract:

Nonlinear system of equations in two variables is a system which contains variables of degree greater or equal to two or that comprises of the transcendental functions. Mathematical modeling of numerous physical problems occurs as a system of nonlinear equations. In applied and pure mathematics it is the main dispute to solve a system of nonlinear equations. Numerical techniques mainly used for finding the solution to problems where analytical methods are failed, which leads to the inexact solutions. To find the exact roots or solutions in case of the system of non-linear equations there does not exist any analytical technique. Various methods have been proposed to solve such systems with an improved rate of convergence and accuracy. In this paper, a new scheme is developed for solving system of non-linear equation in two variables. The iterative scheme proposed here is modified form of the conventional Newton’s Method (CN) whose order of convergence is two whereas the order of convergence of the devised technique is three. Furthermore, the detailed error and convergence analysis of the proposed method is also examined. Additionally, various numerical test problems are compared with the results of its counterpart conventional Newton’s Method (CN) which confirms the theoretic consequences of the proposed method.

Keywords: conventional Newton’s method, modified Newton’s method, order of convergence, system of nonlinear equations

Procedia PDF Downloads 257
3015 Numerical Solutions of Generalized Burger-Fisher Equation by Modified Variational Iteration Method

Authors: M. O. Olayiwola

Abstract:

Numerical solutions of the generalized Burger-Fisher are obtained using a Modified Variational Iteration Method (MVIM) with minimal computational efforts. The computed results with this technique have been compared with other results. The present method is seen to be a very reliable alternative method to some existing techniques for such nonlinear problems.

Keywords: burger-fisher, modified variational iteration method, lagrange multiplier, Taylor’s series, partial differential equation

Procedia PDF Downloads 430
3014 Nonlinear Observer Canonical Form for Genetic Regulation Process

Authors: Bououden Soraya

Abstract:

This paper aims to study the existence of the change of coordinates which permits to transform a class of nonlinear dynamical systems into the so-called nonlinear observer canonical form (NOCF). Moreover, an algorithm to construct such a change of coordinates is given. Based on this form, we can design an observer with a linear error dynamic. This enables us to estimate the state of a nonlinear dynamical system. A concrete example (biological model) is provided to illustrate the feasibility of the proposed results.

Keywords: nonlinear observer canonical form, observer, design, gene regulation, gene expression

Procedia PDF Downloads 432
3013 Thermal and Geometric Effects on Nonlinear Response of Incompressible Hyperelastic Cylindrical Shells

Authors: Morteza Shayan Arani, Mohammadamin Esmailzadehazimi, Mohammadreza Moeini, Mohammad Toorani, Aouni A. Lakis

Abstract:

This paper investigates the nonlinear response of thin, incompressible, hyperelastic cylindrical shells in the presence of a time-varying temperature field while considering initial geometric imperfections. The governing equations of motion are derived using an improved Donnell's shallow shell theory. The hyperelastic material is modeled using the Mooney-Rivlin model with two parameters, incorporating temperature-dependent terms. The Lagrangian method is applied to obtain the equation of motion. The resulting governing equation is addressed through the Lindstedt-Poincaré and Multiple Scale methods. The linear and nonlinear models presented in this study are verified against existing open literature, demonstrating the accuracy and reliability of the presented model. The study focuses on understanding the influence of temperature variations and geometrical imperfections on the natural frequency and amplitude-frequency response of the systems. Notably, the investigation reveals the coexistence of hardening and softening peaks in the amplitude-frequency response, which vary in magnitude depending on these parameters. Additionally, resonance peaks exhibit changes as a result of temperature and geometric imperfections.

