Search results for: groundwater resources
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5660

Search results for: groundwater resources

5570 Monsoon Controlled Mercury Transportation in Ganga Alluvial Plain, Northern India and Its Implication on Global Mercury Cycle

Authors: Anjali Singh, Ashwani Raju, Vandana Devi, Mohmad Mohsin Atique, Satyendra Singh, Munendra Singh

Abstract:

India is the biggest consumer of mercury and, consequently, a major emitter too. The increasing mercury contamination in India’s water resources has gained widespread attention and, therefore, atmospheric deposition is of critical concern. However, little emphasis was placed on the role of precipitation in the aquatic mercury cycle of the Ganga Alluvial Plain which provides drinking water to nearly 7% of the world’s human population. A majority of the precipitation here occurs primarily in 10% duration of the year in the monsoon season. To evaluate the sources and transportation of mercury, water sample analysis has been conducted from two selected sites near Lucknow, which have a strong hydraulic gradient towards the river. 31 groundwater samples from Jehta village (26°55’15’’N; 80°50’21’’E; 119 m above mean sea level) and 31 river water samples from the Behta Nadi (a tributary of the Gomati River draining into the Ganga River) were collected during the monsoon season on every alternate day between 01 July to 30 August 2019. The total mercury analysis was performed by using Flow Injection Atomic Absorption Spectroscopy (AAS)-Mercury Hybride System, and daily rainfall data was collected from the India Meteorological Department, Amausi, Lucknow. The ambient groundwater and river-water concentrations were both 2-4 ng/L as there is no known geogenic source of mercury found in the area. Before the onset of the monsoon season, the groundwater and the river-water recorded mercury concentrations two orders of magnitude higher than the ambient concentrations, indicating the regional transportation of the mercury from the non-point source into the aquatic environment. Maximum mercury concentrations in groundwater and river-water were three orders of magnitude higher than the ambient concentrations after the onset of the monsoon season characterizing the considerable mobilization and redistribution of mercury by monsoonal precipitation. About 50% of both of the water samples were reported mercury below the detection limit, which can be mostly linked to the low intensity of precipitation in August and also with the dilution factor by precipitation. The highest concentration ( > 1200 ng/L) of mercury in groundwater was reported after 6-days lag from the first precipitation peak. Two high concentration peaks (>1000 ng/L) in river-water were separately correlated with the surface flow and groundwater outflow of mercury. We attribute the elevated mercury concentration in both of the water samples before the precipitation event to mercury originating from the extensive use of agrochemicals in mango farming in the plain. However, the elevated mercury concentration during the onset of monsoon appears to increase in area wetted with atmospherically deposited mercury, which migrated down from surface water to groundwater as downslope migration is a fundamental mechanism seen in rivers of the alluvial plain. The present study underscores the significance of monsoonal precipitation in the transportation of mercury to drinking water resources of the Ganga Alluvial Plain. This study also suggests that future research must be pursued for a better understand of the human health impact of mercury contamination and for quantification of the role of Ganga Alluvial Plain in the Global Mercury Cycle.

Keywords: drinking water resources, Ganga alluvial plain, india, mercury

Procedia PDF Downloads 145
5569 Characterization and Modelling of Groundwater Flow towards a Public Drinking Water Well Field: A Case Study of Ter Kamerenbos Well Field

Authors: Buruk Kitachew Wossenyeleh

Abstract:

Groundwater is the largest freshwater reservoir in the world. Like the other reservoirs of the hydrologic cycle, it is a finite resource. This study focused on the groundwater modeling of the Ter Kamerenbos well field to understand the groundwater flow system and the impact of different scenarios. The study area covers 68.9Km2 in the Brussels Capital Region and is situated in two river catchments, i.e., Zenne River and Woluwe Stream. The aquifer system has three layers, but in the modeling, they are considered as one layer due to their hydrogeological properties. The catchment aquifer system is replenished by direct recharge from rainfall. The groundwater recharge of the catchment is determined using the spatially distributed water balance model called WetSpass, and it varies annually from zero to 340mm. This groundwater recharge is used as the top boundary condition for the groundwater modeling of the study area. During the groundwater modeling using Processing MODFLOW, constant head boundary conditions are used in the north and south boundaries of the study area. For the east and west boundaries of the study area, head-dependent flow boundary conditions are used. The groundwater model is calibrated manually and automatically using observed hydraulic heads in 12 observation wells. The model performance evaluation showed that the root means the square error is 1.89m and that the NSE is 0.98. The head contour map of the simulated hydraulic heads indicates the flow direction in the catchment, mainly from the Woluwe to Zenne catchment. The simulated head in the study area varies from 13m to 78m. The higher hydraulic heads are found in the southwest of the study area, which has the forest as a land-use type. This calibrated model was run for the climate change scenario and well operation scenario. Climate change may cause the groundwater recharge to increase by 43% and decrease by 30% in 2100 from current conditions for the high and low climate change scenario, respectively. The groundwater head varies for a high climate change scenario from 13m to 82m, whereas for a low climate change scenario, it varies from 13m to 76m. If doubling of the pumping discharge assumed, the groundwater head varies from 13m to 76.5m. However, if the shutdown of the pumps is assumed, the head varies in the range of 13m to 79m. It is concluded that the groundwater model is done in a satisfactory way with some limitations, and the model output can be used to understand the aquifer system under steady-state conditions. Finally, some recommendations are made for the future use and improvement of the model.

Keywords: Ter Kamerenbos, groundwater modelling, WetSpass, climate change, well operation

Procedia PDF Downloads 152
5568 Groundwater Geophysical Studies in the Developed and Sub-Urban BBMP Area, Bangalore, Karnataka, South India

Authors: G. Venkatesha, Urs Samarth, H. K. Ramaraju, Arun Kumar Sharma

Abstract:

The projection for Groundwater states that the total domestic water demand for greater Bangalore would increase from 1,170 MLD in 2010 to 1,336 MLD in 2016. Dependence on groundwater is ever increasing due to rapid Industrialization & Urbanization. It is estimated that almost 40% of the population of Bangalore is dependent on groundwater. Due to the unscientific disposal of domestic and industrial waste generated, groundwater is getting highly polluted in the city. The scale of this impact will depend mainly upon the water-service infrastructure, the superficial geology and the regional setting. The quality of ground water is equally important as that of quantity. Jointed and fractured granites and gneisses constitute the major aquifer system of BBMP area. Two new observatory Borewells were drilled and lithology report has been prepared. Petrographic Analysis (XRD/XRF) and Water quality Analysis were carried out as per the standard methods. Petrographic samples were analysed by collecting chip of rock from the borewell for every 20ft depth, most of the samples were similar and samples were identified as Biotite-Gneiss, Schistose Amphibolite. Water quality analysis was carried out for individual chemical parameters for two borewells drilled. 1st Borewell struck water at 150ft (Total depth-200ft) & 2nd struck at 740ft (Total depth-960ft). 5 water samples were collected till end of depth in each borewell. Chemical parameter values such as, Total Hardness (360-348, 280-320) mg/ltr, Nitrate (12.24-13.5, 45-48) mg/ltr, Chloride (104-90, 70-70)mg/ltr, Fe (0.75-0.09, 1.288-0.312)mg/ltr etc. are calculated respectively. Water samples were analysed from various parts of BBMP covering 750 sq kms, also thematic maps (IDW method) of water quality is generated for these samples for Post-Monsoon season. The study aims to explore the sub-surface Lithological layers and the thickness of weathered zone, which indirectly helps to know the Groundwater pollution source near surface water bodies, dug wells, etc. The above data are interpreted for future ground water resources planning and management.

