Search results for: deci- sion trees
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 597

Search results for: deci- sion trees

507 Assessment of Highly Sensitive Dielectric Modulated GaN-FinFET for Label-Free Biosensing Applications

Authors: Ajay Kumar, Neha Gupta

Abstract:

This work presents the sensitivity assessment of Gallium Nitride (GaN) material-based FinFET by dielectric modulation in the nanocavity gap for label-free biosensing applications. The significant deflection is observed in the electrical characteristics such as drain current (ID), transconductance (gm), surface potential, energy band profile, electric field, sub-threshold slope (SS), and threshold voltage (Vth) in the presence of biomolecules owing to GaN material. Further, the device sensitivity is evaluated to identify the effectiveness of the proposed biosensor and its capability to detect the biomolecules with high precision or accuracy. Higher sensitivity is observed for Gelatin (k=12) in terms of on-current (SION), threshold voltage (SVth), and switching ratio (SSR) by 104.88%, 82.12%, and 119.73%, respectively. This work is performed using a powerful tool 3D Sentaurus TCAD using a well-calibrated structure. All the results pave the way for GaN-FinFET as a viable candidate for label-free dielectric modulated biosensor applications.

Keywords: biosensor, biomolecules, FinFET, sensitivity

Procedia PDF Downloads 209
506 Identification of Healthy and BSR-Infected Oil Palm Trees Using Color Indices

Authors: Siti Khairunniza-Bejo, Yusnida Yusoff, Nik Salwani Nik Yusoff, Idris Abu Seman, Mohamad Izzuddin Anuar

Abstract:

Most of the oil palm plantations have been threatened by Basal Stem Rot (BSR) disease which causes serious economic impact. This study was conducted to identify the healthy and BSR-infected oil palm tree using thirteen color indices. Multispectral and thermal camera was used to capture 216 images of the leaves taken from frond number 1, 9 and 17. Indices of normalized difference vegetation index (NDVI), red (R), green (G), blue (B), near infrared (NIR), green – blue (GB), green/blue (G/B), green – red (GR), green/red (G/R), hue (H), saturation (S), intensity (I) and thermal index (T) were used. From this study, it can be concluded that G index taken from frond number 9 is the best index to differentiate between the healthy and BSR-infected oil palm trees. It not only gave high value of correlation coefficient (R=-0.962), but also high value of separation between healthy and BSR-infected oil palm tree. Furthermore, power and S model developed using G index gave the highest R2 value which is 0.985.

Keywords: oil palm, image processing, disease, leaves

Procedia PDF Downloads 503
505 Influence of Partially-Replaced Coarse Aggregates with Date Palm Seeds on the Concrete Properties

Authors: Fahed Alrshoudi

Abstract:

Saudi Arabia is ranked the third of the largest suppliers of Dates worldwide (about 28.5 million palm trees), producing more than 2 million tons of dates yearly. These trees produce large quantity of dates palm seeds (DPS) which can be considered literally as a waste. The date seeds are stiff, therefore, it is possible to utilize DPS as coarse aggregates in lightweight concrete for certain structural applications and to participate at reusing the waste. The use of DPS as coarse aggregate in concrete can be an alternative choice as a partial replacement of the stone aggregates (SA). This paper reports the influence of partially replaced stone aggregates with DPS on the hardened properties of concrete performance. Based on the experimental results, the DPS has the potential use as an acceptable alternative aggregates in producing structural lightweight concrete members, instead of stone aggregates.

Keywords: compressive strength, tensile Strength, date palm seeds, aggregate

Procedia PDF Downloads 134
504 Advancing Phenological Understanding of Plants/Trees Through Phenocam Digital Time-lapse Images

Authors: Siddhartha Khare, Suyash Khare

Abstract:

Phenology, a crucial discipline in ecology, offers insights into the seasonal dynamics of organisms within natural ecosystems and the underlying environmental triggers. Leveraging the potent capabilities of digital repeat photography, PhenoCams capture invaluable data on the phenology of crops, plants, and trees. These cameras yield digital imagery in Red Green Blue (RGB) color channels, and some advanced systems even incorporate Near Infrared (NIR) bands. This study presents compelling case studies employing PhenoCam technology to unravel the phenology of black spruce trees. Through the analysis of RGB color channels, a range of essential color metrics including red chromatic coordinate (RCC), green chromatic coordinate (GCC), blue chromatic coordinate (BCC), vegetation contrast index (VCI), and excess green index (ExGI) are derived. These metrics illuminate variations in canopy color across seasons, shedding light on bud and leaf development. This, in turn, facilitates a deeper understanding of phenological events and aids in delineating the growth periods of trees and plants. The initial phase of this study addresses critical questions surrounding the fidelity of continuous canopy greenness records in representing bud developmental phases. Additionally, it discerns which color-based index most accurately tracks the seasonal variations in tree phenology within evergreen forest ecosystems. The subsequent section of this study delves into the transition dates of black spruce (Picea mariana (Mill.) B.S.P.) phenology. This is achieved through a fortnightly comparative analysis of the MODIS normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI). By employing PhenoCam technology and leveraging advanced color metrics, this study significantly advances our comprehension of black spruce tree phenology, offering valuable insights for ecological research and management.

Keywords: phenology, remote sensing, phenocam, color metrics, NDVI, GCC

Procedia PDF Downloads 64
503 Geographic Information System-Based Map for Best Suitable Place for Cultivating Permanent Trees in South-Lebanon

Authors: Allaw Kamel, Al-Chami Leila

Abstract:

It is important to reduce the human influence on natural resources by identifying an appropriate land use. Moreover, it is essential to carry out the scientific land evaluation. Such kind of analysis allows identifying the main factors of agricultural production and enables decision makers to develop crop management in order to increase the land capability. The key is to match the type and intensity of land use with its natural capability. Therefore; in order to benefit from these areas and invest them to obtain good agricultural production, they must be organized and managed in full. Lebanon suffers from the unorganized agricultural use. We take south Lebanon as a study area, it is the most fertile ground and has a variety of crops. The study aims to identify and locate the most suitable area to cultivate thirteen type of permanent trees which are: apples, avocados, stone fruits in coastal regions and stone fruits in mountain regions, bananas, citrus, loquats, figs, pistachios, mangoes, olives, pomegranates, and grapes. Several geographical factors are taken as criterion for selection of the best location to cultivate. Soil, rainfall, PH, temperature, and elevation are main inputs to create the final map. Input data of each factor is managed, visualized and analyzed using Geographic Information System (GIS). Management GIS tools are implemented to produce input maps capable of identifying suitable areas related to each index. The combination of the different indices map generates the final output map of the suitable place to get the best permanent tree productivity. The output map is reclassified into three suitability classes: low, moderate, and high suitability. Results show different locations suitable for different kinds of trees. Results also reflect the importance of GIS in helping decision makers finding a most suitable location for every tree to get more productivity and a variety in crops.

