Search results for: double oscillatory integral
2046 Status and Results from EXO-200
Authors: Ryan Maclellan
Abstract:
EXO-200 has provided one of the most sensitive searches for neutrinoless double-beta decay utilizing 175 kg of enriched liquid xenon in an ultra-low background time projection chamber. This detector has demonstrated excellent energy resolution and background rejection capabilities. Using the first two years of data, EXO-200 has set a limit of 1.1x10^25 years at 90% C.L. on the neutrinoless double-beta decay half-life of Xe-136. The experiment has experienced a brief hiatus in data taking during a temporary shutdown of its host facility: the Waste Isolation Pilot Plant. EXO-200 expects to resume data taking in earnest this fall with upgraded detector electronics. Results from the analysis of EXO-200 data and an update on the current status of EXO-200 will be presented.Keywords: double-beta, Majorana, neutrino, neutrinoless
Procedia PDF Downloads 4142045 Ziegler Nichols Based Integral Proportional Controller for Superheated Steam Temperature Control System
Authors: Amil Daraz, Suheel Abdullah Malik, Tahir Saleem, Sajid Ali Bhati
Abstract:
In this paper, Integral Proportional (I-P) controller is employed for superheated steam temperature control system. The Ziegler-Nichols (Z-N) method is used for the tuning of I-P controller. The performance analysis of Z-N based I-P controller is assessed on superheated steam system of 500-MW boiler. The comparison of transient response parameters such as rise time, settling time, and overshoot is made with Z-N based Proportional Integral (PI) controller. It is observed from the results that Z-N based I-P controller completely eliminates the overshoot in the output response.Keywords: superheated steam, process reaction curve, PI and I-P controller, Ziegler-Nichols Tuning
Procedia PDF Downloads 3312044 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System
Authors: Fouzi Aboura
Abstract:
The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO
Procedia PDF Downloads 902043 Frictional Effects on the Dynamics of a Truncated Double-Cone Gravitational Motor
Authors: Barenten Suciu
Abstract:
In this work, effects of the friction and truncation on the dynamics of a double-cone gravitational motor, self-propelled on a straight V-shaped horizontal rail, are evaluated. Such mechanism has a variable radius of contact, and, on one hand, it is similar to a pulley mechanism that changes the potential energy into the kinetic energy of rotation, but on the other hand, it is similar to a pendulum mechanism that converts the potential energy of the suspended body into the kinetic energy of translation along a circular path. Movies of the self- propelled double-cones, made of S45C carbon steel and wood, along rails made of aluminum alloy, were shot for various opening angles of the rails. Kinematical features of the double-cones were estimated through the slow-motion processing of the recorded movies. Then, a kinematical model is derived under assumption that the distance traveled by the contact points on the rectilinear rails is identical with the distance traveled by the contact points on the truncated conical surface. Additionally, a dynamic model, for this particular contact problem, was proposed and validated against the experimental results. Based on such model, the traction force and the traction torque acting on the double-cone are identified. One proved that the rolling traction force is always smaller than the sliding friction force; i.e., the double-cone is rolling without slipping. Results obtained in this work can be used to achieve the proper design of such gravitational motor.Keywords: Truncated double-cone, friction, rolling and sliding, dynamic model, gravitational motor
Procedia PDF Downloads 2742042 Proportional and Integral Controller-Based Direct Current Servo Motor Speed Characterization
Authors: Adel Salem Bahakeem, Ahmad Jamal, Mir Md. Maruf Morshed, Elwaleed Awad Khidir
Abstract:
Direct Current (DC) servo motors, or simply DC motors, play an important role in many industrial applications such as manufacturing of plastics, precise positioning of the equipment, and operating computer-controlled systems where speed of feed control, maintaining the position, and ensuring to have a constantly desired output is very critical. These parameters can be controlled with the help of control systems such as the Proportional Integral Derivative (PID) controller. The aim of the current work is to investigate the effects of Proportional (P) and Integral (I) controllers on the steady state and transient response of the DC motor. The controller gains are varied to observe their effects on the error, damping, and stability of the steady and transient motor response. The current investigation is conducted experimentally on a servo trainer CE 110 using analog PI controller CE 120 and theoretically using Simulink in MATLAB. Both experimental and theoretical work involves varying integral controller gain to obtain the response to a steady-state input, varying, individually, the proportional and integral controller gains