Keywords: lithology, petrographic, pollution, urbanization

Procedia PDF Downloads 293
5567 Towards a Vulnerability Model Assessment of The Alexandra Jukskei Catchment in South Africa

Authors: Vhuhwavho Gadisi, Rebecca Alowo, German Nkhonjera

Abstract:

This article sets out to detail an investigation of groundwater management in the Juksei Catchment of South Africa through spatial mapping of key hydrological relationships, interactions, and parameters in catchments. The Department of Water Affairs (DWA) noted gaps in the implementation of the South African National Water Act 1998: article 16, including the lack of appropriate models for dealing with water quantity parameters. For this reason, this research conducted a drastic GIS-based groundwater assessment to improve groundwater monitoring system in the Juksei River basin catchment of South Africa. The methodology employed was a mixed-methods approach/design that involved the use of DRASTIC analysis, questionnaire, literature review and observations to gather information on how to help people who use the Juskei River. GIS (geographical information system) mapping was carried out using a three-parameter DRASTIC (Depth to water, Recharge, Aquifer media, Soil media, Topography, Impact of the vadose zone, Hydraulic conductivity) vulnerability methodology. In addition, the developed vulnerability map was subjected to sensitivity analysis as a validation method. This approach included single-parameter sensitivity, sensitivity to map deletion, and correlation analysis of DRASTIC parameters. The findings were that approximately 5.7% (45km2) of the area in the northern part of the Juksei watershed is highly vulnerable. Approximately 53.6% (428.8 km^2) of the basin is also at high risk of groundwater contamination. This area is mainly located in the central, north-eastern, and western areas of the sub-basin. The medium and low vulnerability classes cover approximately 18.1% (144.8 km2) and 21.7% (168 km2) of the Jukskei River, respectively. The shallow groundwater of the Jukskei River belongs to a very vulnerable area. Sensitivity analysis indicated that water depth, water recharge, aquifer environment, soil, and topography were the main factors contributing to the vulnerability assessment. The conclusion is that the final vulnerability map indicates that the Juksei catchment is highly susceptible to pollution, and therefore, protective measures are needed for sustainable management of groundwater resources in the study area.

Keywords: contamination, DRASTIC, groundwater, vulnerability, model

Procedia PDF Downloads 83
5566 Significance of Treated Wasteater in Facing Consequences of Climate Change in Arid Regions

Authors: Jamal A. Radaideh, A. J. Radaideh

Abstract:

Being a problem threatening the planet and its ecosystems, the climate change has been considered for a long time as a disturbing topic impacting water resources in Jordan. Jordan is expected for instance to be highly vulnerable to climate change consequences given its unbalanced distribution between water resources availability and existing demands. Thus, action on adaptation to climate impacts is urgently needed to cope with the negative consequences of climate change. Adaptation to global change must include prudent management of treated wastewater as a renewable resource, especially in regions lacking groundwater or where groundwater is already over exploited. This paper highlights the expected negative effects of climate change on the already scarce water sources and to motivate researchers and decision makers to take precautionary measures and find alternatives to keep the level of water supplies at the limits required for different consumption sectors in terms of quantity and quality. The paper will focus on assessing the potential for wastewater recycling as an adaptation measure to cope with water scarcity in Jordan and to consider wastewater as integral part of the national water budget to solve environmental problems. The paper also identified a research topic designed to help the nation progress in making the most appropriate use of the resource, namely for agricultural irrigation. Wastewater is a promising alternative to fill the shortage in water resources, especially due to climate changes, and to preserve the valuable fresh water to give priority to securing drinking water for the population from these resources and at the same time raise the efficiency of the use of available resources. Jordan has more than 36 wastewater treatment plants distributed throughout the country and producing about 386,000 CM/day of reclaimed water. According to the reports of water quality control programs, more than 85 percent of this water is of a quality that is completely identical to the quality suitable for irrigation of field crops and forest trees according to the requirements of Jordanian Standard No. 893/2006.

Keywords: climate change effects on water resources, adaptation on climate change, treated wastewater recycling, arid and semi-arid regions, Jordan

Procedia PDF Downloads 111
5565 Geophysical Exploration of Aquifer Zones by (Ves) Method at Ayma-Kharagpur, District Paschim Midnapore, West Bengal

Authors: Mayank Sharma

Abstract:

Groundwater has been a matter of great concern in the past years due to the depletion in the water table. This has resulted from the over-exploitation of groundwater resources. Sub-surface exploration of groundwater is a great way to identify the groundwater potential of an area. Thus, in order to meet the water needs for irrigation in the study area, there was a need for a tube well to be installed. Therefore, a Geophysical investigation was carried out to find the most suitable point of drilling and sinking of tube well that encounters an aquifer. Hence, an electrical resistivity survey of geophysical exploration was used to know the aquifer zones of the area. The Vertical Electrical Sounding (VES) method was employed to know the subsurface geology of the area. Seven vertical electrical soundings using Schlumberger electrode array were carried out, having the maximum AB electrode separation of 700m at selected points in Ayma, Kharagpur-1 block of Paschim Midnapore district, West Bengal. The VES was done using an IGIS DDR3 Resistivity meter up to an approximate depth of 160-180m. The data was interpreted, processed and analyzed. Based on all the interpretations using the direct method, the geology of the area at the points of sounding was interpreted. It was established that two deeper clay-sand sections exist in the area at a depth of 50-70m (having resistivity range of 40-60ohm-m) and 70-160m (having resistivity range of 25-35ohm-m). These aquifers will provide a high yield of water which would be sufficient for the desired irrigation in the study area.

Keywords: VES method, Schlumberger method, electrical resistivity survey, geophysical exploration

Procedia PDF Downloads 196
5564 Groundwater Potential in the Central Part of Al Jabal Al Akhdar Area, Ne Libya

Authors: Maged El Osta, Milad Masoud

Abstract:

Al Jabal Al Akhdar in the north-eastern part of Libya represents a region with promising ecological underpinning for grazing and other agricultural developments. The groundwater potential of both Upper Cretaceous and Eocene aquifers was studied based the available literature and a complete database for about 112 water wells drilled in the period 2003-2009. In this research, the hydrogeological methods will be integrated with the Geographic Information System (GIS) that played a main role in highlighting the spatial characteristics of the groundwater system. The results indicate that the depth to water for the Upper Cretaceous aquifer ranges from 150 to 458 m, and the piezometric surface decreases from over 500 m (m.s.l) in the northern parts to -20 m (m.s.l) in southeastern part. Salinity ranges between 303 and 1329 mg/l indicating that groundwater belongs to the slightly fresh water class. In the Eocene aquifer, the depth to groundwater ranges from 120 to 290.5 m and the potentiometric level decreases gradually southwards from 220 to -51 m (m.s.l) and characterized by steep slope in the southeastern part of the study area, where the aquifer characterized by relatively high productivity (specific capacity ranges between 10.08 and 332.3 m2/day). The groundwater salinity within this aquifer ranges between 198 and 2800 mg/l (fresh to brackish water class). The annual average rainfall (from 280 to 500 mm) plays a significant role in the recharge of the two aquifers. The priority of groundwater quality and potentiality increases towards the central and northern portions of the concerned area.