Keywords: hyperelastic material, cylindrical shell, geometrical nonlinearity, material naolinearity, initial geometric imperfection, temperature gradient, hardening and softening

Procedia PDF Downloads 72
3012 Analysis of Nonlinear Dynamic Systems Excited by Combined Colored and White Noise Excitations

Authors: Siu-Siu Guo, Qingxuan Shi

Abstract:

In this paper, single-degree-of-freedom (SDOF) systems to white noise and colored noise excitations are investigated. By expressing colored noise excitation as a second-order filtered white noise process and introducing colored noise as an additional state variable, the equation of motion for SDOF system under colored noise is then transferred artificially to multi-degree-of-freedom (MDOF) system under white noise excitations. As a consequence, corresponding Fokker-Planck-Kolmogorov (FPK) equation governing the joint probabilistic density function (PDF) of state variables increases to 4-dimension (4-D). Solution procedure and computer programme become much more sophisticated. The exponential-polynomial closure (EPC) method, widely applied for cases of SDOF systems under white noise excitations, is developed and improved for cases of systems under colored noise excitations and for solving the complex 4-D FPK equation. On the other hand, Monte Carlo simulation (MCS) method is performed to test the approximate EPC solutions. Two examples associated with Gaussian and non-Gaussian colored noise excitations are considered. Corresponding band-limited power spectral densities (PSDs) for colored noise excitations are separately given. Numerical studies show that the developed EPC method provides relatively accurate estimates of the stationary probabilistic solutions. Moreover, statistical parameter of mean-up crossing rate (MCR) is taken into account, which is important for reliability and failure analysis.

Keywords: filtered noise, narrow-banded noise, nonlinear dynamic, random vibration

Procedia PDF Downloads 225
3011 Differentiation of the Functional in an Optimization Problem for Coefficients of Elliptic Equations with Unbounded Nonlinearity

Authors: Aigul Manapova

Abstract:

We consider an optimal control problem in the higher coefficient of nonlinear equations with a divergent elliptic operator and unbounded nonlinearity, and the Dirichlet boundary condition. The conditions imposed on the coefficients of the state equation are assumed to hold only in a small neighborhood of the exact solution to the original problem. This assumption suggests that the state equation involves nonlinearities of unlimited growth and considerably expands the class of admissible functions as solutions of the state equation. We obtain formulas for the first partial derivatives of the objective functional with respect to the control functions. To calculate the gradients the numerical solutions of the state and adjoint problems are used. We also prove that the gradient of the cost function is Lipchitz continuous.

Keywords: cost functional, differentiability, divergent elliptic operator, optimal control, unbounded nonlinearity

Procedia PDF Downloads 172
3010 The Analysis of the Two Dimensional Huxley Equation Using the Galerkin Method

Authors: Pius W. Molo Chin

Abstract:

Real life problems such as the Huxley equation are always modeled as nonlinear differential equations. These problems need accurate and reliable methods for their solutions. In this paper, we propose a nonstandard finite difference method in time and the Galerkin combined with the compactness method in the space variables. This coupled method, is used to analyze a two dimensional Huxley equation for the existence and uniqueness of the continuous solution of the problem in appropriate spaces to be defined. We proceed to design a numerical scheme consisting of the aforementioned method and show that the scheme is stable. We further show that the stable scheme converges with the rate which is optimal in both the L2 as well as the H1-norms. Furthermore, we show that the scheme replicates the decaying qualities of the exact solution. Numerical experiments are presented with the help of an example to justify the validity of the designed scheme.

Keywords: Huxley equations, non-standard finite difference method, Galerkin method, optimal rate of convergence

Procedia PDF Downloads 215
3009 Asymptotic Expansion of the Korteweg-de Vries-Burgers Equation

Authors: Jian-Jun Shu

Abstract:

It is common knowledge that many physical problems (such as non-linear shallow-water waves and wave motion in plasmas) can be described by the Korteweg-de Vries (KdV) equation, which possesses certain special solutions, known as solitary waves or solitons. As a marriage of the KdV equation and the classical Burgers (KdVB) equation, the Korteweg-de Vries-Burgers (KdVB) equation is a mathematical model of waves on shallow water surfaces in the presence of viscous dissipation. Asymptotic analysis is a method of describing limiting behavior and is a key tool for exploring the differential equations which arise in the mathematical modeling of real-world phenomena. By using variable transformations, the asymptotic expansion of the KdVB equation is presented in this paper. The asymptotic expansion may provide a good gauge on the validation of the corresponding numerical scheme.