Keywords: agricultural production, crop management, geographical factors, Geographic Information System, GIS, land capability, permanent trees, suitable location

Procedia PDF Downloads 143
502 Impact of Land-Use and Climate Change on the Population Structure and Distribution Range of the Rare and Endangered Dracaena ombet and Dobera glabra in Northern Ethiopia

Authors: Emiru Birhane, Tesfay Gidey, Haftu Abrha, Abrha Brhan, Amanuel Zenebe, Girmay Gebresamuel, Florent Noulèkoun

Abstract:

Dracaena ombet and Dobera glabra are two of the most rare and endangered tree species in dryland areas. Unfortunately, their sustainability is being compromised by different anthropogenic and natural factors. However, the impacts of ongoing land use and climate change on the population structure and distribution of the species are less explored. This study was carried out in the grazing lands and hillside areas of the Desa'a dry Afromontane forest, northern Ethiopia, to characterize the population structure of the species and predict the impact of climate change on their potential distributions. In each land-use type, abundance, diameter at breast height, and height of the trees were collected using 70 sampling plots distributed over seven transects spaced one km apart. The geographic coordinates of each individual tree were also recorded. The results showed that the species populations were characterized by low abundance and unstable population structure. The latter was evinced by a lack of seedlings and mature trees. The study also revealed that the total abundance and dendrometric traits of the trees were significantly different between the two land uses. The hillside areas had a denser abundance of bigger and taller trees than the grazing lands. Climate change predictions using the MaxEnt model highlighted that future temperature increases coupled with reduced precipitation would lead to significant reductions in the suitable habitats of the species in northern Ethiopia. The species' suitable habitats were predicted to decline by 48–83% for D. ombet and 35–87% for D. glabra. Hence, to sustain the species populations, different strategies should be adopted, namely the introduction of alternative livelihoods (e.g., gathering NTFP) to reduce the overexploitation of the species for subsistence income and the protection of the current habitats that will remain suitable in the future using community-based exclosures. Additionally, the preservation of the species' seeds in gene banks is crucial to ensure their long-term conservation.

Keywords: grazing lands, hillside areas, land-use change, MaxEnt, range limitation, rare and endangered tree species

Procedia PDF Downloads 100
501 Determination of Water Pollution and Water Quality with Decision Trees

Authors: Çiğdem Bakır, Mecit Yüzkat

Abstract:

With the increasing emphasis on water quality worldwide, the search for and expanding the market for new and intelligent monitoring systems has increased. The current method is the laboratory process, where samples are taken from bodies of water, and tests are carried out in laboratories. This method is time-consuming, a waste of manpower, and uneconomical. To solve this problem, we used machine learning methods to detect water pollution in our study. We created decision trees with the Orange3 software we used in our study and tried to determine all the factors that cause water pollution. An automatic prediction model based on water quality was developed by taking many model inputs such as water temperature, pH, transparency, conductivity, dissolved oxygen, and ammonia nitrogen with machine learning methods. The proposed approach consists of three stages: preprocessing of the data used, feature detection, and classification. We tried to determine the success of our study with different accuracy metrics and the results. We presented it comparatively. In addition, we achieved approximately 98% success with the decision tree.

Keywords: decision tree, water quality, water pollution, machine learning

Procedia PDF Downloads 86
500 Developing Allometric Equations for More Accurate Aboveground Biomass and Carbon Estimation in Secondary Evergreen Forests, Thailand

Authors: Titinan Pothong, Prasit Wangpakapattanawong, Stephen Elliott

Abstract:

Shifting cultivation is an indigenous agricultural practice among upland people and has long been one of the major land-use systems in Southeast Asia. As a result, fallows and secondary forests have come to cover a large part of the region. However, they are increasingly being replaced by monocultures, such as corn cultivation. This is believed to be a main driver of deforestation and forest degradation, and one of the reasons behind the recurring winter smog crisis in Thailand and around Southeast Asia. Accurate biomass estimation of trees is important to quantify valuable carbon stocks and changes to these stocks in case of land use change. However, presently, Thailand lacks proper tools and optimal equations to quantify its carbon stocks, especially for secondary evergreen forests, including fallow areas after shifting cultivation and smaller trees with a diameter at breast height (DBH) of less than 5 cm. Developing new allometric equations to estimate biomass is urgently needed to accurately estimate and manage carbon storage in tropical secondary forests. This study established new equations using a destructive method at three study sites: approximately 50-year-old secondary forest, 4-year-old fallow, and 7-year-old fallow. Tree biomass was collected by harvesting 136 individual trees (including coppiced trees) from 23 species, with a DBH ranging from 1 to 31 cm. Oven-dried samples were sent for carbon analysis. Wood density was calculated from disk samples and samples collected with an increment borer from 79 species, including 35 species currently missing from the Global Wood Densities database. Several models were developed, showing that aboveground biomass (AGB) was strongly related to DBH, height (H), and wood density (WD). Including WD in the model was found to improve the accuracy of the AGB estimation. This study provides insights for reforestation management, and can be used to prepare baseline data for Thailand’s carbon stocks for the REDD+ and other carbon trading schemes. These may provide monetary incentives to stop illegal logging and deforestation for monoculture.