Keywords: Eocene and Upper Cretaceous aquifers, rainfall, potentiality, Geographic Information System (GIS)

Procedia PDF Downloads 221
5563 Evaluation of Groundwater and Seawater Intrusion at Tajoura Area, NW, Libya

Authors: Abdalraheem Huwaysh, Khalil Al Samarrai, Yasmin ElAhmar

Abstract:

Water quality is an important factor that determines its usage for domestic, agricultural and industrial uses. This study was carried out through the Tajoura Area, Jifarah Plain, Northwest Libya. Chemical and physical parameters were measured and analyzed for groundwater samples collected in 2021 from twenty-six wells distributed throughout the investigation area. Overexploitation of groundwater caused considerable deterioration in the water quality, especially at Tajoura Town (20 Km east of Tripoli). The aquifer shows an increase in salinization, which has reached an alarming level in many places during the past 25 years as a result of the seawater intrusion. The chemical composition of the water samples was compared with the drinking water standards of WHO and Libyan Standards. Groundwater from this area was not suitable to be a source for direct drinking based on Total Dissolved Solids. The dominant cation is sodium, while the dominant anion is chloride. Based on the Piper trilinear diagram, most of the groundwater samples (90%) were identified as sodium chloride type. The best groundwater quality exists at the southern part of the study area. Serious degradation in the water quality, expressed in salinity increase, occurs as we go towards the coastline. The abundance of NaCl waters is strong evidence to attribute the successive deterioration of the water quality to the seawater intrusion. Considering the values of Cl- concentration and the ratio of Cl-/HCO3-, about 70% of the groundwater samples were strongly affected by the saline water. Car wash stations in the study area as well as the unlined disposal pond used for the collection of untreated wastewater, contribute significantly to the deterioration of water quality. The water quality in this area needs to be monitored regularly and it is crucial to treat the water before consumption.

Keywords: Tajoura, groundwater, seawater intrusion, water quality

Procedia PDF Downloads 104
5562 Study of Geological Structure for Potential Fresh-Groundwater Aquifer Determination around Cidaun Beach, Cianjur Regency, West Java Province, Indonesia

Authors: Ilham Aji Dermawan, M. Sapari Dwi Hadian, R. Irvan Sophian, Iyan Haryanto

Abstract:

The study of the geological structure in the surrounding area of Cidaun, Cianjur Regency, West Java Province, Indonesia was conducted around the southern coast of Java Island. This study aims to determine the potentially structural trap deposits of freshwater resources in the study area, according to that the study area is an area directly adjacent to the beach, where the water around it did not seem fresh and brackish due to the exposure of sea water intrusion. This study uses the method of geomorphological analysis and geological mapping by taking the data directly in the field within 10x10 km of the research area. Geomorphological analysis was done by calculating the watershed drainage density value and roundness of watershed value ratio. The goal is to determine the permeability of the sub-soil conditions, rock constituent, and the flow of surface water. While the field geological mapping aims to take the geological structure data and then will do the reconstruction to determine the geological conditions of research area. The result, from geomorphology aspects, that the considered area of potential groundwater consisted of permeable surface material, permeable sub-soil, and low of water run-off flow. It is very good for groundwater recharge area. While the results of geological reconstruction after conducted of geological mapping is joints that present were initiated for the Cipandak Fault that cuts Cipandak River. That fault across until the Cibako Syncline fold through the Cibako River. This syncline is expected to place of influent groundwater aquifer. The tip of Cibako River then united with Cipandak River, where the Cipandak River extends through Cipandak Syncline fold axis in the southern regions close to its estuary. This syncline is expected to place of influent groundwater aquifer too.

Keywords: geological structure, groundwater, hydrogeology, influent aquifer, structural trap

Procedia PDF Downloads 204
5561 Groundwater Recharge Pattern in East and West Coast of India: Evidence of Dissimilar Moisture Sources

Authors: Ajit Kumar Behera, Saranya P., Sudhir Kumar, Krishnakumar A

Abstract:

The stable isotope (δ¹⁸ O and δ²H) composition of groundwater of the coastal areas of Periyar and Mahanadi basins falling along East and West coast of India during North-East (NE) monsoon season have been studied. The east and west coast regions are surrounded by the Bay of Bengal and the Arabian Sea respectively, which are considered to be the primary sources for precipitation over India. The major difference between the Bay of Bengal and the Arabian Sea is that a number of large rivers feed the Bay of Bengal, whereas the Arabian Sea is fed by very few small rivers, resulting in enriched stable isotopic composition of the Arabian Sea than the Bay of Bengal. Previous studies have reported depleted ratios of stable isotopes during Northeast monsoon along East and West coasts due to the influence of the Bay of Bengal moisture source. The isotopic composition of groundwater of the Mahanadi delta in the east coast region varies from -6.87 ‰ to -3.40 ‰ for δ¹⁸ O and -45.42 ‰ to -22.43‰ for δ²H. However, the groundwater of the Periyar basin in the west coast has enriched stable isotope value varying from -4.3‰ to -2.5 ‰ for δ¹⁸ O and for δ²H from -23.7 to -6.4 ‰ which is a characteristic of South-West monsoon season. This suggests the groundwater system of the Mahanadi delta and the Periyar basins are influenced by dissimilar moisture sources. The δ¹⁸ O and δ² H relationship (δ²H= 6.513 δ¹⁸ O - 1.39) and d-excess value (< 10) in the east coast region indicates the influence of NE monsoon implying the quick groundwater recharge after precipitation with significant amount of evaporation. In contrast, the δ¹⁸ O and δ²H regression line (δ²H= 8.408 δ¹⁸ O + 11.71) with high d-excess value (>10) in the west coast region implies delayed recharge due to SW monsoon. The observed isotopic enrichment in west coast suggests that NE winter monsoon rainfall does not replenish groundwater quick enough to produce isotopic depletion during the season.

Keywords: Arabian sea, bay of Bengal, groundwater, monsoon, stable isotope

Procedia PDF Downloads 377
5560 Impact of Agriculture on the Groundwater Quality: Case of the Alluvial Plain of Nil River (North-Eastern Algerian)

Authors: S. Benessam, T. H. Debieche, A. Drouiche, F. Zahi, S. Mahdid

Abstract:

The intensive use of the chemical fertilizers and the pesticides in agriculture often produces a contamination of the groundwater by organic pollutants. The irrigation and/or rainwater transport the pollutants towards groundwater or water surface. Among these pollutants, one finds the nitrogen, often observed in the agricultural zones in the nitrate form. In order to understand the form and chemical mobility of nitrogen in groundwater, this study was conducted. A two-monthly monitoring of the parameters physicochemical and chemistry of water of the alluvial plain of Nil river (North-eastern Algerian) were carried out during the period from November 2013 to January 2015 as well as an in-situ investigation of the various chemical products used by the farmers. The results show a raise concentration of nitrates in the wells (depth < 20 m) of the plain, which the concentrations arrive at 50 mg/L (standard of potable water). On the other hand in drillings (depth > 20 m), one observes two behaviors. The first in the upstream part, where the aquifer is unconfined and the medium is oxidizing, one observes the weak nitrate concentrations, indicating its absorption by the ground during the infiltration of water towards the groundwater. The second in the central and downstream parts, where the groundwater is locally confined and the reducing medium, one observes an absence of nitrates and the appearance of nitrites and ammonium, indicating the reduction of nitrates. The projection of the analyses on diagrams Eh-pH of nitrogen has enabled to us to determine the intervals of variation of the nitrogen forms. This study also highlighted the effect of the rains, the pumping and the nature of the geological formations in the form and the mobility of nitrogen in the plain.