to obtain the response to a step input function at a certain frequency, and theoretically obtaining the proportional and integral controller gains for desired values of damping ratio and response frequency. Results reveal that a proportional controller helps reduce the steady-state and transient error between the input signal and output response and makes the system more stable. In addition, it also speeds up the response of the system. On the other hand, the integral controller eliminates the error but tends to make the system unstable with induced oscillations and slow response to eliminate the error. From the current work, it is desired to achieve a stable response of the servo motor in terms of its angular velocity subjected to steady-state and transient input signals by utilizing the strengths of both P and I controllers.Keywords: DC servo motor, proportional controller, integral controller, controller gain optimization, Simulink
Procedia PDF Downloads 1102041 Spectral Domain Fast Multipole Method for Solving Integral Equations of One and Two Dimensional Wave Scattering
Authors: Mohammad Ahmad, Dayalan Kasilingam
Abstract:
In this paper, a spectral domain implementation of the fast multipole method is presented. It is shown that the aggregation, translation, and disaggregation stages of the fast multipole method (FMM) can be performed using the spectral domain (SD) analysis. The spectral domain fast multipole method (SD-FMM) has the advantage of eliminating the near field/far field classification used in conventional FMM formulation. The study focuses on the application of SD-FMM to one-dimensional (1D) and two-dimensional (2D) electric field integral equation (EFIE). The case of perfectly conducting strip, circular and square cylinders are numerically analyzed and compared with the results from the standard method of moments (MoM).Keywords: electric field integral equation, fast multipole method, method of moments, wave scattering, spectral domain
Procedia PDF Downloads 4062040 A Fault-Tolerant Full Adder in Double Pass CMOS Transistor
Authors: Abdelmonaem Ayachi, Belgacem Hamdi
Abstract:
This paper presents a fault-tolerant implementation for adder schemes using the dual duplication code. To prove the efficiency of the proposed method, the circuit is simulated in double pass transistor CMOS 32nm technology and some transient faults are voluntary injected in the Layout of the circuit. This fully differential implementation requires only 20 transistors which mean that the proposed design involves 28.57% saving in transistor count compared to standard CMOS technology.Keywords: digital electronics, integrated circuits, full adder, 32nm CMOS tehnology, double pass transistor technology, fault toleance, self-checking
Procedia PDF Downloads 3462039 Double Burden of Hypertension-Hyperalbuminuria in the Pregnant Women: Cross-Sectional Study of Prevalence and Risk Factors in Foumban, West Region, Cameroon
Authors: Pierre Mintom, Ebai Patricia, Merlin Dasse, Marlyse Chantal Nyangon Ndongo, Aicha Aretouyap Kouotou, Felix Essiben, Christine Fernande Nyangono Biyegue
Abstract:
Background: The death of women during and after pregnancy remains a major concern in public health policy in Cameroon. Among the causes of this mortality is eclampsia which is a consequence of the Pre-eclampsia characterized by the double burden of pregnancy-induced hypertension and albuminuria in pregnant women. Objective: To determine the various factors associated with the pre-eclampsia in pregnant women of Foumban. Methodology: A cross-sectional and analytical study was carried out during the period from July to August 2020 and supplemented by another study carried out from August 05 to September 05, 2022, at the Foumban district hospital. A questionnaire was administered to pregnant women. It focused on socio-demographic parameters, the state nutritional, health status, and maternal parameters. Blood pressure was taken using an electronic blood pressure monitor, and urinary albumin was measuring using urine dipstick. Pre-eclampsia was defined by three types of double burden: double burden systolic hypertension–hyperalbuminuria (SHH), defined for SBP≥140 mmHg and hyperalbuminuria ≥1+ on urine dipstick, double burden diastolic hypertension–hyperalbuminuria (DHH), defined for PAD≥90 mmHg and hyperalbuminuria ≥1+ on the urine dipstick, and the double burden systolodiastolic arterial hypertension– hyperalbuminuria (SDHH), defined for SBP ≥ 140mmHg, PAD≥90 mmHg and hyperalbuminuria ≥1+ on urine dipstick. IBM SPSS Software was used for statistical analysis. Results: The results of this study show that the prevalence of pre-eclampsia was 17.3% for the double burden SHH, 19.9% for the double burden DHH and 14.1% for double burden SDHH. Associated factors with pre-eclampsia according to the three types of double burden were marital status (P<0.05), religion (P<0.05), history of hypertension before pregnancy (P<0.05). Associated factors for the double burden of DHH and SDHH were the nutritional status before the pregnancy (P<0.05) and the number of prenatal consultations (P<0.05). In terms of