Keywords: aboveground biomass, allometric equation, carbon stock, secondary forest

Procedia PDF Downloads 286
499 Survey of Prevalence of Noise Induced Hearing Loss in Hawkers and Shopkeepers in Noisy Areas of Mumbai City

Authors: Hitesh Kshayap, Shantanu Arya, Ajay Basod, Sachin Sakhuja

Abstract:

This study was undertaken to measure the overall noise levels in different locations/zones and to estimate the prevalence of Noise induced hearing loss in Hawkers & Shopkeepers in Mumbai, India. The Hearing Test developed by American Academy Of Otolaryngology, translated from English to Hindi, and validated is used as a screening tool for hearing sensitivity was employed. The tool is having 14 items. Each item is scored on a scale 0, 1, 2 and 3. The score 6 and above indicated some difficulty or definite difficulty in hearing in daily activities and low score indicated lesser difficulty or normal hearing. The subjects who scored 6 or above or having tinnitus were made to undergo hearing evaluation by Pure tone audiometer. Further, the environmental noise levels were measured from Morning to Evening at road side at different Location/Hawking zones in Mumbai city using SLM9 Agronic 8928B & K type Digital Sound Level Meter) in dB (A). The maximum noise level of 100.0 dB (A) was recorded during evening hours from Chattrapati Shivaji Terminal to Colaba with overall noise level of 79.0 dB (A). However, the minimum noise level in this area was 72.6 dB (A) at any given point of time. Further, 54.6 dB (A) was recorded as minimum noise level during 8-9 am at Sion Circle. Further, commencement of flyovers with 2-tier traffic, sky walks, increasing number of vehicular traffic at road, high rise buildings and other commercial & urbanization activities in the Mumbai city most probably have resulted in increasing the overall environmental noise levels. Trees which acted as noise absorbers have been cut owing to rapid construction. The study involved 100 participants in the age range of 18 to 40 years of age, with the mean age of 29 years (S.D. =6.49). 46 participants having tinnitus or have obtained the score of 6 were made to undergo Pure Tone Audiometry and it was found that the prevalence rate of hearing loss in hawkers & shopkeepers is 19% (10% Hawkers and 9 % Shopkeepers). The results found indicates that 29 (42.6%) out of 64 Hawkers and 17 (47.2%) out of 36 Shopkeepers who underwent PTA had no significant difference in percentage of Noise Induced Hearing loss. The study results also reveal that participants who exhibited tinnitus 19 (41.30%) out of 46 were having mild to moderate sensorineural hearing loss between 3000Hz to 6000Hz. The Pure tone Audiogram pattern revealed Hearing loss at 4000 Hz and 6000 Hz while hearing at adjacent frequencies were nearly normal. 7 hawkers and 8 shopkeepers had mild notch while 3 hawkers and 1 shopkeeper had a moderate degree of notch. It is thus inferred that tinnitus is a strong indicator for presence of hearing loss and 4/6 KHz notch is a strong marker for road/traffic/ environmental noise as an occupational hazard for hawkers and shopkeepers. Mass awareness about these occupational hazards, regular hearing check up, early intervention along with sustainable development juxtaposed with social and urban forestry can help in this regard.

Keywords: NIHL, noise, sound level meter, tinnitus

Procedia PDF Downloads 204
498 Susceptibility of Different Clones of Eucalyptus Species against Gall Wasp, Leptocybe invasa Fisher and La Salle in Punjab, India

Authors: Ashwinder K. Dhaliwal, G. P. S. Dhillon

Abstract:

Eucalyptus is one of the most important forest tree species that can tolerate and grow well on degraded and unfertile soils which are not suitable for other tree species. Besides this, these trees have a short rotation and good economic value. However, the gall inducing wasp Leptocybe invasa Fisher and La Salle has been reported from many countries throughout the world. The spread of L. invasa is of huge economic concern as more than 20,000 ha of young Eucalyptus trees have already been affected in southern states of India. The host plant resistance being the first line of defense against insect pests demands the screening of different germplasm source against L. invasa. Keeping this in view, fourteen different clones of Eucalyptus spp. were evaluated for their susceptibility to L. invasa from a replicated clonal trial planted at Punjab Agricultural University, Ludhiana. The degree of gall infestation was recorded from three plants of each clone in each replication. Three branches selected from the lower, middle and upper canopy of the trees were selected for recording the total number of galls induced by L. invasa. The statistical analysis was done as per the procedure laid down for completely randomised block design (CRBD), analysis of variance (ANOVA), critical difference (CD) and variance components using Proc GLM (SAS software 9.3, SAS Institute Ltd. U.S.A). All possible treatment means were compared with Duncan’s multiple range test (DMRT) at 1 % probability level. The results showed that the clones C-9, C-45 and C-42 were completely free from the infestation of L. invasa. However, there was minor infestation of L. invasa on C-2135, C-413, C-407, C-35, C-72 and C-37 clones. The clone C-6 was severely infested by L. invasa followed by C-11, C-12, F-316 and C-25 clones. The information generated by this study will be helpful for future breeding and use in afforestation programmes.

Keywords: eucalyptus clones, gall wasp, Leptocybe invasa, screening, susceptibility

Procedia PDF Downloads 224
497 Chemical Composition and Nutritional Value of Leaves and Pods of Leucaena Leucocephala, Prosopis Laevigata and Acacia Farnesiana in a Xerophyllous Shrubland

Authors: Miguel Mellado, Cecilia Zapata

Abstract:

Goats can be exploited in harsh environments due to their capacity to adjust to limited quantity and quality forage sources. In these environments, leguminous trees can be used as supplementary feeds as foliage and fruits of these trees can contribute to maintain or improve production efficiency in ruminants. The objective of this study was to determine the nutritional value of three leguminous trees heavily selected by goats in a xerophyllous shrubland. Chemical composition and in vitro dry matter disappearance (IVDMD) of leaves and pods from leucaena (Leucaena leucocephala), mesquite (Prosopis laevigata) and huisache (Acacia farnesiana) is presented. Crude protein (CP) ranged from 17.3% for leaves of huisache to 21.9% for leucaena. The neutral detergent fiber (NDF) content ranged from 39.0 to 40.3 with no difference among fodder threes. Across tree species, mean IVDMD was 61.6% for pods and 52.2% for leaves. IVDMD for leaves was highest (P < 0.01) for leucaena (54.9%) and lowest for huisache (47.3%). Condensed tannins in an acetonic extract were highest for leaves of huisache (45.3 mg CE/g DM) and lowest for mesquite (25.9 mg CE/g DM). Pods and leaves of huisache presented the highest number of secondary metabolites, mainly related to hydrobenzoic acid and flavonols; leucaena and mesquite presented mainly flavonols and anthocyanins. It was concluded that leaves and pods of leucaena, mesquite and huisache constitute valuable forages for ruminant livestock due to its low fiber, high CP levels, moderate in vitro fermentation characteristics and high mineral content. Keywords: Fodder tree; ruminants; secondary metabolites; minerals; tannins