Keywords: groundwater, nitrogen, mobility, speciation

Procedia PDF Downloads 248
5559 Analysis of the Aquifer Vulnerability of a Miopliocene Arid Area Using Drastic and SI Models

Authors: H. Majour, L. Djabri

Abstract:

Many methods in the groundwater vulnerability have been developed in the world (methods like PRAST, DRIST, APRON/ARAA, PRASTCHIM, GOD). In this study, our choice dealt with two recent complementary methods using category mapping of index with weighting criteria (Point County Systems Model MSCP) namely the standard DRASTIC method and SI (Susceptibility Index). At present, these two methods are the most used for the mapping of the intrinsic vulnerability of groundwater. Two classes of groundwater vulnerability in the Biskra sandy aquifer were identified by the DRASTIC method (average and high) and the SI method (very high and high). Integrated analysis has revealed that the high class is predominant for the DRASTIC method whereas for that of SI the preponderance is for the very high class. Furthermore, we notice that the method SI estimates better the vulnerability for the pollution in nitrates, with a rate of 85 % between the concentrations in nitrates of groundwater and the various established classes of vulnerability, against 75 % for the DRASTIC method. By including the land use parameter, the SI method produced more realistic results.

Keywords: DRASTIC, SI, GIS, Biskra sandy aquifer, Algeria

Procedia PDF Downloads 487
5558 Geochemical Characteristics and Chemical Toxicity: Appraisal of Groundwater Uranium With Other Geogenic Contaminants in Various Districts of Punjab, India

Authors: Tanu Sharma, Bikramjit Singh Bajwa, Inderpreet Kaur

Abstract:

Monitoring of groundwater in Tarn-Taran, Bathinda, Faridkot and Mansa districts of Punjab state, India is essential where this freshwater resource is being over-exploited causing quality deterioration, groundwater depletion and posing serious threats to residents. The present integrated study was done to appraise quality and suitability of groundwater for drinking/irrigation purposes, hydro-geochemical characteristics, source identification and associated health risks. In the present study, groundwater of various districts of Punjab state was found to be heavily contaminated with As followed by U, thus posing high cancerous risks to local residents via ingestion, along with minor contamination of Fe, Mn, Pb and F−. Most health concerns in the study region were due to the elevated concentrations of arsenic in groundwater with average values of 130 µg L-1, 176 µg L-1, 272 µg L-1 and 651 µg L-1 in Tarn-Taran, Bathinda, Faridkot and Mansa districts, respectively, which is quite high as compared to the safe limit as recommended by BIS i.e. 10 µg L-1. In Tarn-Taran, Bathinda, Faridkot and Mansa districts, average uranium contents were found to be 37 µg L-1, 88 µg L-1, 61 µg L-1 and 104 µg L-1, with 51 %, 74 %, 61 % and 71 % samples, respectively, being above the WHO limit of 30 µg L-1 in groundwater. Further, the quality indices showed that groundwater of study region is suited for irrigation but not appropriate for drinking purposes. Hydro-geochemical studies revealed that most of the collected groundwater samples belonged to Ca2+ - Mg2+ - HCO3- type showing dominance of MgCO3 type which indicates the presence of temporary hardness in groundwater. Rock-water reactions and reverse ion exchange were the predominant factors for controlling hydro-geochemistry in the study region. Dissolution of silicate minerals caused the dominance of Na+ ions in the aquifers of study region. Multivariate statistics revealed that along with geogenic sources, contribution of anthropogenic activities such as injudicious application of agrochemicals and domestic waste discharge was also very significant. The results obtained abolished the myth that uranium is only root cause for large number of cancer patients in study region as arsenic and mercury were also present in groundwater at levels that were of health concern to groundwater.

Keywords: uranium, trace elements, multivariate data analysis, risk assessment

Procedia PDF Downloads 71
5557 Effect of Slope Angle on Gougerd Landslide Stability in Northwest of Iran

Authors: Akbar Khodavirdizadeh

Abstract:

Gougerd village landslide with area about 150 hectares is located in southwest of Khoy city in northwest of the Iran. This Landslide was commenced more than 21 years and caused some damages in houses like some fissures on walls and some cracks on ground and foundations. The main mechanism of landslide is rotational with the high different of top and foot is about 230 m. The thickness of slide mass based on geoelectrical investigation is about 16m obtained. The upper layer of slope is silty sand and the lower layer of clayey gravel. In this paper, the stability of landslide are analyzed based in static analysis under different groundwater surface conditions and at slope angle changes with limit eqlibrium method and the simplified Bishop method. The results of the 72 stability analysis showed that the slope stability of Gougerd landslide increased with increasing of the groundwater surface depth of slope crown. And especially when decreased of slope angle, the safety facter more than in previous state is increased. The required of safety factor for stability in groundwater surface depth from slope crown equal 14 m and with decreased of slope angle to 3 degree at decrease of groundwater surface depth from slope crown equal 6.5 m obtained. The safety factor in critical conditions under groundwater surface depth from slope crown equal 3.5 m and at decreased of slope angle to 3 degree equal 0.5 m obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m respectively equal to 0.97, 1.19 and 1.33 obtained. At groudwater surface depth from slope crown of 3 m, 7 m and 10 m with decreased of slope angle to 3 degree, respectively equal to 1.27, 1.54 and 1.72 obtained. According to the results of this study, for 1 m of groundwater level decrease, the safety factor increased by 5%, and for 1 degree of reduction of the slope angle, safety factor increased by 15%. And the effect of slope angle on Gougerd landslide stability was felt more than groundwater effect.

Keywords: Gougerd landslide, stability analysis, slope angle, groundwater, Khoy

Procedia PDF Downloads 169
5556 Achievement of Sustainable Groundwater Exploitation through the Introduction of Water-Efficient Usage Techniques in Fish Farms

Authors: Lusine Tadevosyan, Natella Mirzoyan, Anna Yeritsyan, Narek Avetisyan

Abstract:

Due to high quality, the artesian groundwater is the main source of water supply for the fisheries in Ararat Valley, Armenia. From 1.6 billion m3 abstracted groundwater in 2016, half was used by fish farms. Yet, the inefficient water use, typical for low-intensity aquaculture systems in Ararat Valley, has become a key environmental issue in Armenia. In addition to excessive pure groundwater exploitation, which along with other sectors of groundwater use in this area resulted in the reduction of artesian zone by approximately 67% during last 20 years, the negative environmental impact of these productions is magnified by the discharge of large volumes of wastewater into receiving water bodies. In turn, unsustainable use of artesian groundwater in Ararat Valley along with increasingly strict policy measures on water use had a devastating impact on small and/or medium scale aquaculture: over the last two years approximately 100 fish farms have permanently seized their operations. The current project aims at the introduction of efficient and environmentally friendly fish farming practices (e.g., Recirculating Aquaculture Systems) in Ararat Valley fisheries in order to support current levels of fish production and simultaneously reduce the negative environmental pressure of aquaculture facilities in Armenia. Economic and environmental analysis of current small and medium scale operational systems and subsequently developed environmentally–friendly and economically sustainable system configurations will be presented.