food groups, regular consumption of spices significantly increased the risk of pre-eclampsia by 5.318, 6.277 and 11.271 times respectively for the SHH, DHH and SDHH double burdens, while regular consumption of sweets regular consumption of sweets increased by 2.42 times and 2.053 times respectively the double DHH and SDHH burdens respectively. Conclusion: Our study made it possible to redefine pre-eclampsia by considering the subtypes of hypertension. Certain socio-demographic parameters and certain dietary habits influence the occurrence of pre-eclampsia characterized by the double burden Hypertension-hyperalbuminuria in pregnant women, which may later lead to the occurrence of eclampsia. Moreover, albuminemia could be a good predicitive factor of pre-eclampsia and could be explored.Keywords: hypertension, hyperalbuminuria, pregnant women, foumban
Procedia PDF Downloads 722038 The Acoustic Performance of Double-skin Wind Energy Facade
Authors: Sara Mota Carmo
Abstract:
Wind energy applied in architecture has been largely abandoned due to the uncomfortable noise it causes. This study aims to investigate the acoustical performance in the urban environment and indoor environment of a double-skin wind energy facade. Measurements for sound transmission were recorded by using a hand-held sound meter device on a reduced-scale prototype of a wind energy façade. The applied wind intensities ranged between 2m/s and 8m/s, and the increase sound produced were proportional to the wind intensity.The study validates the acoustic performance of wind energy façade using a double skin façade system, showing that noise reduction indoor by approximately 30 to 35 dB. However, the results found that above 6m/s win intensity, in urban environment, the wind energy system applied to the façade exceeds the maximum 50dB recommended by world health organization and needs some adjustments.Keywords: double-skin wind energy facade, acoustic energy facade, wind energy in architecture, wind energy prototype
Procedia PDF Downloads 1012037 Identification of Author and Reviewer from Single and Double Blind Paper
Authors: Jatinderkumar R. Saini, Nikita. R. Sonthalia, Khushbu. A. Dodiya
Abstract:
Research leads to development of science and technology and hence to the betterment of humankind. Journals and conferences provide a platform to receive large number of research papers for publications and presentations before the expert and scientific community. In order to assure quality of such papers, they are also sent to reviewers for their comments. In order to maintain good ethical standards, the research papers are sent to reviewers in such a way that they do not know each other’s identity. This technique is called double-blind review process. It is called single-blind review process, if identity of any one party (generally authors) is disclosed to the other. This paper presents the techniques by which identity of author as well as reviewer could be made out even through double-blind review process. It is proposed that the characteristics and techniques presented here will help journals and conferences in assuring intentional or unintentional disclosure of identity revealing information by either party to the other.Keywords: author, conference, double blind paper, journal, reviewer, single blind paper
Procedia PDF Downloads 3502036 Chemical Reaction Effects on Unsteady MHD Double-Diffusive Free Convective Flow over a Vertical Stretching Plate
Authors: Y. M. Aiyesimi, S. O. Abah, G. T. Okedayo
Abstract:
A general analysis has been developed to study the chemical reaction effects on unsteady MHD double-diffusive free convective flow over a vertical stretching plate. The governing nonlinear partial differential equations have been reduced to the coupled nonlinear ordinary differential equations by the similarity transformations. The resulting equations are solved numerically by using Runge-Kutta shooting technique. The effects of the chemical parameters are examined on the velocity, temperature and concentration profiles.Keywords: chemical reaction, MHD, double-diffusive, stretching plate
Procedia PDF Downloads 4092035 Design and Realization of Double-Delay Line Canceller (DDLC) Using Fpga
Authors: A. E. El-Henawey, A. A. El-Kouny, M. M. Abd –El-Halim
Abstract:
Moving target indication (MTI) which is an anti-clutter technique that limits the display of clutter echoes. It uses the radar received information primarily to display moving targets only. The purpose of MTI is to discriminate moving targets from a background of clutter or slowly-moving chaff particles as shown in this paper. Processing system in these radars is so massive and complex; since it is supposed to perform a great amount of processing in very short time, in most radar applications the response of a single canceler is not acceptable since it does not have a wide notch in the stop-band. A double-delay canceler is an MTI delay-line canceler employing the two-delay-line configuration to improve the performance by widening the clutter-rejection notches, as compared with single-delay cancelers. This canceler is also called a double canceler, dual-delay canceler, or three-pulse canceler. In this paper, a double delay line canceler is chosen for study due to its simplicity in both concept and implementation. Discussing the implementation of a simple digital moving target indicator (DMTI) using FPGA which has distinct advantages compared to other application specific integrated circuit (ASIC) for the purposes of this work. The FPGA provides flexibility and stability which are important factors in the radar application.Keywords: FPGA, MTI, double delay line canceler, Doppler Shift