Keywords: fodder tree, ruminants, secondary metabolites, minerals, tannins

Procedia PDF Downloads 147
496 Real-Time Automated Detection of Violent Content in Animated Cartoons Using YOLOv9

Authors: Omaima Jbara, Mohame Amine Omrani, Mounir Zrigui

Abstract:

The detection of violent content in animated cartoons is anessential step toward safeguarding young audiences and promoting responsible media consumption. This study introduces an automated approach to identify violent scenes in cartoons using advanced object detection models. A custom dataset comprising 1,200 frames was curated from various animated sources, focusing on four key classes: Explosion, Blood, Fight, and Gunshot. Data augmentation techniques, including rotation, scaling, and color adjustments, expanded the dataset to 2,000 frames, enhancing diversity and model generalization. YOLO versions 8, 9, and 10 were trained and evaluated on this dataset. Among these, YOLOv9 achieved the highest performance with a mean Average Precision (mAP) of 94%, demonstrating superior accuracy and robustness. These findings highlight YOLOv9’s potential as a reliable tool for detecting violent content in animated media, contributing to the development of effective content moderation systems.

Keywords: cartoon violence detection, YOLO model, computer Vi sion, Real-time content analysis

Procedia PDF Downloads 11
495 Immature Palm Tree Detection Using Morphological Filter for Palm Counting with High Resolution Satellite Image

Authors: Nur Nadhirah Rusyda Rosnan, Nursuhaili Najwa Masrol, Nurul Fatiha MD Nor, Mohammad Zafrullah Mohammad Salim, Sim Choon Cheak

Abstract:

Accurate inventories of oil palm planted areas are crucial for plantation management as this would impact the overall economy and production of oil. One of the technological advancements in the oil palm industry is semi-automated palm counting, which is replacing conventional manual palm counting via digitizing aerial imagery. Most of the semi-automated palm counting method that has been developed was limited to mature palms due to their ideal canopy size represented by satellite image. Therefore, immature palms were often left out since the size of the canopy is barely visible from satellite images. In this paper, an approach using a morphological filter and high-resolution satellite image is proposed to detect immature palm trees. This approach makes it possible to count the number of immature oil palm trees. The method begins with an erosion filter with an appropriate window size of 3m onto the high-resolution satellite image. The eroded image was further segmented using watershed segmentation to delineate immature palm tree regions. Then, local minimum detection was used because it is hypothesized that immature oil palm trees are located at the local minimum within an oil palm field setting in a grayscale image. The detection points generated from the local minimum are displaced to the center of the immature oil palm region and thinned. Only one detection point is left that represents a tree. The performance of the proposed method was evaluated on three subsets with slopes ranging from 0 to 20° and different planting designs, i.e., straight and terrace. The proposed method was able to achieve up to more than 90% accuracy when compared with the ground truth, with an overall F-measure score of up to 0.91.

Keywords: immature palm count, oil palm, precision agriculture, remote sensing

Procedia PDF Downloads 78
494 Carbon Footprint Assessment Initiative and Trees: Role in Reducing Emissions

Authors: Omar Alelweet

Abstract:

Carbon emissions are quantified in terms of carbon dioxide equivalents, generated through a specific activity or accumulated throughout the life stages of a product or service. Given the growing concern about climate change and the role of carbon dioxide emissions in global warming, this initiative aims to create awareness and understanding of the impact of human activities and identify potential areas for improvement regarding the management of the carbon footprint on campus. Given that trees play a vital role in reducing carbon emissions by absorbing CO₂ during the photosynthesis process, this paper evaluated the contribution of each tree to reducing those emissions. Collecting data over an extended period of time is essential to monitoring carbon dioxide levels. This will help capture changes at different times and identify any patterns or trends in the data. By linking the data to specific activities, events, or environmental factors, it is possible to identify sources of emissions and areas where carbon dioxide levels are rising. Analyzing the collected data can provide valuable insights into ways to reduce emissions and mitigate the impact of climate change.

Keywords: sustainability, green building, environmental impact, CO₂

Procedia PDF Downloads 74
493 Predictive Analysis for Big Data: Extension of Classification and Regression Trees Algorithm

Authors: Ameur Abdelkader, Abed Bouarfa Hafida

Abstract:

Since its inception, predictive analysis has revolutionized the IT industry through its robustness and decision-making facilities. It involves the application of a set of data processing techniques and algorithms in order to create predictive models. Its principle is based on finding relationships between explanatory variables and the predicted variables. Past occurrences are exploited to predict and to derive the unknown outcome. With the advent of big data, many studies have suggested the use of predictive analytics in order to process and analyze big data. Nevertheless, they have been curbed by the limits of classical methods of predictive analysis in case of a large amount of data. In fact, because of their volumes, their nature (semi or unstructured) and their variety, it is impossible to analyze efficiently big data via classical methods of predictive analysis. The authors attribute this weakness to the fact that predictive analysis algorithms do not allow the parallelization and distribution of calculation. In this paper, we propose to extend the predictive analysis algorithm, Classification And Regression Trees (CART), in order to adapt it for big data analysis. The major changes of this algorithm are presented and then a version of the extended algorithm is defined in order to make it applicable for a huge quantity of data.