Keywords: aquaculture, groundwater, recirculation, sustainability

Procedia PDF Downloads 269
5555 Climate Change Effects on Western Coastal Groundwater in Yemen (1981-2020)

Authors: Afrah S. M. Al-Mahfadi

Abstract:

Climate change is a global issue that has significant impacts on water resources, resulting in environmental, economic, and political consequences. Groundwater reserves, particularly in coastal areas, are facing depletion, leading to serious problems in regions such as Yemen. This study focuses on the western coastal region of Yemen, which already faces risks such as water crises, food insecurity, and widespread poverty. Climate change exacerbates these risks by causing high temperatures, sea level rise, inadequate sea level rise, and inadequate environmental policies. Research Aim: The aim of this research is to provide a comprehensive overview of the impact of climate change on the western coastal region of Yemen. Specifically, the study aims to analyze the relationship between climate change and the loss of fresh groundwater resources in this area. Methodology: The research utilizes a combination of a literature review and three case studies conducted through site visits. Arch-GIS mapping is employed to analyze and visualize the relationship between climate change and the depletion of fresh groundwater resources. Additionally, data on precipitation from 1981 to 2020 and scenarios of projected sea level rise (SLR) are considered. Findings: The study reveals several future issues resulting from climate change. It is projected that the annual temperature will increase while the rainfall rate will decrease. Furthermore, the sea level is expected to rise by approximately 0.30 to 0.72 meters by 2100. These factors contribute to the loss of wetlands, the retreat of shorelines and estuaries, and the intrusion of seawater into the coastal aquifer, rendering drinking water from wells increasingly saline. Data Collection and Analysis Procedures: Data for this research are collected through a literature review, including studies on climate change impacts in coastal areas and the hydrogeology of the study region. Furthermore, three case studies are conducted through site visits. Arch-GIS mapping techniques are utilized to analyze the relationship between climate change and the loss of fresh groundwater resources. Historical precipitation data from 1981 to 2020 and scenarios of projected sea level rise are also analyzed. Questions Addressed: (1) What is the impact of climate change on the western coastal region of Yemen? (2) How does climate change affect the availability of fresh groundwater resources in this area? Conclusion: The study concludes that the western coastal region of Yemen is facing significant challenges due to climate change. The projected increase in temperature, decrease in rainfall, and rise in sea levels have severe implications, such as the loss of wetlands, shorelines, and estuaries. Additionally, the intrusion of seawater into the coastal aquifer further exacerbates the issue of saline drinking water. Urgent measures are needed to address climate change, including improving water management, implementing integrated coastal zone planning, raising awareness among stakeholders, and implementing emergency projects to mitigate the impacts. Recommendations: To mitigate the adverse effects of climate change, several recommendations are provided. These include improving water management practices, developing integrated coastal zone planning strategies, raising awareness among all stakeholders, improving health and education, and implementing emergency projects to combat climate change. These measures aim to enhance adaptive capacity and resilience in the face of future climate change impacts.

Keywords: climate change, groundwater, coastal wetlands, Yemen

Procedia PDF Downloads 65
5554 Geochemistry and Tectonic Framework of Malani Igneous Suite and Their Effect on Groundwater Quality of Tosham, India

Authors: Naresh Kumar, Savita Kumari, Naresh Kochhar

Abstract:

The objective of the study was to assess the role of mineralogy and subsurface structure on water quality of Tosham, Malani Igneous Suite (MIS), Western Rajasthan, India. MIS is the largest (55,000 km2) A-type, anorogenic and high heat producing acid magmatism in the peninsular India and owes its origin to hot spot tectonics. Apart from agricultural and industrial wastes, geogenic activities cause fluctuations in quality parameters of water resources. Twenty water samples (20) selected from Tosham and surrounding areas were analyzed for As, Pb, B, Al, Zn, Fe, Ni using Inductive coupled plasma emission and F by Ion Chromatography. The concentration of As, Pb, B, Ni and F was above the stipulated level specified by BIS (Bureau of Indian Standards IS-10500, 2012). The concentration of As and Pb in surrounding areas of Tosham ranged from 1.2 to 4.1 mg/l and from 0.59 to 0.9 mg/l respectively which is higher than limits of 0.05mg/l (As) and 0.01 mg/l (Pb). Excess trace metal accumulation in water is toxic to humans and adversely affects the central nervous system, kidneys, gastrointestinal tract, skin and cause mental confusion. Groundwater quality is defined by nature of rock formation, mineral water reaction, physiography, soils, environment, recharge and discharge conditions of the area. Fluoride content in groundwater is due to the solubility of fluoride-bearing minerals like fluorite, cryolite, topaz, and mica, etc. Tosham is comprised of quartz mica schist, quartzite, schorl, tuff, quartz porphyry and associated granites, thus, fluoride is leached out and dissolved in groundwater. In the study area, Ni concentration ranged from 0.07 to 0.5 mg/l (permissible limit 0.02 mg/l). The primary source of nickel in drinking water is leached out nickel from ore-bearing rocks. Higher concentration of As is found in some igneous rocks specifically containing minerals as arsenopyrite (AsFeS), realgar (AsS) and orpiment (As2S3). MIS consists of granite (hypersolvus and subsolvus), rhyolite, dacite, trachyte, andesite, pyroclasts, basalt, gabbro and dolerite which increased the trace elements concentration in groundwater. Nakora, a part of MIS rocks has high concentration of trace and rare earth elements (Ni, Rb, Pb, Sr, Y, Zr, Th, U, La, Ce, Nd, Eu and Yb) which percolates the Ni and Pb to groundwater by weathering, contacts and joints/fractures in rocks. Additionally, geological setting of MIS also causes dissolution of trace elements in water resources beneath the surface. NE–SW tectonic lineament, radial pattern of dykes and volcanic vent at Nakora created a way for leaching of these elements to groundwater. Rain water quality might be altered by major minerals constituents of host Tosham rocks during its percolation through the rock fracture, joints before becoming the integral part of groundwater aquifer. The weathering process like hydration, hydrolysis and solution might be the cause of change in water chemistry of particular area. These studies suggest that geological relation of soil-water horizon with MIS rocks via mineralogical variations, structures and tectonic setting affects the water quality of the studied area.