Procedia PDF Downloads 6442034 Effect on Bandwidth of Using Double Substrates Based Metamaterial Planar Antenna
Authors: Smrity Dwivedi
Abstract:
The present paper has revealed the effect of double substrates over a bandwidth performance for planar antennas. The used material has its own importance to get minimum return loss and improved directivity. The author has taken double substrates to enhance the efficiency in terms of gain of antenna. Metamaterial based antenna has its own specific structure which increased the performance of antenna. Improved return loss is -20 dB, and the voltage standing wave ratio (VSWR) is 1.2, which is better than single substrate having return loss of -15 dB and VSWR of 1.4. Complete results are obtained using commercial software CST microwave studio.Keywords: CST microwave studio, metamaterial, return loss, VSWR
Procedia PDF Downloads 3892033 Nanoparticles Made from PNIPAM-G-PEO Double Hydrophilic Copolymers for Temperature-Controlled Drug Delivery
Authors: Victoria I. Michailova, Denitsa B. Momekova, Hristiana A. Velichkova, Evgeni H. Ivanov
Abstract:
The aim of this work is to design and develop thermo-responsive nanosized drug delivery systems based on poly(N-isopropylacrylamide)-g-poly(ethylene oxide) (PNIPAM-g-PEO) double hydrophilic graft copolymers. The PNIPAM-g-PEO copolymers are able to self-assemble in water into nanoparticles above the LCST of the thermo-responsive PNIPAM backbone and to disassemble and rapidly release the entrapped drugs upon cooling. However, their drug delivery applications are often hindered by their low loading capacity as the drugs to be encapsulated do not dissolve in water. In order to overcome this limitation, here we applied a low-temperature procedure with ethanol as an alternative route to the formation and loading a model hydrophobic drug, Indomethacin (IMC), into PNIPAM-g-PEO nanoparticles. The rationale for this approach was that ethanol dissolves both IMC and the copolymer and its mixing with water may induce micellization of PNIPAM-g-PEO at temperatures lower than the LCST. The influence of the volume fraction of ethanol and the temperature on the aggregation characteristics of PNIPAM-g-PEO copolymers (2.7 mol% PEO) was investigated by means of DLS, TEM and rheological dynamic oscillatory tests. The studies showed rich phase behavior at T < LCST, incl. the formation of highly solvated 500-1000 nm complex structures, 30-70 nm micelles and polymersomes as well as giant polymersomes, as the fraction of added ethanol increased. We believe that the PNIPAM-g-PEO self-assembly is favored due to the different solvation of its constituting blocks in ethanol-water mixtures. The incorporation of IMC led to alteration of the physicochemical and morphological characteristics of the blank nanoparticles. In this case, only monodisperse polymersomes and micelles were observed in the solutions with an average diameter less than 65 nm and substantial drug loading (DLC ~117 – 146 wt%). Indomethacin release from the nanoparticles was responsive to temperature changes, being much faster at a temperature of 42oC compared to that of 37oC under otherwise the same conditions. The results obtained suggest that these PNIPAM-g-PEO nanoparticles could be potential in mild hyper-thermic delivery of nonsteroidal anti-inflammatory drugs.Keywords: drug delivery, nanoparticles, poly(N-isopropylacryl amide)-g-poly(ethylene oxide), thermo-responsive
Procedia PDF Downloads 2882032 Molecular Cloning and Identification of a Double WAP Domain–Containing Protein 3 Gene from Chinese Mitten Crab Eriocheir sinensis
Authors: Fengmei Li, Li Xu, Guoliang Xia
Abstract:
Whey acidic proteins (WAP) domain-containing proteins in crustacean are involved in innate immune response against microbial invasion. In the present study, a novel double WAP domain (DWD)-containing protein gene 3 was identified from Chinese mitten crab Eriocheir sinensis (designated EsDWD3) by expressed sequence tag (EST) analysis and PCR techniques. The full-length cDNA of EsDWD3 was of 1223 bp, consisting of a 5′-terminal untranslated region (UTR) of 74 bp, a 3′ UTR of 727 bp with a polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) of 423 bp. The ORF encoded a polypeptide of 140 amino acids with a signal peptide of 22 amino acids. The deduced protein sequence EsDWD3 showed 96.4 % amino acid similar to other reported EsDWD1 from E. sinensis, and phylogenetic tree analysis revealed that EsDWD3 had closer relationships with the reported two double WAP domain-containing proteins of E. sinensis species.Keywords: Chinese mitten crab, Eriocheir sinensis, cloning, double WAP domain-containing protein