Keywords: predictive analysis, big data, predictive analysis algorithms, CART algorithm

Procedia PDF Downloads 143
492 Enhanced Extra Trees Classifier for Epileptic Seizure Prediction

Authors: Maurice Ntahobari, Levin Kuhlmann, Mario Boley, Zhinoos Razavi Hesabi

Abstract:

For machine learning based epileptic seizure prediction, it is important for the model to be implemented in small implantable or wearable devices that can be used to monitor epilepsy patients; however, current state-of-the-art methods are complex and computationally intensive. We use Shapley Additive Explanation (SHAP) to find relevant intracranial electroencephalogram (iEEG) features and improve the computational efficiency of a state-of-the-art seizure prediction method based on the extra trees classifier while maintaining prediction performance. Results for a small contest dataset and a much larger dataset with continuous recordings of up to 3 years per patient from 15 patients yield better than chance prediction performance (p < 0.004). Moreover, while the performance of the SHAP-based model is comparable to that of the benchmark, the overall training and prediction time of the model has been reduced by a factor of 1.83. It can also be noted that the feature called zero crossing value is the best EEG feature for seizure prediction. These results suggest state-of-the-art seizure prediction performance can be achieved using efficient methods based on optimal feature selection.

Keywords: machine learning, seizure prediction, extra tree classifier, SHAP, epilepsy

Procedia PDF Downloads 116
491 Evaluation of Dry Matter Yield of Panicum maximum Intercropped with Pigeonpea and Sesbania Sesban

Authors: Misheck Musokwa, Paramu Mafongoya, Simon Lorentz

Abstract:

Seasonal shortages of fodder during the dry season is a major constraint to smallholder livestock farmers in South Africa. To mitigate the shortage of fodder, legume trees can be intercropped with pastures which can diversify the sources of feed and increase the amount of protein for grazing animals. The objective was to evaluate dry matter yield of Panicum maximum and land productivity under different fodder production systems during 2016/17-2017/18 seasons at Empangeni (28.6391° S and 31.9400° E). A randomized complete block design, replicated three times was used, the treatments were sole Panicum maximum, Panicum maximum + Sesbania sesban, Panicum maximum + pigeonpea, sole Sesbania sesban, Sole pigeonpea. Three months S.sesbania seedlings were transplanted whilst pigeonpea was direct seeded at spacing of 1m x 1m. P. maximum seeds were drilled at a respective rate of 7.5 kg/ha having an inter-row spacing of 0.25 m apart. In between rows of trees P. maximum seeds were drilled. The dry matter yield harvesting times were separated by six months’ timeframe. A 0.25 m² quadrant randomly placed on 3 points on the plot was used as sampling area during harvesting P. maximum. There was significant difference P < 0.05 across 3 harvests and total dry matter. P. maximum had higher dry matter yield as compared to both intercrops at first harvest and total. The second and third harvest had no significant difference with pigeonpea intercrop. The results was in this order for all 3 harvest: P. maximum (541.2c, 1209.3b and 1557b) kg ha¹ ≥ P. maximum + pigeonpea (157.2b, 926.7b and 1129b) kg ha¹ > P. maximum + S. sesban (36.3a, 282a and 555a) kg ha¹. Total accumulation of dry matter yield of P. maximum (3307c kg ha¹) > P. maximum + pigeonpea (2212 kg ha¹) ≥ P. maximum + S. sesban (874 kg ha¹). There was a significant difference (P< 0.05) on seed yield for trees. Pigeonpea (1240.3 kg ha¹) ≥ Pigeonpea + P. maximum (862.7 kg ha¹) > S.sesbania (391.9 kg ha¹) ≥ S.sesbania + P. maximum. The Land Equivalent Ratio (LER) was in the following order P. maximum + pigeonpea (1.37) > P. maximum + S. sesban (0.84) > Pigeonpea (0.59) ≥ S. Sesbania (0.57) > P. maximum (0.26). Results indicates that it is beneficial to have P. maximum intercropped with pigeonpea because of higher land productivity. Planting grass with pigeonpea was more beneficial than S. sesban with grass or sole cropping in terms of saving the shortage of arable land. P. maximum + pigeonpea saves a substantial (37%) land which can be subsequently be used for other crop production. Pigeonpea is recommended as an intercrop with P. maximum due to its higher LER and combined production of livestock feed, human food, and firewood. Panicum grass is low in crude protein though high in carbohydrates, there is a need for intercropping it with legume trees. A farmer who buys concentrates can reduce costs by combining P. maximum with pigeonpea this will provide a balanced diet at low cost.

Keywords: fodder, livestock, productivity, smallholder farmers

Procedia PDF Downloads 152
490 Feature Extraction and Impact Analysis for Solid Mechanics Using Supervised Finite Element Analysis

Authors: Edward Schwalb, Matthias Dehmer, Michael Schlenkrich, Farzaneh Taslimi, Ketron Mitchell-Wynne, Horen Kuecuekyan

Abstract:

We present a generalized feature extraction approach for supporting Machine Learning (ML) algorithms which perform tasks similar to Finite-Element Analysis (FEA). We report results for estimating the Head Injury Categorization (HIC) of vehicle engine compartments across various impact scenarios. Our experiments demonstrate that models learned using features derived with a simple discretization approach provide a reasonable approximation of a full simulation. We observe that Decision Trees could be as effective as Neural Networks for the HIC task. The simplicity and performance of the learned Decision Trees could offer a trade-off of a multiple order of magnitude increase in speed and cost improvement over full simulation for a reasonable approximation. When used as a complement to full simulation, the approach enables rapid approximate feedback to engineering teams before submission for full analysis. The approach produces mesh independent features and is further agnostic of the assembly structure.

Keywords: mechanical design validation, FEA, supervised decision tree, convolutional neural network.