Keywords: geochemistry, groundwater, malani igneous suite, tosham

Procedia PDF Downloads 219
5553 Assessment of Groundwater Quality around a Cement Factory in Ewekoro, Ogun State, Southwest Nigeria

Authors: A. O. David, A. A. Akaho, M. A. Abah, J. O. Ogunjimi

Abstract:

This study focuses on the growing concerns about the quality of groundwater found around cement factories, which have caused several health issues for residents located within two (2) kilometer radius. The qualities of groundwater were determined by an investigative study that involved the determination of some heavy metals and physicochemical properties in drinking water samples. Eight (8) samples of groundwater were collected from the eight sampling sites. The samples were analysed for the following parameters; iron, copper, manganese, zinc, lead, color, dissolved solids, electrical conductivity, pH, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), temperature, turbidity and total hardness using standard methods. The test results showed the variation of the investigated parameters in the samples as follows: temperature 26-31oC, pH 5.9-7.2, electrical conductivity (EC) 0.37 – 0.78 µS/cm, total hardness 181.8 – 333.0 mg/l, turbidity 0.00-0.05 FTU, colour 5-10 TCU, dissolved oxygen 4.31-5.01 mg/l, BOD 0.2-1.0 mg/l, COD 2.0 -4.0 mg/l, Cu 0.04 – 0.09 mg/l, Fe 0.006-0.122 mg/l, Zn 0.016-0.306 mg/l, Mn 0.01-0.05 mg/l and Pb < 0.001 mg/l. The World Health Organization's standard for drinking water quality guidelines was exceeded in several of the analyzed parameters' amounts in the drinking water samples from the study area. The dissolved oxygen was found to exceed 5.0 mg/l, which is the WHO permissible limit; also, Limestone was found to exceed the WHO maximum limit of 170 mg/l. All the above results confirmed the high pollution of the groundwater sources, and hence, they are not suitable for consumption without any prior treatment.

Keywords: groundwater, quality, heavy metals, parameters

Procedia PDF Downloads 64
5552 Assessment the Capacity of Retention of a Natural Material for the Protection of Ground Water

Authors: Hakim Aguedal, Abdelkader Iddou, Abdalla Aziz, Abdelhadi Bentouami, Ferhat Bensalah, Salah Bensadek

Abstract:

The major environmental risk of soil pollution is the contamination of groundwater by infiltration of organic and inorganic pollutants that can cause a serious pollution. To prevent the migration of this pollution through this structure, many studies propose the installation of layers, which play a role of a barrier that inhibiting the contamination of groundwater by limiting or slowing the flow of rainwater carrying pollution through the layers of soil. However, it is practically impossible to build a barrier layer that let through only water, but it is possible to design a structure with low permeability, which reduces the infiltration of dangerous pollutant. In an environmental context of groundwater protection, the main objective of this study was to investigate the environmental and appropriate suitability method to preserve groundwater, by establishment of a permeable reactive barrier (PRB) intermediate in soil. Followed the influence of several parameters allow us to find the most effective materials and the most appropriate way to incorporate this barrier in the soil.

Keywords: Ground water, protection, permeable reactive Barrier, soil pollution.

Procedia PDF Downloads 556
5551 Contribution to the Hydrogeochemical Investigations on the Wajid Aquifer System, Southwestern Part of Saudi Arabia

Authors: Mohamed Ahmed, Ezat Korany, Abdelaziz Al Basam, Osama Kasem

Abstract:

The arid climate, low rate of precipitations and population reflect the increasing of groundwater uses as the main source of water in Saudi Arabia. The Wajid Aquifer System represents a regional groundwater aquifer system along the edge of the crystalline Arabian Shield near the southwestern tip of the Arabian Peninsula. The aquifer extends across the border of Saudi Arabia and Yemen from the Asir –Yemen Highlands to the Rub al Khali Depression and possibly to the Gulf coast (at the southwestern tip). The present work is representing a hydrogeochemical investigation on the Wajid Aquifer System. The studied area is being classified into three zones. The 1st zone is West of Wadi Ad Dawasir (Northern part of the studied area), the 2nd is Najran-Asir Zone (southern part of the studied area), and the 3rd zone is the intermediate -central zone (occupying the central area between the last two zones). The groundwater samples were collected and chemically analyzed for physicochemical properties such as pH, electrical conductivity, total hardness (TH), alkalinity (pH), total dissolved solids (TDS), major ions (Ca2+, Mg2+, Na+, K+, HCO3-, SO42- and Cl-), and trace elements. Some parameters such as sodium adsorption ratio (SAR), soluble sodium percentage (Na%), potential salinity, residual sodium carbonate, Kelly's ratio, permeability index and Gibbs ratio, hydrochemical coefficients, hydrochemical formula, ion dominance, salt combinations and water types were also calculated in order to evaluate the quality of the groundwater resources in the selected areas for different purposes. The distribution of the chemical constituents and their interrelationships are illustrated by different hydrochemical graphs. Groundwater depths and the depth to water were measured to study the effect of discharge on both the water level and the salinity of the studied groundwater wells. A detailed comparison between the three studied zones according to the variations shown by the chemical and field investigations are discussed in detailed within the work.

Keywords: Najran-Asir, Wadi Ad Dawasir, Wajid Aquifer System, effect of discharge

Procedia PDF Downloads 132
5550 Groundwater Utilization and Sustainability: A Case Study of Pydibheemavaram Industrial Area, India

Authors: G. Venkata Rao, R. Srinivasa Rao, B. Neelima Sri Priya

Abstract:

The over extraction of groundwater from the coastal aquifers, result in reduction of groundwater resource and lowering of water level. In general, the depletion of groundwater level enhances the landward migration of saltwater wedge. Now a days the ground water extraction increases by year to year because increased population and industrialization. The ground water is the only source of irrigation, domestic and Industrial purposes at Pydibhimavaram industrial area, which is located in the coastal belt of Srikakulam district, India of Latitudes 18.145N 83.627E and Longitudes 18.099N 83.674E. The present study has been attempted to calculate amount of water getting recharged into this aquifer, status of rainfall pattern for the past two decades and the runoff is calculated by using Khosla’s formula with available rainfall and temperature in the study area. A decision support model has been developed on the basis of Monthly Extractions of the water from the ground through bore wells and the Net Recharge of the aquifer. It is concluded that the amount of extractions is exceeding the amount of recharge from May to October in a given year which will in turn damage the water balance in the subsurface layers.

Keywords: aquifer, decision support model, groundwater extraction, run off estimation and rainfall

Procedia PDF Downloads 299
5549 Impacts of Climate Elements on the Annual Periodic Behavior of the Shallow Groundwater Level: Case Study from Central-Eastern Europe

Authors: Tamas Garamhegyi, Jozsef Kovacs, Rita Pongracz, Peter Tanos, Balazs Trasy, Norbert Magyar, Istvan G. Hatvani

Abstract:

Like most environmental processes, shallow groundwater fluctuation under natural circumstances also behaves periodically. With the statistical tools at hand, it can easily be determined if a period exists in the data or not. Thus, the question may be raised: Does the estimated average period time characterize the whole time period, or not? This is especially important in the case of such complex phenomena as shallow groundwater fluctuation, driven by numerous factors. Because of the continuous changes in the oscillating components of shallow groundwater time series, the most appropriate method should be used to investigate its periodicity, this is wavelet spectrum analysis. The aims of the research were to investigate the periodic behavior of the shallow groundwater time series of an agriculturally important and drought sensitive region in Central-Eastern Europe and its relationship to the European pressure action centers. During the research ~216 shallow groundwater observation wells located in the eastern part of the Great Hungarian Plain with a temporal coverage of 50 years were scanned for periodicity. By taking the full-time interval as 100%, the presence of any period could be determined in percentages. With the complex hydrogeological/meteorological model developed in this study, non-periodic time intervals were found in the shallow groundwater levels. On the local scale, this phenomenon linked to drought conditions, and on a regional scale linked to the maxima of the regional air pressures in the Gulf of Genoa. The study documented an important link between shallow groundwater levels and climate variables/indices facilitating the necessary adaptation strategies on national and/or regional scales, which have to take into account the predictions of drought-related climatic conditions.