Procedia PDF Downloads 3552031 Hardy Type Inequalities of Two-Dimensional on Time Scales via Steklov Operator
Authors: Wedad Albalawi
Abstract:
The mathematical inequalities have been the core of mathematical study and used in almost all branches of mathematics as well in various areas of science and engineering. The inequalities by Hardy, Littlewood and Polya were the first significant composition of several science. This work presents fundamental ideas, results and techniques and it has had much influence on research in various branches of analysis. Since 1934, various inequalities have been produced and studied in the literature. Furthermore, some inequalities have been formulated by some operators; in 1989, weighted Hardy inequalities have been obtained for integration operators. Then, they obtained weighted estimates for Steklov operators that were used in the solution of the Cauchy problem for the wave equation. They were improved upon in 2011 to include the boundedness of integral operators from the weighted Sobolev space to the weighted Lebesgue space. Some inequalities have been demonstrated and improved using the Hardy–Steklov operator. Recently, a lot of integral inequalities have been improved by differential operators. Hardy inequality has been one of the tools that is used to consider integrity solutions of differential equations. Then dynamic inequalities of Hardy and Coposon have been extended and improved by various integral operators. These inequalities would be interesting to apply in different fields of mathematics (functional spaces, partial differential equations, mathematical modeling). Some inequalities have been appeared involving Copson and Hardy inequalities on time scales to obtain new special version of them. A time scale is defined as a closed subset contains real numbers. Then the inequalities of time scales version have received a lot of attention and has had a major field in both pure and applied mathematics. There are many applications of dynamic equations on time scales to quantum mechanics, electrical engineering, neural networks, heat transfer, combinatorics, and population dynamics. This study focuses on double integrals to obtain new time-scale inequalities of Copson driven by Steklov operator. They will be applied in the solution of the Cauchy problem for the wave equation. The proof can be done by introducing restriction on the operator in several cases. In addition, the obtained inequalities done by using some concepts in time scale version such as time scales calculus, theorem of Fubini and the inequality of H¨older.Keywords: time scales, inequality of Hardy, inequality of Coposon, Steklov operator
Procedia PDF Downloads 762030 Optimal Relaxation Parameters for Obtaining Efficient Iterative Methods for the Solution of Electromagnetic Scattering Problems
Authors: Nadaniela Egidi, Pierluigi Maponi
Abstract:
The approximate solution of a time-harmonic electromagnetic scattering problem for inhomogeneous media is required in several application contexts, and its two-dimensional formulation is a Fredholm integral equation of the second kind. This integral equation provides a formulation for the direct scattering problem, but it has to be solved several times also in the numerical solution of the corresponding inverse scattering problem. The discretization of this Fredholm equation produces large and dense linear systems that are usually solved by iterative methods. In order to improve the efficiency of these iterative methods, we use the Symmetric SOR preconditioning, and we propose an algorithm for the evaluation of the associated relaxation parameter. We show the efficiency of the proposed algorithm by several numerical experiments, where we use two Krylov subspace methods, i.e., Bi-CGSTAB and GMRES.Keywords: Fredholm integral equation, iterative method, preconditioning, scattering problem
Procedia PDF Downloads 1042029 Further Investigation of α+12C and α+16O Elastic Scattering
Authors: Sh. Hamada
Abstract:
The current work aims to study the rainbow like-structure observed in the elastic scattering of alpha particles on both 12C and 16O nuclei. We reanalyzed the experimental elastic scattering angular distributions data for α+12C and α+16O nuclear systems at different energies using both optical model and double folding potential of different interaction models such as: CDM3Y1, DDM3Y1, CDM3Y6 and BDM3Y1. Potential created by BDM3Y1 interaction model has the shallowest depth which reflects the necessity to use higher renormalization factor (Nr). Both optical model and double folding potential of different interaction models fairly reproduce the experimental data.Keywords: density distribution, double folding, elastic scattering, nuclear rainbow, optical model
Procedia PDF Downloads 2372028 Shape Management Method for Safety Evaluation of Bridge Based on Terrestrial Laser Scanning Using Least Squares
Authors: Gichun Cha, Dongwan Lee, Junkyeong Kim, Aoqi Zhang, Seunghee Park
Abstract:
All the world are studying the construction technology of double deck tunnel in order to respond to the increasing urban traffic demands and environmental changes. Advanced countries have the construction technology of the double deck tunnel structure. but the domestic country began research on it. Construction technologies are important. But Safety evaluation of structure is necessary to prevent possible accidents during construction. Thus, the double deck tunnel was required the shape management of middle slabs. The domestic country is preparing the construction of double deck tunnel for an alternate route and a pleasant urban environment. Shape management of double deck tunnel has been no research because it is a new attempted technology. The present, a similar study is bridge structure for the shape management. Bridge is implemented shape model using terrestrial laser scanning(TLS). Therefore, we proceed research on the bridge slabs because there is a similar structure of double deck tunnel. In the study, we develop shape management method of bridge slabs using TLS. We select the Test-bed for measurement site. This site is bridge located on Sungkyunkwan University Natural Sciences Campus. This bridge has a total length of 34m, the vertical height of 8.7m from the ground. It connects Engineering Building #1 and Engineering Building #2. Point cloud data for shape management is acquired the TLS and We utilized the Leica ScanStation C10/C5 model. We will confirm the Maximum displacement area of middle slabs using Least-Squares Fitting. We expect to raise stability for double deck tunnel through shape management for middle slabs.Keywords: bridge slabs, least squares, safety evaluation, shape management method, terrestrial laser scanning
Procedia PDF Downloads 2412027 The Next Generation Neutrinoless Double-Beta Decay Experiment nEXO
Authors: Ryan Maclellan
Abstract:
The nEXO Collaboration is designing a very large detector for neutrinoless double beta decay of Xe-136. The nEXO detector is rooted in the current EXO-200 program, which has reached a sensitivity for the half-life of the decay of 1.9x10^25 years with an exposure of 99.8 kg-y. The baseline nEXO design assumes 5 tonnes of liquid xenon, enriched in the mass 136 isotope, within a time projection chamber. The detector is being designed to reach a half-life sensitivity of > 5x10^27 years covering the inverted neutrino mass hierarchy, with 5 years of data. We present the nEXO detector design, the current status of R&D efforts, and the physics case for the experiment.Keywords: double-beta, Majorana, neutrino, neutrinoless
Procedia PDF Downloads 4232026 Forecasting Cancers Cases in Algeria Using Double Exponential Smoothing Method
Authors: Messis A., Adjebli A., Ayeche R., Talbi M., Tighilet K., Louardiane M.
Abstract:
Cancers are the second cause of death worldwide. Prevalence and incidence of cancers is getting increased by aging and population growth. This study aims to predict and modeling the evolution of breast, Colorectal, Lung, Bladder and Prostate cancers over the period of 2014-2019. In this study, data were analyzed using time series analysis with double exponential smoothing method to forecast the future pattern. To describe and fit the appropriate models, Minitab statistical software version 17 was used. Between 2014 and 2019, the overall trend in the raw number of new cancer cases registered has been increasing over time; the change in observations over time has been increasing. Our forecast model is validated since we have good prediction for the period 2020 and data not available for 2021 and 2022. Time series analysis showed that the double exponential smoothing is an efficient tool to model the future data on the raw number of new cancer cases.Keywords: cancer, time series, prediction, double exponential smoothing
Procedia PDF Downloads 882025 Fuzzy Logic and Control Strategies on a Sump
Authors: Nasser Mohamed Ramli, Nurul Izzati Zulkifli
Abstract:
Sump can be defined as a reservoir which contains slurry; a mixture of solid and liquid or water, in it. Sump system is an unsteady process owing to the level response. Sump level shall be monitored carefully by using a good controller to avoid overflow. The current conventional controllers would not be able to solve problems with large time delay and nonlinearities, Fuzzy Logic controller is tested to prove its ability in solving the listed problems of slurry sump. Therefore, in order to justify the effectiveness and reliability of these controllers, simulation of the sump system was created by using MATLAB and the results were compared. According to the result obtained, instead of Proportional-Integral (PI) and Proportional-Integral and Derivative (PID), Fuzzy Logic controller showed the best result by offering quick response of 0.32 s for step input and 5 s for pulse generator, by producing small Integral Absolute Error (IAE) values that are 0.66 and 0.36 respectively.Keywords: fuzzy, sump, level, controller
Procedia PDF Downloads 2432024 Analysis of a Double Pipe Heat Exchanger Performance by Use of Porous Baffles and Nanofluids
Authors: N. Targui, H. Kahalerras
Abstract:
The present work is a numerical simulation of nanofluids flow in a double pipe heat exchanger provided with porous baffles. The hot nanofluid flows in the inner cylinder, whereas the cold nanofluid circulates in the annular gap. The Darcy-Brinkman-Forchheimer model is adopted to describe the flow in the porous regions, and the governing equations with the appropriate boundary conditions are solved by the finite volume method. The results reveal that the addition of metallic nanoparticles enhances the rate of heat transfer in comparison to conventional fluids but this augmentation is accompanied by an increase in pressure drop. The highest heat exchanger performances are obtained when nanoparticles are added only to the cold fluid.Keywords: double pipe heat exchanger, nanofluids, nanoparticles, porous baffles
Procedia PDF Downloads 2432023 Learning Algorithms for Fuzzy Inference Systems Composed of Double- and Single-Input Rule Modules
Authors: Hirofumi Miyajima, Kazuya Kishida, Noritaka Shigei, Hiromi Miyajima
Abstract:
Most of self-tuning fuzzy systems, which are automatically constructed from learning data, are based on the steepest descent method (SDM). However, this approach often requires a large convergence time and gets stuck into a shallow local minimum. One of its solutions is to use fuzzy rule modules with a small number of inputs such as DIRMs (Double-Input Rule Modules) and SIRMs (Single-Input Rule Modules). In this paper, we consider a (generalized) DIRMs model composed of double and single-input rule modules. Further, in order to reduce the redundant modules for the (generalized) DIRMs model, pruning and generative learning algorithms for the model are suggested. In order to show the effectiveness of them, numerical simulations for function approximation, Box-Jenkins and obstacle avoidance problems are performed.Keywords: Box-Jenkins's problem, double-input rule module, fuzzy inference model, obstacle avoidance, single-input rule module
Procedia PDF Downloads 3522022 Heat Transfer and Turbulent Fluid Flow over Vertical Double Forward-Facing Step
Authors: Tuqa Abdulrazzaq, Hussein Togun, M. K. A. Ariffin, S. N. Kazi, A. Badarudin, N. M. Adam, S. Masuri
Abstract:
Numerical study of heat transfer and fluid flow over vertical double forward facing step were presented. The k-w model with finite volume method was employed to solve continuity, momentum, and energy equations. Different step heights were adopted for range of Reynolds number varied from 10000 to 40000, and range of temperature varied from 310K to 340 K. The straight side of duct is insulated while the side of double forward facing step is heated. The result shows augmentation of heat transfer due to the recirculation region created after and before steps. Effect of step length and Reynolds number observed on increase of local Nusselt number particularly at recirculation regions. Contour of streamline velocity is plotted to show recirculation regions after and before steps. Numerical simulation in this paper done by used ANSYS Fluent 14.Keywords: turbulent flow, double forward, heat transfer, separation flow
Procedia PDF Downloads 4612021 Discrimination of Modes of Double- and Single-Negative Grounded Slab
Authors: R. Borghol, T. Aguili
Abstract:
In this paper, we investigate theoretically the waves propagation in a lossless double-negative grounded slab (DNG). This study is performed by the Transverse Resonance Method (TRM). The proper or improper nature of real and complex modes is observed. They are highly dependent on metamaterial parameters, i.e. ɛr-negative, µr-negative, or both. Numerical results provided that only the proper complex modes (i.e., leaky modes) exist in DNG slab, and only the improper complex modes exist in single-negative grounded slab.Keywords: double negative grounded slab, real and complex modes, single negative grounded slab, transverse resonance method
Procedia PDF Downloads 2732020 Crystal Structures and High-Temperature Phase Transitions of the New Ordered Double Perovskites SrCaCoTeO6 and SrCaNiTeO6
Authors: Asmaa Zaraq
Abstract:
In the present work we report X-ray powder diffraction measurements of SrCaCoTeO6 and SrCaNiTeO6, at different temperatures. The crystal structures at room temperature of both compounds are determined; and results showing the existence of high-temperature phase transitions in them are presented. Both compounds have double perovskite structure with 1:1 ordered arrangement of the B site cations. At room temperature their symmetries are described with the P21/n space group, that correspond to the (a+b-b-) tilt system. The evolution with temperature of the structure of both compounds shows the presence of three phase transitions: a continuous one, at 450 and 500 K, a discontinuous one, at 700 and 775 K, and a continuous one at 900 and 950 K for SrCaCoTeO6 and SrCaNiTeO6, respectively with the following phase-transition sequence: P21/n → I2/m → I4/m → Fm-3m.Keywords: double perovskites, caracterisation DRX, transition de phase
Procedia PDF Downloads 5222019 Children’s Concept of Forgiveness
Authors: Lida Landicho, Analiza R. Adarlo, Janine Mae V. Corpuz, Joan C. Villanueva