Procedia PDF Downloads 143
489 Reconstruction of Age-Related Generations of Siberian Larch to Quantify the Climatogenic Dynamics of Woody Vegetation Close the Upper Limit of Its Growth

Authors: A. P. Mikhailovich, V. V. Fomin, E. M. Agapitov, V. E. Rogachev, E. A. Kostousova, E. S. Perekhodova

Abstract:

Woody vegetation among the upper limit of its habitat is a sensitive indicator of biota reaction to regional climate changes. Quantitative assessment of temporal and spatial changes in the distribution of trees and plant biocenoses calls for the development of new modeling approaches based upon selected data from measurements on the ground level and ultra-resolution aerial photography. Statistical models were developed for the study area located in the Polar Urals. These models allow obtaining probabilistic estimates for placing Siberian Larch trees into one of the three age intervals, namely 1-10, 11-40 and over 40 years, based on the Weilbull distribution of the maximum horizontal crown projection. Authors developed the distribution map for larch trees with crown diameters exceeding twenty centimeters by deciphering aerial photographs made by a UAV from an altitude equal to fifty meters. The total number of larches was equal to 88608, forming the following distribution row across the abovementioned intervals: 16980, 51740, and 19889 trees. The results demonstrate that two processes can be observed in the course of recent decades: first is the intensive forestation of previously barren or lightly wooded fragments of the study area located within the patches of wood, woodlands, and sparse stand, and second, expansion into mountain tundra. The current expansion of the Siberian Larch in the region replaced the depopulation process that occurred in the course of the Little Ice Age from the late 13ᵗʰ to the end of the 20ᵗʰ century. Using data from field measurements of Siberian larch specimen biometric parameters (including height, diameter at root collar and at 1.3 meters, and maximum projection of the crown in two orthogonal directions) and data on tree ages obtained at nine circular test sites, authors developed a model for artificial neural network including two layers with three and two neurons, respectively. The model allows quantitative assessment of a specimen's age based on height and maximum crone projection values. Tree height and crown diameters can be quantitatively assessed using data from aerial photographs and lidar scans. The resulting model can be used to assess the age of all Siberian larch trees. The proposed approach, after validation, can be applied to assessing the age of other tree species growing near the upper tree boundaries in other mountainous regions. This research was collaboratively funded by the Russian Ministry for Science and Education (project No. FEUG-2023-0002) and Russian Science Foundation (project No. 24-24-00235) in the field of data modeling on the basis of artificial neural network.

Keywords: treeline, dynamic, climate, modeling

Procedia PDF Downloads 89
488 Dynamic of an Invasive Insect Gut Microbiome When Facing to Abiotic Stress

Authors: Judith Mogouong, Philippe Constant, Robert Lavallee, Claude Guertin

Abstract:

The emerald ash borer (EAB) is an exotic wood borer insect native from China, which is associated with important environmental and economic damages in North America. Beetles are known to be vectors of microbial communities related to their adaptive capacities. It is now established that environmental stress factors may induce physiological events on the host trees, such as phytochemical changes. Consequently, that may affect the establishment comportment of herbivorous insect. Considering the number of insects collected on ash trees (insects’ density) as an abiotic factor related to stress damage, the aim of our study was to explore the dynamic of EAB gut microbial community genome (microbiome) when facing that factor and to monitor its diversity. Insects were trapped using specific green Lindgren© traps. A gradient of the captured insect population along the St. Lawrence River was used to create three levels of insects’ density (low, intermediate, and high). After dissection, total DNA extracted from insect guts of each level has been sent for amplicon sequencing of bacterial 16S rRNA gene and fungal ITS2 region. The composition of microbial communities among sample appeared largely diversified with the Simpson index significantly different across the three levels of density for bacteria. Add to that; bacteria were represented by seven phyla and twelve classes, whereas fungi were represented by two phyla and seven known classes. Using principal coordinate analysis (PCoA) based on Bray Curtis distances of 16S rRNA sequences, we observed a significant variation between the structure of the bacterial communities depending on insects’ density. Moreover, the analysis showed significant correlations between some bacterial taxa and the three classes of insects’ density. This study is the first to present a complete overview of the bacterial and fungal communities associated with the gut of EAB base on culture-independent methods, and to correlate those communities with a potential stress factor of the host trees.

Keywords: gut microbiome, DNA, 16S rRNA sequences, emerald ash borer

Procedia PDF Downloads 406
487 Walmart Sales Forecasting using Machine Learning in Python

Authors: Niyati Sharma, Om Anand, Sanjeev Kumar Prasad

Abstract:

Assuming future sale value for any of the organizations is one of the major essential characteristics of tactical development. Walmart Sales Forecasting is the finest illustration to work with as a beginner; subsequently, it has the major retail data set. Walmart uses this sales estimate problem for hiring purposes also. We would like to analyzing how the internal and external effects of one of the largest companies in the US can walk out their Weekly Sales in the future. Demand forecasting is the planned prerequisite of products or services in the imminent on the basis of present and previous data and different stages of the market. Since all associations is facing the anonymous future and we do not distinguish in the future good demand. Hence, through exploring former statistics and recent market statistics, we envisage the forthcoming claim and building of individual goods, which are extra challenging in the near future. As a result of this, we are producing the required products in pursuance of the petition of the souk in advance. We will be using several machine learning models to test the exactness and then lastly, train the whole data by Using linear regression and fitting the training data into it. Accuracy is 8.88%. The extra trees regression model gives the best accuracy of 97.15%.

Keywords: random forest algorithm, linear regression algorithm, extra trees classifier, mean absolute error

Procedia PDF Downloads 151
486 The Role of Disturbed Dry Afromontane Forest of Ethiopia for Biodiversity Conservation and Carbon Storage

Authors: Mindaye Teshome, Nesibu Yahya, Carlos Moreira Miquelino Eleto Torres, Pedro Manuel Villaa, Mehari Alebachew

Abstract:

Arbagugu forest is one of the remnant dry Afromontane forests under severe anthropogenic disturbances in central Ethiopia. Despite this fact, up-to-date information is lacking about the status of the forest and its role in climate change mitigation. In this study, we evaluated the woody species composition, structure, biomass, and carbon stock in this forest. We employed a systematic random sampling design and established fifty-three sample plots (20 × 100 m) to collect the vegetation data. A total of 37 woody species belonging to 25 families were recorded. The density of seedlings, saplings, and matured trees were 1174, 101, and 84 stems ha-1, respectively. The total basal area of trees with DBH (diameter at breast height) ≥ 2 cm was 21.3 m2 ha-1. The characteristic trees of dry Afromontane Forest such as Podocarpus falcatus, Juniperus procera, and Olea europaea subsp. cuspidata exhibited a fair regeneration status. On the contrary, the least abundant species Lepidotrichilia volkensii, Canthium oligocarpum, Dovyalis verrucosa, Calpurnia aurea, and Maesa lanceolata exhibited good regeneration status. Some tree species such as Polyscias fulva, Schefflera abyssinica, Erythrina brucei, and Apodytes dimidiata lack regeneration. The total carbon stored in the forest ranged between 6.3 Mg C ha-1 and 835.6 Mg C ha-1. This value is equivalent to 639.6 Mg C ha-1. The forest had a very low number of woody species composition and diversity. The regeneration study also revealed that a significant number of tree species had unsatisfactory regeneration status. Besides, the forest had a lower carbon stock density compared with other dry Afromontane forests. This implies the urgent need for forest conservation and restoration activities by the local government, conservation practitioners, and other concerned bodies to maintain the forest and sustain the various ecosystem goods and services provided by the Arbagugu forest.