Keywords: asymptotic expansion, differential equation, Korteweg-de Vries-Burgers (KdVB) equation, soliton

Procedia PDF Downloads 249
3008 Laser Induced Transient Current in Quasi-One-Dimensional Nanostructure

Authors: Tokuei Sako

Abstract:

Light-induced ultrafast charge transfer in low-dimensional nanostructure has been studied by a model of a few electrons confined in a 1D electrostatic potential coupled to electrodes at both ends and subjected to an ultrashort pulsed laser field. The time-propagation of the one- and two-electron wave packets has been calculated by integrating the time-dependent Schrödinger equation by the symplectic integrator method with uniform Fourier grid. The temporal behavior of the resultant light-induced current in the studied systems has been discussed with respect to the central frequency and pulse width of the applied laser fields.

Keywords: pulsed laser field, nanowire, wave packet, quantum dots, conductivity

Procedia PDF Downloads 509
3007 X-Ray Dynamical Diffraction Rocking Curves in Case of Third Order Nonlinear Renninger Effect

Authors: Minas Balyan

Abstract:

In the third-order nonlinear Takagi’s equations for monochromatic waves and in the third-order nonlinear time-dependent dynamical diffraction equations for X-ray pulses for forbidden reflections the Fourier-coefficients of the linear and the third order nonlinear susceptibilities are zero. The dynamical diffraction in the nonlinear case is related to the presence in the nonlinear equations the terms proportional to the zero order and the second order nonzero Fourier coefficients of the third order nonlinear susceptibility. Thus in the third order nonlinear Bragg diffraction case a nonlinear analogue of the well known Renninger effect takes place. In this work, the ‘third order nonlinear Renninger effect’ is considered theoretically and numerically. If the reflection exactly is forbidden the diffracted wave’s amplitude is zero both in Laue and Bragg cases since the boundary conditions and dynamical diffraction equations are compatible with zero solution. But in real crystals due to some percent of dislocations and other localized defects, the atoms are displaced with respect to their equilibrium positions. Thus in real crystals susceptibilities of forbidden reflection are by some order small than for usual not forbidden reflections but are not exactly equal to zero. The numerical calculations for susceptibilities two order less than for not forbidden reflection show that in Bragg geometry case the nonlinear reflection curve’s behavior is the same as for not forbidden reflection, but for forbidden reflection the rocking curves’ width, center and boundaries are two order sensitive on the input intensity value. This gives an opportunity to investigate third order nonlinear X-ray dynamical diffraction for not intense beams – 0.001 in the units of critical intensity.

Keywords: third order nonlinearity, Bragg diffraction, nonlinear Renninger effect, rocking curves

Procedia PDF Downloads 406
3006 Second Harmonic Generation of Higher-Order Gaussian Laser Beam in Density Rippled Plasma

Authors: Jyoti Wadhwa, Arvinder Singh

Abstract:

This work presents the theoretical investigation of an enhanced second-harmonic generation of higher-order Gaussian laser beam in plasma having a density ramp. The mechanism responsible for the self-focusing of a laser beam in plasma is considered to be the relativistic mass variation of plasma electrons under the effect of a highly intense laser beam. Using the moment theory approach and considering the Wentzel-Kramers-Brillouin approximation for the non-linear Schrodinger wave equation, the differential equation is derived, which governs the spot size of the higher-order Gaussian laser beam in plasma. The nonlinearity induced by the laser beam creates the density gradient in the background plasma electrons, which is responsible for the excitation of the electron plasma wave. The large amplitude electron plasma wave interacts with the fundamental beam, which further produces the coherent radiations with double the frequency of the incident beam. The analysis shows the important role of the different modes of higher-order Gaussian laser beam and density ramp on the efficiency of generated harmonics.