Abstract:
Testing the idea that the process of forgiveness is intrinsically different across diverse relationships, this study examined whether forgiveness can already be facilitated by children ages 4-6. Two different intervention sessions which consists of 40 children (half heard stories about unfair blame and half heard stories about a double standard (between subjects variable) was completed. Investigators performed experimental analyses to examine the role of forgiveness in social and familial context. Results indicated that forgiveness can already be facilitated by children. Children see scenarios on double standard to be more unfair than normal scenarios (Scenario 2 (double standard) (M=7.54) Scenario 1 (unfair blame) (M=4.50), Scenario 4 (double standard) (M=7.) Scenario 3 (getting blamed for something the friend did) (M=6.80)p <.05.The findings confirmed that children were generally willing to grant forgiveness to a mother even though she was unfair, but less so to a friend. Correlations between sex, age and forgiveness were analyzed. Significant relationships was found on scenarios presented and caring task scores (rxy= -.314).Their tendency to forgive was related to dispositional and situational factors.Keywords: forgiveness, situational and dispositional factors, familial context, social context
Procedia PDF Downloads 4252018 J-Integral Method for Assessment of Structural Integrity of a Pressure Vessel
Authors: Karthik K. R, Viswanath V, Asraff A. K
Abstract:
The first stage of a new-generation launch vehicle of ISRO makes use of large pressure vessels made of Aluminium alloy AA2219 to store fuel and oxidizer. These vessels have many weld joints that may contain cracks or crack-like defects during their fabrication. These defects may propagate across the vessel during pressure testing or while in service under the influence of tensile stresses leading to catastrophe. Though ductile materials exhibit significant stable crack growth prior to failure, it is not generally acceptable for an aerospace component. There is a need to predict the initiation of stable crack growth. The structural integrity of the vessel from fracture considerations can be studied by constructing the Failure Assessment Diagram (FAD) that accounts for both brittle fracture and plastic collapse. Critical crack sizes of the pressure vessel may be highly conservative if it is predicted from FAD alone. If the J-R curve for material under consideration is available apriori, the critical crack sizes can be predicted to a certain degree of accuracy. In this paper, a novel approach is proposed to predict the integrity of a weld in a pressure vessel made of AA2219 material. Fracture parameter ‘J-integral’ at the crack front, evaluated through finite element analyses, is used in the new procedure. Based on the simulation of tension tests carried out on SCT specimens by NASA, a cut-off value of J-integral value (J?ᵤₜ_ₒ??) is finalised. For the pressure vessel, J-integral at the crack front is evaluated through FE simulations incorporating different surface cracks at long seam weld in a cylinder and in dome petal welds. The obtained J-integral, at vessel level, is compared with a value of J?ᵤₜ_ₒ??, and the integrity of vessel weld in the presence of the surface crack is firmed up. The advantage of this methodology is that if SCT test data of any metal is available, the critical crack size in hardware fabricated using that material can be predicted to a better level of accuracy.Keywords: FAD, j-integral, fracture, surface crack
Procedia PDF Downloads 1872017 An Alternative Framework of Multi-Resolution Nested Weighted Essentially Non-Oscillatory Schemes for Solving Euler Equations with Adaptive Order
Authors: Zhenming Wang, Jun Zhu, Yuchen Yang, Ning Zhao
Abstract:
In the present paper, an alternative framework is proposed to construct a class of finite difference multi-resolution nested weighted essentially non-oscillatory (WENO) schemes with an increasingly higher order of accuracy for solving inviscid Euler equations. These WENO schemes firstly obtain a set of reconstruction polynomials by a hierarchy of nested central spatial stencils, and then recursively achieve a higher order approximation through the lower-order precision WENO schemes. The linear weights of such WENO schemes can be set as any positive numbers with a requirement that their sum equals one and they will not pollute the optimal order of accuracy in smooth regions and could simultaneously suppress spurious oscillations near discontinuities. Numerical results obtained indicate that these alternative finite-difference multi-resolution nested WENO schemes with different accuracies are very robust with low dissipation and use as few reconstruction stencils as possible while maintaining the same efficiency, achieving the high-resolution property without any equivalent multi-resolution representation. Besides, its finite volume form is easier to implement in unstructured grids.Keywords: finite-difference, WENO schemes, high order, inviscid Euler equations, multi-resolution
Procedia PDF Downloads 145