Keywords: aboveground biomass, forest regeneration, climate change, biodiversity conservation, restoration

Procedia PDF Downloads 113
485 A Critical Geography of Reforestation Program in Ghana

Authors: John Narh

Abstract:

There is high rate of deforestation in Ghana due to agricultural expansion, illegal mining and illegal logging. While it is attempting to address the illegalities, Ghana has also initiated a reforestation program known as the Modified Taungya System (MTS). Within the MTS framework, farmers are allocated degraded forestland and provided with tree seedlings to practice agroforestry until the trees form canopy. Yet, the political, ecological and economic models that inform the selection of tree species, the motivations of participating farmers as well as the factors that accounts for differential access to the land and performance of farmers engaged in the program lie underexplored. Using a sequential explanatory mixed methods approach in five forest-fringe communities in the Eastern Region of Ghana, the study reveals that economic factors and Ghana’s commitment to international conventions on the environment underpin the selection of tree species for the MTS program. Social network and access to remittances play critical roles in having access to, and enhances poor farmers’ chances in the program respectively. Farmers are more motivated by the access to degraded forestland to cultivate food crops than having a share in the trees that they plant. As such, in communities where participating farmers are not informed about their benefit in the tree that they plant, the program is largely unsuccessful.

Keywords: translocality, deforestation, forest management, social network

Procedia PDF Downloads 99
484 Comparison of the Effectiveness of Tree Algorithms in Classification of Spongy Tissue Texture

Authors: Roza Dzierzak, Waldemar Wojcik, Piotr Kacejko

Abstract:

Analysis of the texture of medical images consists of determining the parameters and characteristics of the examined tissue. The main goal is to assign the analyzed area to one of two basic groups: as a healthy tissue or a tissue with pathological changes. The CT images of the thoracic lumbar spine from 15 healthy patients and 15 with confirmed osteoporosis were used for the analysis. As a result, 120 samples with dimensions of 50x50 pixels were obtained. The set of features has been obtained based on the histogram, gradient, run-length matrix, co-occurrence matrix, autoregressive model, and Haar wavelet. As a result of the image analysis, 290 descriptors of textural features were obtained. The dimension of the space of features was reduced by the use of three selection methods: Fisher coefficient (FC), mutual information (MI), minimization of the classification error probability and average correlation coefficients between the chosen features minimization of classification error probability (POE) and average correlation coefficients (ACC). Each of them returned ten features occupying the initial place in the ranking devised according to its own coefficient. As a result of the Fisher coefficient and mutual information selections, the same features arranged in a different order were obtained. In both rankings, the 50% percentile (Perc.50%) was found in the first place. The next selected features come from the co-occurrence matrix. The sets of features selected in the selection process were evaluated using six classification tree methods. These were: decision stump (DS), Hoeffding tree (HT), logistic model trees (LMT), random forest (RF), random tree (RT) and reduced error pruning tree (REPT). In order to assess the accuracy of classifiers, the following parameters were used: overall classification accuracy (ACC), true positive rate (TPR, classification sensitivity), true negative rate (TNR, classification specificity), positive predictive value (PPV) and negative predictive value (NPV). Taking into account the classification results, it should be stated that the best results were obtained for the Hoeffding tree and logistic model trees classifiers, using the set of features selected by the POE + ACC method. In the case of the Hoeffding tree classifier, the highest values of three parameters were obtained: ACC = 90%, TPR = 93.3% and PPV = 93.3%. Additionally, the values of the other two parameters, i.e., TNR = 86.7% and NPV = 86.6% were close to the maximum values obtained for the LMT classifier. In the case of logistic model trees classifier, the same ACC value was obtained ACC=90% and the highest values for TNR=88.3% and NPV= 88.3%. The values of the other two parameters remained at a level close to the highest TPR = 91.7% and PPV = 91.6%. The results obtained in the experiment show that the use of classification trees is an effective method of classification of texture features. This allows identifying the conditions of the spongy tissue for healthy cases and those with the porosis.

Keywords: classification, feature selection, texture analysis, tree algorithms

Procedia PDF Downloads 182
483 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 205
482 Modelling and Management of Vegetal Pest Based On Case of Xylella Fastidiosa in Alicante

Authors: Maria Teresa Signes Pont, Jose Juan Cortes Plana

Abstract:

Our proposal provides suitable modelling to the spread of plant pest and particularly to the propagation of Xylella fastidiosa in the almond trees. We compared the impact of temperature and humidity on the propagation of Xylella fastidiosa in various subspecies. Comparison between Balearic Islands and Alicante (Spain). Most sharpshooter and spittlebug species showed peaks in population density during the month of higher mean temperature and relative humidity (April-October), except for the splittlebug Clastoptera sp.1, whose adult population peaked from September-October (late summer and early autumn). The critical season is from when they hatch from the eggs until they are in the pre-reproductive season (January -April) to expand. We focused on winters in the egg state, which normally hatches in early March. The nymphs secrete a foam (mucilage) in which they live and that protects them from natural enemies of temperature changes and prevents dry as long as the humidity is above 75%. The interaction between the life cycles of vectors and vegetation influences the food preferences of vectors and is responsible for the general seasonal shift of the population from vegetation to trees and vice versa, In addition to the temperature maps, we have observed humidity as it affects the spread of the pest Xylella fastidiosa (Xf).