Keywords: climate change, drought, groundwater periodicity, wavelet spectrum and coherence analyses

Procedia PDF Downloads 385
5548 Evaluation of Groundwater Suitability for Irrigation Purposes: A Case Study for an Arid Region

Authors: Mustafa M. Bob, Norhan Rahman, Abdalla Elamin, Saud Taher

Abstract:

The objective of this study was to assess the suitability of Madinah city groundwater for irrigation purposes. Of the twenty three wells that were drilled in different locations in the city for the purposes of this study, twenty wells were sampled for water quality analyses. The United States Department of Agriculture (USDA) classification of irrigation water that is based on Sodium hazard (SAR) and salinity hazard was used for suitability assessment. In addition, the residual sodium carbonate (RSC) was calculated for all samples and also used for irrigation suitability assessment. Results showed that all groundwater samples are in the acceptable quality range for irrigation based on RSC values. When SAR and salinity hazard were assessed, results showed that while all groundwater samples (except one) fell in the acceptable range of SAR, they were either in the high or very high salinity zone which indicates that care should be taken regarding the type of soil and crops in the study area.

Keywords: irrigation suitability, TDS, salinity, SAR

Procedia PDF Downloads 372
5547 Drought Resilient Water Supply for Livelihood: Establishment of Groundwater Treatment Plant at Construction Sites in Taichung City

Authors: Shang-Hsin Ou, Yang-Chun Lin, Ke-Hao Cheng

Abstract:

The year 2021 marked a historic drought in Taiwan, posing unprecedented challenges due to record-low rainfall and inadequate reservoir storage. The central region experienced water scarcity, leading to the implementation of "Groundwater Utilization at Construction Sites" for drought-resilient livelihood water supply. This study focuses on the establishment process of temporary groundwater treatment plants at construction sites in Taichung City, serving as a reference for future emergency response and the utilization of construction site groundwater. To identify suitable sites for groundwater reuse projects, site selection operations were carried out based on relevant water quality regulations and assessment principles. Subsequently, the planning and design of temporary water treatment plants were conducted, considering the water quality, quantity, and on-site conditions of groundwater wells associated with construction projects. The study consolidates the major water treatment facilities at each site and addresses encountered challenges during the establishment process. Practical insights gained from operating temporary groundwater treatment plants are presented, including improvements related to stable water quality, water quantity, equipment operation, and hydraulic control. In light of possible future droughts, this study provides an outlook and recommendations to expedite and improve the setup of groundwater treatment plants at construction sites. This includes considering on-site water abstraction, treatment, and distribution conditions. The study's results aim to offer practical guidelines for effectively establishing and managing such treatment plants, while offering experiences and recommendations for other regions facing similar emergencies, water shortages, and drought situations. These endeavors contribute to ensuring sustainable water supply for drought-resilient livelihoods and maintaining societal stability.

Keywords: drought resilience, groundwater treatment, construction site, water supply

Procedia PDF Downloads 82
5546 Spatial Variation of Groundwater Potential at Erusu-Arigidi in Ondo State

Authors: Onifade Yemi Sikiru, Vwoke Eruya

Abstract:

An investigation has been made of the groundwater potentials of Erusu-Arigidi, Ondo State, Nigeria and using an electrical resistivity survey. This study was motivated to determine the electrical resistivity parameters of the area. This work aims to use the electrical resistivity method to explore the groundwater potentials of the study area. A total of ten vertical electrical soundings (VES) were conducted with a maximum electrode spacing of 150 m. The data was acquired using ABEM SAS 1000 Terrameter and processed using WINRESIST. The interpreted and analyzed results reveal four to six geoelectric layers. The VES curves obtained were QH, H, AAA, HKH, and HA. Findings from the study revealed that the geoelectric layer ranges from 3 to 5 layers. From the result, the Dar Zarrouk parameters longitudinal conductance (S) and transverse resistance (Tr), average longitudinal resistance (), transverse resistivity (), coefficient of anisotropy (λ), and reflection coefficient ranges from 0.22 to 1.45mhos, 67.12 to 4262.91 Ω/m², 8.81 to 76.12 Ω-m, 12.0 to 243.5 Ωm², 1.01 to 1.78, and 0.72 to 0.99 respectively. Deduction from S suggested that groundwater tends to be slightly vulnerable to surface contamination. Further findings from Dar Zarrouk parameters revealed that southwest parts of the study area tend to have high groundwater potential when compared to other parts of the study area. While hydraulic conductivity and transmissivity range from 0.003 to 0.051m/day, and 11.16 to 158.30m²/day, results obtained from H and T revealed northwest parts of the study area are considered to be aquiferous when compared to other parts of the research area.

Keywords: variation, isoresistivity, hydraulic conductivity, groundwater

Procedia PDF Downloads 76
5545 A Case Study of the Ground Collapse Due to Excavation Using Non-Destructive Testing

Authors: Ki-Cheong Yoo, Yushik Han, Heejeung Sohn, Jinwoo Kim

Abstract:

A ground collapse can be caused by natural and artificial factors. Ground collapses that have occurred frequently in Korea were observed and classified into different types by the main contributing factor. In this study, ground collapse induced by groundwater level disturbance in an excavation site was analyzed. Also, ground loosening region around the excavation site was detected and analyzed using non-destructive testing, such as GPR (Ground Penetrating Radar) survey and Electrical Resistivity. The result of the surveys showed that the ground was loosened widely over the surrounding area of the excavation due to groundwater discharge.

Keywords: electrical resistivity, ground collapse, groundwater level, GPR (ground penetrating radar)

Procedia PDF Downloads 194
5544 Using GIS and Map Data for the Analysis of the Relationship between Soil and Groundwater Quality at Saline Soil Area of Kham Sakaesaeng District, Nakhon Ratchasima, Thailand

Authors: W. Thongwat, B. Terakulsatit

Abstract:

The study area is Kham Sakaesaeng District in Nakhon Ratchasima Province, the south section of Northeastern Thailand, located in the Lower Khorat-Ubol Basin. This region is the one of saline soil area, located in a dry plateau and regularly experience standing with periods of floods and alternating with periods of drought. Especially, the drought in the summer season causes the major saline soil and saline water problems of this region. The general cause of dry land salting resulted from salting on irrigated land, and an excess of water leading to the rising water table in the aquifer. The purpose of this study is to determine the relationship of physical and chemical properties between the soil and groundwater. The soil and groundwater samples were collected in both rainy and summer seasons. The content of pH, electrical conductivity (EC), total dissolved solids (TDS), chloride and salinity were investigated. The experimental result of soil and groundwater samples show the slightly pH less than 7, EC (186 to 8,156 us/cm and 960 to 10,712 us/cm), TDS (93 to 3,940 ppm and 480 to 5,356 ppm), chloride content (45.58 to 4,177,015 mg/l and 227.90 to 9,216,736 mg/l), and salinity (0.07 to 4.82 ppt and 0.24 to 14.46 ppt) in the rainy and summer seasons, respectively. The distribution of chloride content and salinity content were interpolated and displayed as a map by using ArcMap 10.3 program, according to the season. The result of saline soil and brined groundwater in the study area were related to the low-lying topography, drought area, and salt-source exposure. Especially, the Rock Salt Member of Maha Sarakham Formation was exposed or lies near the ground surface in this study area. During the rainy season, salt was eroded or weathered from the salt-source rock formation and transported by surface flow or leached into the groundwater. In the dry season, the ground surface is dry enough resulting salt precipitates from the brined surface water or rises from the brined groundwater influencing the increasing content of chloride and salinity in the ground surface and groundwater.