Keywords: density rippled plasma, higher order Gaussian laser beam, moment theory approach, second harmonic generation.

Procedia PDF Downloads 179
3005 A Filtering Algorithm for a Nonlinear State-Space Model

Authors: Abdullah Eqal Al Mazrooei

Abstract:

Kalman filter is a famous algorithm that utilizes to estimate the state in the linear systems. It has numerous applications in technology and science. Since of the most of applications in real life can be described by nonlinear systems. So, Kalman filter does not work with the nonlinear systems because it is suitable to linear systems only. In this work, a nonlinear filtering algorithm is presented which is suitable to use with the special kinds of nonlinear systems. This filter generalizes the Kalman filter. This means that this filter also can be used for the linear systems. Our algorithm depends on a special linearization of the second degree. We introduced the nonlinear algorithm with a bilinear state-space model. A simulation example is presented to illustrate the efficiency of the algorithm.

Keywords: Kalman filter, filtering algorithm, nonlinear systems, state-space model

Procedia PDF Downloads 376
3004 Dam Break Model Using Navier-Stokes Equation

Authors: Alireza Lohrasbi, Alireza Lavaei, Mohammadali M. Shahlaei

Abstract:

The liquid flow and the free surface shape during the initial stage of dam breaking are investigated. A numerical scheme is developed to predict the wave of an unsteady, incompressible viscous flow with free surface. The method involves a two dimensional finite element (2D), in a vertical plan. The Naiver-Stokes equations for conservation of momentum and mass for Newtonian fluids, continuity equation, and full nonlinear kinematic free-surface equation were used as the governing equations. The mapping developed to solve highly deformed free surface problems common in waves formed during wave propagation, transforms the run up model from the physical domain to a computational domain with Arbitrary Lagrangian Eulerian (ALE) finite element modeling technique.

Keywords: dam break, Naiver-Stokes equations, free-surface flows, Arbitrary Lagrangian-Eulerian

Procedia PDF Downloads 337
3003 Nonlinear Impact Responses for a Damped Frame Supported by Nonlinear Springs with Hysteresis Using Fast FEA

Authors: T. Yamaguchi, M. Watanabe, M. Sasajima, C. Yuan, S. Maruyama, T. B. Ibrahim, H. Tomita

Abstract:

This paper deals with nonlinear vibration analysis using finite element method for frame structures consisting of elastic and viscoelastic damping layers supported by multiple nonlinear concentrated springs with hysteresis damping. The frame is supported by four nonlinear concentrated springs near the four corners. The restoring forces of the springs have cubic non-linearity and linear component of the nonlinear springs has complex quantity to represent linear hysteresis damping. The damping layer of the frame structures has complex modulus of elasticity. Further, the discretized equations in physical coordinate are transformed into the nonlinear ordinary coupled differential equations using normal coordinate corresponding to linear natural modes. Comparing shares of strain energy of the elastic frame, the damping layer and the springs, we evaluate the influences of the damping couplings on the linear and nonlinear impact responses. We also investigate influences of damping changed by stiffness of the elastic frame on the nonlinear coupling in the damped impact responses.

Keywords: dynamic response, nonlinear impact response, finite element analysis, numerical analysis

Procedia PDF Downloads 434
3002 Study and Solving High Complex Non-Linear Differential Equations Applied in the Engineering Field by Analytical New Approach AGM

Authors: Mohammadreza Akbari, Sara Akbari, Davood Domiri Ganji, Pooya Solimani, Reza Khalili

Abstract:

In this paper, three complicated nonlinear differential equations(PDE,ODE) in the field of engineering and non-vibration have been analyzed and solved completely by new method that we have named it Akbari-Ganji's Method (AGM) . As regards the previous published papers, investigating this kind of equations is a very hard task to do and the obtained solution is not accurate and reliable. This issue will be emerged after comparing the achieved solutions by Numerical Method. Based on the comparisons which have been made between the gained solutions by AGM and Numerical Method (Runge-Kutta 4th), it is possible to indicate that AGM can be successfully applied for various differential equations particularly for difficult ones. Furthermore, It is necessary to mention that a summary of the excellence of this method in comparison with the other approaches can be considered as follows: It is noteworthy that these results have been indicated that this approach is very effective and easy therefore it can be applied for other kinds of nonlinear equations, And also the reasons of selecting the mentioned method for solving differential equations in a wide variety of fields not only in vibrations but also in different fields of sciences such as fluid mechanics, solid mechanics, chemical engineering, etc. Therefore, a solution with high precision will be acquired. With regard to the afore-mentioned explanations, the process of solving nonlinear equation(s) will be very easy and convenient in comparison with the other methods. And also one of the important position that is explored in this paper is: Trigonometric and exponential terms in the differential equation (the method AGM) , is no need to use Taylor series Expansion to enhance the precision of the result.

Keywords: new method (AGM), complex non-linear partial differential equations, damping ratio, energy lost per cycle

Procedia PDF Downloads 469
3001 A Deterministic Large Deviation Model Based on Complex N-Body Systems

Authors: David C. Ni

Abstract:

In the previous efforts, we constructed N-Body Systems by an extended Blaschke product (EBP), which represents a non-temporal and nonlinear extension of Lorentz transformation. In this construction, we rely only on two parameters, nonlinear degree, and relative momentum to characterize the systems. We further explored root computation via iteration with an algorithm extended from Jenkins-Traub method. The solution sets demonstrate a form of σ+ i [-t, t], where σ and t are the real numbers, and the [-t, t] shows various canonical distributions. In this paper, we correlate the convergent sets in the original domain with solution sets, which demonstrating large-deviation distributions in the codomain. We proceed to compare our approach with the formula or principles, such as Donsker-Varadhan and Wentzell-Freidlin theories. The deterministic model based on this construction allows us to explore applications in the areas of finance and statistical mechanics.

Keywords: nonlinear Lorentz transformation, Blaschke equation, iteration solutions, root computation, large deviation distribution, deterministic model

Procedia PDF Downloads 393
3000 Soliton Interaction in Multi-Core Optical Fiber: Application to WDM System

Authors: S. Arun Prakash, V. Malathi, M. S. Mani Rajan

Abstract:

The analytical bright two soliton solution of the 3-coupled nonlinear Schrödinger equations with variable coefficients in birefringent optical fiber is obtained by Darboux transformation method. To the design of ultra-speed optical devices, Soliton interaction and control in birefringence fiber is investigated. Lax pair is constructed for N coupled NLS system through AKNS method. Using two soliton solution, we demonstrate different interaction behaviors of solitons in birefringent fiber depending on the choice of control parameters. Our results shows that interactions of optical solitons have some specific applications such as construction of logic gates, optical computing, soliton switching, and soliton amplification in wavelength division multiplexing (WDM) system.

Keywords: optical soliton, soliton interaction, soliton switching, WDM

Procedia PDF Downloads 505
2999 Operator Splitting Scheme for the Inverse Nagumo Equation

Authors: Sharon-Yasotha Veerayah-Mcgregor, Valipuram Manoranjan

Abstract:

A backward or inverse problem is known to be an ill-posed problem due to its instability that easily emerges with any slight change within the conditions of the problem. Therefore, only a limited number of numerical approaches are available to solve a backward problem. This paper considers the Nagumo equation, an equation that describes impulse propagation in nerve axons, which also models population growth with the Allee effect. A creative operator splitting numerical scheme is constructed to solve the inverse Nagumo equation. Computational simulations are used to verify that this scheme is stable, accurate, and efficient.