Keywords: xylella fastidiosa, almod tree, temperature, humidity, environmental model

Procedia PDF Downloads 178
481 Wood Diversity and Carbon Stock in Evergreen Forests in Cameroon: Case of the Ngambe-Ndom-Nyanon Communal Forest

Authors: Maffo Maffo Nicole Liliane, Mounmemi Kpoumie Hubert, Libalah Moses, Ouandji Angele, Zapfack Louis

Abstract:

Forest degradation causes biodiversity and carbon loss and thus indirectly contributes to climate change. In order to assess the contribution of forests to climate change mitigation, the present study was conducted in the Ngambe-Ndom-Nyanon Communal Forest with the main objective of assessing the floristic diversity and estimating the carbon stock in the different reservoirs of the said forest. Nine plots of 2000 m² each were installed in 3 TOSs of the forest (young secondary forests, gallery forests and fallow lands) with a total area of 18,000 m² or 1,8 ha. All trees with a Diameter at Breast Height (DBH) ≥ 5 cm were inventoried at 1.30 m from the ground in each plot. Species richness, floristic diversity indices, and structural parameters were studied. 1542 trees divided into 162 species, 122 genera and 44 families were identified. The most important families were listed: Myristicaceae (30.22%), Apocynaceae (25.20%), Fabaceae (24.41%), Euphorbiaceae (22.91%) and Phyllanthaceae (20.23%). The richest genera are: Cola, Macaranga, Oncoba (4 species each); the genera Diospyros, Trichilia, Vitex and Zanthoxylum (3 species each). The ecologically important species within the forest studied are: Funtumia africana (26.14%), Coelocaryon preussii (18.46%), Pycnanthus angolensis (15.57%), Tabernaemontana crassa (14.85%) and Olax subscorpioidea (13.04%). Assessment of carbon stocks in the six forest reservoirs studied (living trees and roots, understorey, dead wood, litter and rootlets) shows that they vary according to the land-use types. It is 119.41 t.C.ha-¹ in gallery forest, 115.2 t.C.ha-¹ in young secondary forest and 90.56 t.C.ha-¹ in fallow. The Wilcoxon statistical test shows that the carbon in the young secondary forest is identical to that in the fallow, which is identical to the carbon in the gallery forest. At the individual species level, the largest diameter class [25-35[ sequesters the most carbon (232.94 tC/ha). This work shows that the quantity of carbon sequestered by a biotope is a function of the age of the stand.

Keywords: floristic diversity, carbon stocks, evergreen forests, communal forest, Ngambé-Ndom-Nyanon

Procedia PDF Downloads 57
480 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.

Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis

Abstract:

Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.

Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8

Procedia PDF Downloads 117
479 Assessing the Channel Design of the Eco-Friendly ‘Falaj’ Water System in Meeting the Optimal Water Demand: A Case Study of Falaj Al-Khatmain, Sultanate of Oman

Authors: Omer Al-Kaabi, Ahmed Nasr, Abdullah Al-Ghafri, Mohammed Abdelfattah

Abstract:

The Falaj system, derived from natural water sources, is a man-made canal system designed to supply communities of farmers with water for domestic and agricultural purposes. For thousands of years, Falaj has served communities by harnessing the force of gravity; it persists as a vital water management system in numerous regions across the Sultanate of Oman. Remarkably, predates the establishment of many fundamental hydraulic principles used today. Al-Khatmain Falaj, with its accessibility and historical significance spanning over 2000 years, was chosen as the focal point of this study. The research aimed to investigate the efficiency of Al-Khatmain Falaj in meeting specific water demands. The HEC-RAS model was utilized to visualize water flow dynamics within the Falaj channels, accompanied by graphical representations of pertinent variables. The application of HEC-RAS helped to measure different water flow scenarios within the channel, enabling a clear comparison with the demand area catchment. The cultivated land of Al-Khatmain is 723,124 m² and consists of 16,873 palm trees representing 91% of the total area and the remaining 9% is mixed types of trees counted 3,920 trees. The study revealed a total demand of 8,244 m³ is required to irrigate the cultivated land. Through rigorous analysis, the study has proven that the Falaj system in Al-Khatmain operates with high efficiency, as the average annual water supply is 9676.8 m3/day. Additionally, the channel designed at 0.6m width x 0.3m height efficiently holds the optimal water supply, with an average flow depth of 0.21m. Also, the system includes an overflow drainage channel to mitigate floods and prevent crop damage based on seasonal requirements. This research holds promise for examining diverse hydrological conditions and devising effective strategies to manage scenarios of both high and low flow rates.

Keywords: Al-Khatmain, sustainability, Falaj, HEC-RAS, water management system

Procedia PDF Downloads 49
478 Effect of Heat Stress on the Physiology of the Cork Oak

Authors: J. Zekri, N. Souilah, W. Abdelaziz, D. Alatou

Abstract:

Our study shall focus on the ability of trees cork oak that showed vis-à-vis sensitivity to climate change, including late spring frosts. The combination of these factors resulted in damage alarmed, therefore forest ecosystems weakened trees that can affect their ability to support other abiotic and biotic stresses, For this we tested its tolerance to thermal variations and cold weather conditions by estimating some stress markers (quantification of proteins, RNA, soluble sugars) that are quantified to evaluate the cold tolerance of seedlings. Sowing of cork oak (Quercus suber L.) is grown in controlled conditions at 25° C ± 2° C in long days 16h. These seedlings are transferred at low temperatures between 5° C and -6° C for a period of 3 hours. Biochemical analyzes were performed in the various organs of the cork oak seedlings. Cool temperatures induced a significant accumulation of proline in different organs of seedlings and the optimum concentrations were observed in the roots with very high concentrations (4 times larger than those of the control). The accumulation of soluble sugars is significantly in stems and roots at 0° C. Protein concentrations are very high in leaves of both growth and high waves in rod at -4° C to -2° C. Tolerance cork oak seems to be at the thermal limit of -2°C. The concentration of these metabolites in the various organs showed the ability oak cork hardening during the winter.

Keywords: climate change, thermal change, semi-aride, biochemical markers, heat stress

Procedia PDF Downloads 251