Search results for: data making better
28475 A Study on Big Data Analytics, Applications and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, Healthcare, and business intelligence contain voluminous and incremental data, which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organization's decision-making strategy can be enhanced using big data analytics and applying different machine learning techniques and statistical tools on such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates on various frameworks in the process of Analysis using different machine-learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 8328474 A Study on Big Data Analytics, Applications, and Challenges
Authors: Chhavi Rana
Abstract:
The aim of the paper is to highlight the existing development in the field of big data analytics. Applications like bioinformatics, smart infrastructure projects, healthcare, and business intelligence contain voluminous and incremental data which is hard to organise and analyse and can be dealt with using the framework and model in this field of study. An organisation decision-making strategy can be enhanced by using big data analytics and applying different machine learning techniques and statistical tools to such complex data sets that will consequently make better things for society. This paper reviews the current state of the art in this field of study as well as different application domains of big data analytics. It also elaborates various frameworks in the process of analysis using different machine learning techniques. Finally, the paper concludes by stating different challenges and issues raised in existing research.Keywords: big data, big data analytics, machine learning, review
Procedia PDF Downloads 9528473 Building Data Infrastructure for Public Use and Informed Decision Making in Developing Countries-Nigeria
Authors: Busayo Fashoto, Abdulhakeem Shaibu, Justice Agbadu, Samuel Aiyeoribe
Abstract:
Data has gone from just rows and columns to being an infrastructure itself. The traditional medium of data infrastructure has been managed by individuals in different industries and saved on personal work tools; one of such is the laptop. This hinders data sharing and Sustainable Development Goal (SDG) 9 for infrastructure sustainability across all countries and regions. However, there has been a constant demand for data across different agencies and ministries by investors and decision-makers. The rapid development and adoption of open-source technologies that promote the collection and processing of data in new ways and in ever-increasing volumes are creating new data infrastructure in sectors such as lands and health, among others. This paper examines the process of developing data infrastructure and, by extension, a data portal to provide baseline data for sustainable development and decision making in Nigeria. This paper employs the FAIR principle (Findable, Accessible, Interoperable, and Reusable) of data management using open-source technology tools to develop data portals for public use. eHealth Africa, an organization that uses technology to drive public health interventions in Nigeria, developed a data portal which is a typical data infrastructure that serves as a repository for various datasets on administrative boundaries, points of interest, settlements, social infrastructure, amenities, and others. This portal makes it possible for users to have access to datasets of interest at any point in time at no cost. A skeletal infrastructure of this data portal encompasses the use of open-source technology such as Postgres database, GeoServer, GeoNetwork, and CKan. These tools made the infrastructure sustainable, thus promoting the achievement of SDG 9 (Industries, Innovation, and Infrastructure). As of 6th August 2021, a wider cross-section of 8192 users had been created, 2262 datasets had been downloaded, and 817 maps had been created from the platform. This paper shows the use of rapid development and adoption of technologies that facilitates data collection, processing, and publishing in new ways and in ever-increasing volumes. In addition, the paper is explicit on new data infrastructure in sectors such as health, social amenities, and agriculture. Furthermore, this paper reveals the importance of cross-sectional data infrastructures for planning and decision making, which in turn can form a central data repository for sustainable development across developing countries.Keywords: data portal, data infrastructure, open source, sustainability
Procedia PDF Downloads 9828472 Development of a System for Fitting Clothes and Accessories Using Augmented Reality
Authors: Dinmukhamed T., Vassiliy S.