Keywords: inverse/backward equation, operator-splitting, Nagumo equation, ill-posed, finite-difference

Procedia PDF Downloads 98
2998 Direct Design of Steel Bridge Using Nonlinear Inelastic Analysis

Authors: Boo-Sung Koh, Seung-Eock Kim

Abstract:

In this paper, a direct design using a nonlinear inelastic analysis is suggested. Also, this paper compares the load carrying capacity obtained by a nonlinear inelastic analysis with experiment results to verify the accuracy of the results. The allowable stress design results of a railroad through a plate girder bridge and the safety factor of the nonlinear inelastic analysis were compared to examine the safety performance. As a result, the load safety factor for the nonlinear inelastic analysis was twice as high as the required safety factor under the allowable stress design standard specified in the civil engineering structure design standards for urban magnetic levitation railways, which further verified the advantages of the proposed direct design method.

Keywords: direct design, nonlinear inelastic analysis, residual stress, initial geometric imperfection

Procedia PDF Downloads 531
2997 Quantum Dynamics for General Time-Dependent Three Coupled Oscillators

Authors: Salah Menouar, Sara Hassoul

Abstract:

The dynamic of time-dependent three coupled oscillators is studied through an approach based on decoupling of them using the unitary transformation method. From a first unitary transformation, the Hamiltonian of the complicated original system is transformed to an equal but a simple one associated with the three coupled oscillators of which masses are unity. Finally, we diagonalize the matrix representation of the transformed hamiltonian by using a unitary matrix. The diagonalized Hamiltonian is just the same as the Hamiltonian of three simple oscillators. Through these procedures, the coupled oscillatory subsystems are completely decoupled. From this uncouplement, we can develop complete dynamics of the whole system in an easy way by just examining each oscillator independently. Such a development of the mechanical theory can be done regardless of the complication of the parameters' variations.

Keywords: schrödinger equation, hamiltonian, time-dependent three coupled oscillators, unitary transformation

Procedia PDF Downloads 98
2996 On Differential Growth Equation to Stochastic Growth Model Using Hyperbolic Sine Function in Height/Diameter Modeling of Pines

Authors: S. O. Oyamakin, A. U. Chukwu

Abstract:

Richard's growth equation being a generalized logistic growth equation was improved upon by introducing an allometric parameter using the hyperbolic sine function. The integral solution to this was called hyperbolic Richard's growth model having transformed the solution from deterministic to a stochastic growth model. Its ability in model prediction was compared with the classical Richard's growth model an approach which mimicked the natural variability of heights/diameter increment with respect to age and therefore provides a more realistic height/diameter predictions using the coefficient of determination (R2), Mean Absolute Error (MAE) and Mean Square Error (MSE) results. The Kolmogorov-Smirnov test and Shapiro-Wilk test was also used to test the behavior of the error term for possible violations. The mean function of top height/Dbh over age using the two models under study predicted closely the observed values of top height/Dbh in the hyperbolic Richard's nonlinear growth models better than the classical Richard's growth model.

Keywords: height, Dbh, forest, Pinus caribaea, hyperbolic, Richard's, stochastic

Procedia PDF Downloads 480
2995 Convergence of Sinc Methods Applied to Kuramoto-Sivashinsky Equation

Authors: Kamel Al-Khaled

Abstract:

A comparative study of the Sinc-Galerkin and Sinc-Collocation methods for solving the Kuramoto-Sivashinsky equation is given. Both approaches depend on using Sinc basis functions. Firstly, a numerical scheme using Sinc-Galerkin method is developed to approximate the solution of Kuramoto-Sivashinsky equation. Sinc approximations to both derivatives and indefinite integrals reduces the solution to an explicit system of algebraic equations. The error in the solution is shown to converge to the exact solution at an exponential. The convergence proof of the solution for the discrete system is given using fixed-point iteration. Secondly, a combination of a Crank-Nicolson formula in the time direction, with the Sinc-collocation in the space direction is presented, where the derivatives in the space variable are replaced by the necessary matrices to produce a system of algebraic equations. The methods are tested on two examples. The demonstrated results show that both of the presented methods more or less have the same accuracy.

Keywords: Sinc-Collocation, nonlinear PDEs, numerical methods, fixed-point

Procedia PDF Downloads 471