Keywords: environmental geology, soil salinity, geochemistry, groundwater hydrology

Procedia PDF Downloads 120
5543 Annual Effective Dose Associated with Radon in Groundwater Samples from Mining Communities Within the Ife-Ilesha Schist Belt, Southwestern Nigeria.

Authors: Paulinah Oyindamola Fasanmi, Matthew Omoniyi Isinkaye

Abstract:

In this study, the activity concentration of ²²²Rn in groundwater samples collected from gold and kaolin mining communities within the Ife-Ilesha schist belt, southwestern Nigeria, with their corresponding annual effective doses have been determined using the Durridge RAD-7, radon-in-water detector. The mean concentration of ²²²Rn in all the groundwater samples was 13.83 Bql-¹. In borehole water, ²²²Rn had a mean value of 20.68 Bql-¹, while it had a mean value of 11.67 Bql-¹ in well water samples. The mean activity concentration of radon obtained from the gold mining communities ranged from 1.6 Bql-¹ from Igun town to 4.8 Bql-¹ from Ilesha town. A higher mean value of 41.8 Bql-¹ was, however, obtained from Ijero, which is the kaolin mining community. The mean annual effective dose due to ingestion and inhalation of radon from groundwater samples was obtained to be 35.35 μSvyr-¹ and 34.86 nSvyr-¹, respectively. The mean annual ingestion dose estimated for well water samples was 29.90 μSvyr-¹, while 52.85 μSvyr-¹ was obtained for borehole water samples. On the other hand, the mean annual inhalation dose for well water was 29.49 nSvyr-¹, while for borehole water, 52.13 nSvyr-¹ was obtained. The mean annual effective dose due to ingestion of radon in groundwater from the gold mining communities ranged from 4.10 μSvyr-¹ from Igun to 13.1 μSvyr-¹ from Ilesha, while a mean value of 106.7 μSvyr-¹ was obtained from Ijero kaolin mining community. For inhalation, the mean value varied from 4.0 nSvyr-¹ from Igun to 12.9 nSvyr-¹ from Ilesha, while 105.2 nSvyr-¹ was obtained from the kaolin mining community. The mean annual effective dose due to ingestion and inhalation is lower than the reference level of 100 μSvyr-¹ recommended by World Health Organization except for values obtained from Ijero kaolin mining community, which exceeded the reference levels. It has been concluded that as far as radon-related health risks are concerned, groundwater from gold mining communities is generally safe, while groundwater from kaolin mining communities needs mitigation and monitoring. It has been discovered that Kaolin mining impacts groundwater with ²²²Rn than gold mining. Also, the radon level in borehole water exceeds its level in well water.

Keywords: 222Rn, Groundwater, Radioactivity, Annual Effective Dose, Mining.

Procedia PDF Downloads 69
5542 Groundwater Quality Assessment in the Vicinity of Tannery Industries in Warangal, India

Authors: Mohammed Fathima Shahanaaz, Shaik Fayazuddin, M. Uday Kiran

Abstract:

Groundwater quality is deteriorating day by day in different parts of the world due to various reasons, toxic chemicals are being discharged without proper treatment into inland water bodies and land which in turn add pollutants to the groundwater. In this kind of situation, the rural communities which do not have municipal drinking water have to rely on groundwater though it is polluted for various uses. Tannery industry is one of the major industry which provides economy and employment to India. Since most of the developed countries stopped using chemicals which are toxic, the tanning industry which uses chromium as its major element are being shifted towards developing countries. Most of the tanning industries in India can be found in clusters concentrated mainly in states of Tamilnadu, West Bengal, Uttar Pradesh and limited places of Punjab. Limited work is present in the case of tanneries of Warangal. There exists 18 group of tanneries in Desaipet, Enamamula region of Warangal, out of which 4 are involved in dry process and are low responsible for groundwater pollution. These units of tanneries are discharging their effluents after treatment into Sai Cheruvu. Though the treatment effluents are being discharged, the Sai Cheruvu is turned in to Pink colour, with higher levels of BOD, COD, chromium, chlorides, total hardness, TDS and sulphates. An attempt was made to analyse the groundwater samples around this polluted Sai Cheruvu region since literature shows that a single tannery can pollute groundwater to a radius of 7-8 kms from the point of disposal. Sample are collected from 6 different locations around Sai Cheruvu. Analysis was performed for determining various constituents in groundwater such as pH, EC, TDS, TH, Ca+2, Mg+2, HCO3-, Na+, K+, Cl-, SO42-, NO3-, F and Cr+6. The analysis of these constitutes gave values greater than permissible limits. Even chromium is also present in groundwater samples which is exceeding permissible limits People in Paidepally and Sardharpeta villages already stopped the usage of groundwater. They are buying bottle water for drinking purpose. Though they are not using groundwater for drinking purpose complaints are made about using this water for washing also. So treatment process should be adopted for groundwater which should be simple and efficient. In this study rice husk silica (RHS) is used to treat pollutants in groundwater with varying dosages of RHS and contact time. Rice husk is treated, dried and place in a muffle furnace for 6 hours at 650°C. Reduction is observed in total hardness, chlorides and chromium levels are observed after the application RHS. Pollutants reached permissible limits for 27.5mg/l and 50 mg/l of dosage for a contact time of 130 min at constant pH and temperature.

Keywords: chromium, groundwater, rice husk silica, tanning industries

Procedia PDF Downloads 201
5541 An Investigation of Interdisciplinary Techniques for Assessment of Water Quality in an Industrial Area

Authors: Priti Saha, Biswajit Paul

Abstract:

Rapid urbanization and industrialization have increased the demand of groundwater. However, the present era has evident an enormous level of groundwater pollution. Therefore, water quality assessment is paramount importance to evaluate its suitability for drinking, irrigation and industrial use. This study focus to evaluate the groundwater quality of an industrial city in eastern India through interdisciplinary techniques. The multi-purpose Water Quality Index (WQI) assess the suitability for drinking as well as irrigation of forty sampling locations, where 2.5% and 15% of sampling locations have excellent water quality (WQI:0-25) as well as 15% and 40% have good quality (WQI:25-50), which represents its suitability for drinking and irrigation respectively. However, the industrial water quality was assessed through Ryznar Stability Index (LSI), which affirmed that only 2.5% of sampling locations have neither corrosive nor scale forming properties (RSI: 6.2-6.8). These techniques with the integration of geographical information system (GIS) for spatial assessment indorsed its effectiveness to identify the regions where the water bodies are suitable to use for drinking, irrigation as well as industrial activities. Further, the sources of these contaminants were identified through factor analysis (FA), which revealed that both the geogenic as well as anthropogenic sources were responsible for groundwater pollution. This research demonstrates the effectiveness of statistical and GIS techniques for the analysis of environmental contaminants.

Keywords: groundwater, water quality analysis, water quality index, WQI, factor analysis, FA, spatial assessment

Procedia PDF Downloads 194