Abstract:
This article suggests the idea of fitting clothes and accessories based on augmented reality. A logical data model has been developed, taking into account the decision-making module (colors, style, type, material, popularity, etc.) based on personal data (age, gender, weight, height, leg size, hoist length, geolocation, photogrammetry, number of purchases of certain types of clothing, etc.) and statistical data of the purchase history (number of items, price, size, color, style, etc.). Also, in order to provide information to the user, it is planned to develop an augmented reality system using a QR code. This system of selection and fitting of clothing and accessories based on augmented reality will be used in stores to reduce the time for the buyer to make a decision on the choice of clothes.Keywords: augmented reality, online store, decision-making module, like QR code, clothing store, queue
Procedia PDF Downloads 15728471 Evidence Theory Based Emergency Multi-Attribute Group Decision-Making: Application in Facility Location Problem
Authors: Bidzina Matsaberidze
Abstract:
It is known that, in emergency situations, multi-attribute group decision-making (MAGDM) models are characterized by insufficient objective data and a lack of time to respond to the task. Evidence theory is an effective tool for describing such incomplete information in decision-making models when the expert and his knowledge are involved in the estimations of the MAGDM parameters. We consider an emergency decision-making model, where expert assessments on humanitarian aid from distribution centers (HADC) are represented in q-rung ortho-pair fuzzy numbers, and the data structure is described within the data body theory. Based on focal probability construction and experts’ evaluations, an objective function-distribution centers’ selection ranking index is constructed. Our approach for solving the constructed bicriteria partitioning problem consists of two phases. In the first phase, based on the covering’s matrix, we generate a matrix, the columns of which allow us to find all possible partitionings of the HADCs with the service centers. Some constraints are also taken into consideration while generating the matrix. In the second phase, based on the matrix and using our exact algorithm, we find the partitionings -allocations of the HADCs to the centers- which correspond to the Pareto-optimal solutions. For an illustration of the obtained results, a numerical example is given for the facility location-selection problem.Keywords: emergency MAGDM, q-rung orthopair fuzzy sets, evidence theory, HADC, facility location problem, multi-objective combinatorial optimization problem, Pareto-optimal solutions
Procedia PDF Downloads 9228470 Using Risk Management Indicators in Decision Tree Analysis
Authors: Adel Ali Elshaibani
Abstract:
Risk management indicators augment the reporting infrastructure, particularly for the board and senior management, to identify, monitor, and manage risks. This enhancement facilitates improved decision-making throughout the banking organization. Decision tree analysis is a tool that visually outlines potential outcomes, costs, and consequences of complex decisions. It is particularly beneficial for analyzing quantitative data and making decisions based on numerical values. By calculating the expected value of each outcome, decision tree analysis can help assess the best course of action. In the context of banking, decision tree analysis can assist lenders in evaluating a customer’s creditworthiness, thereby preventing losses. However, applying these tools in developing countries may face several limitations, such as data availability, lack of technological infrastructure and resources, lack of skilled professionals, cultural factors, and cost. Moreover, decision trees can create overly complex models that do not generalize well to new data, known as overfitting. They can also be sensitive to small changes in the data, which can result in different tree structures and can become computationally expensive when dealing with large datasets. In conclusion, while risk management indicators and decision tree analysis are beneficial for decision-making in banks, their effectiveness is contingent upon how they are implemented and utilized by the board of directors, especially in the context of developing countries. It’s important to consider these limitations when planning to implement these tools in developing countries.Keywords: risk management indicators, decision tree analysis, developing countries, board of directors, bank performance, risk management strategy, banking institutions
Procedia PDF Downloads 6028469 Implications of Meteorological Parameters in Decision Making for Public Protective Actions during a Nuclear Emergency
Authors: M. Hussaina, K. Mahboobb, S. Z. Ilyasa, S. Shaheena
Abstract:
Plume dispersion modeling is a computational procedure to establish a relationship between emissions, meteorology, atmospheric concentrations, deposition and other factors. The emission characteristics (stack height, stack diameter, release velocity, heat contents, chemical and physical properties of the gases/particle released etc.), terrain (surface roughness, local topography, nearby buildings) and meteorology (wind speed, stability, mixing height, etc.) are required for the modeling of the plume dispersion and estimation of ground and air concentration. During the early phase of Fukushima accident, plume dispersion modeling and decisions were taken for the implementation of protective measures. A difference in estimated results and decisions made by different countries for taking protective actions created a concern in local and international community regarding the exact identification of the safe zone. The current study is focused to highlight the importance of accurate and exact weather data availability, scientific approach for decision making for taking urgent protective actions, compatible and harmonized approach for plume dispersion modeling during a nuclear emergency. As a case study, the influence of meteorological data on plume dispersion modeling and decision-making process has been performed.Keywords: decision making process, radiation doses, nuclear emergency, meteorological implications
Procedia PDF Downloads 18228468 Integrating of Multi-Criteria Decision Making and Spatial Data Warehouse in Geographic Information System
Authors: Zohra Mekranfar, Ahmed Saidi, Abdellah Mebrek
Abstract:
This work aims to develop multi-criteria decision making (MCDM) and spatial data warehouse (SDW) methods, which will be integrated into a GIS according to a ‘GIS dominant’ approach. The GIS operating tools will be operational to operate the SDW. The MCDM methods can provide many solutions to a set of problems with various and multiple criteria. When the problem is so complex, integrating spatial dimension, it makes sense to combine the MCDM process with other approaches like data mining, ascending analyses, we present in this paper an experiment showing a geo-decisional methodology of SWD construction, On-line analytical processing (OLAP) technology which combines both basic multidimensional analysis and the concepts of data mining provides powerful tools to highlight inductions and information not obvious by traditional tools. However, these OLAP tools become more complex in the presence of the spatial dimension. The integration of OLAP with a GIS is the future geographic and spatial information solution. GIS offers advanced functions for the acquisition, storage, analysis, and display of geographic information. However, their effectiveness for complex spatial analysis is questionable due to their determinism and their decisional rigor. A prerequisite for the implementation of any analysis or exploration of spatial data requires the construction and structuring of a spatial data warehouse (SDW). This SDW must be easily usable by the GIS and by the tools offered by an OLAP system.Keywords: data warehouse, GIS, MCDM, SOLAP
Procedia PDF Downloads 17828467 Setting Ground for Improvement of Knowledge Managament System in the Educational Organization
Authors: Mladen Djuric, Ivan Janicijevic, Sasa Lazarevic
Abstract:
One of the organizational issues is how to develop and shape decision making and knowledge management systems which will continually avoid traps of both paralyses by analyses“ and extinction by instinct“, the concepts that are a kind of tolerant limits anti-patterns which define what we can call decision making and knowledge management patterns control zone. This paper discusses potentials for development of a core base for recognizing, capturing, and analyzing anti-patterns in the educational organization, thus creating a space for improving decision making and knowledge management processes in education.Keywords: anti-patterns, decision making, education, knowledge management
Procedia PDF Downloads 63228466 Enabling Self-Care and Shared Decision Making for People Living with Dementia
Authors: Jonathan Turner, Julie Doyle, Laura O’Philbin, Dympna O’Sullivan
Abstract:
People living with dementia should be at the centre of decision-making regarding goals for daily living. These goals include basic activities (dressing, hygiene, and mobility), advanced activities (finances, transportation, and shopping), and meaningful activities that promote well-being (pastimes and intellectual pursuits). However, there is limited involvement of people living with dementia in the design of technology to support their goals. A project is described that is co-designing intelligent computer-based support for, and with, people affected by dementia and their carers. The technology will support self-management, empower participation in shared decision-making with carers and help people living with dementia remain healthy and independent in their homes for longer. It includes information from the patient’s care plan, which documents medications, contacts, and the patient's wishes on end-of-life care. Importantly for this work, the plan can outline activities that should be maintained or worked towards, such as exercise or social contact. The authors discuss how to integrate care goal information from such a care plan with data collected from passive sensors in the patient’s home in order to deliver individualized planning and interventions for persons with dementia. A number of scientific challenges are addressed: First, to co-design with dementia patients and their carers computerized support for shared decision-making about their care while allowing the patient to share the care plan. Second, to develop a new and open monitoring framework with which to configure sensor technologies to collect data about whether goals and actions specified for a person in their care plan are being achieved. This is developed top-down by associating care quality types and metrics elicited from the co-design activities with types of data that can be collected within the home, from passive and active sensors, and from the patient’s feedback collected through a simple co-designed interface. These activities and data will be mapped to appropriate sensors and technological infrastructure with which to collect the data. Third, the application of machine learning models to analyze data collected via the sensing devices in order to investigate whether and to what extent activities outlined via the care plan are being achieved. The models will capture longitudinal data to track disease progression over time; as the disease progresses and captured data show that activities outlined in the care plan are not being achieved, the care plan may recommend alternative activities. Disease progression may also require care changes, and a data-driven approach can capture changes in a condition more quickly and allow care plans to evolve and be updated.Keywords: care goals, decision-making, dementia, self-care, sensors
Procedia PDF Downloads 17028465 Fuzzy Multi-Criteria Decision-Making Based on Ignatian Discernment Process
Authors: Pathinathan Theresanathan, Ajay Minj
Abstract:
Ignatian Discernment Process (IDP) is an intense decision-making tool to decide on life-issues. Decisions are influenced by various factors outside of the decision maker and inclination within. This paper develops IDP in the context of Fuzzy Multi-criteria Decision Making (FMCDM) process. Extended VIKOR method is a decision-making method which encompasses even conflict situations and accommodates weightage to various issues. Various aspects of IDP, namely three ways of decision making and tactics of inner desires, are observed, analyzed and articulated within the frame work of fuzzy rules. The decision-making situations are broadly categorized into two types. The issues outside of the decision maker influence the person. The inner feeling also plays vital role in coming to a conclusion. IDP integrates both the categories using Extended VIKOR method. Case studies are carried out and analyzed with FMCDM process. Finally, IDP is verified with an illustrative case study and results are interpreted. A confused person who could not come to a conclusion is able to take decision on a concrete way of life through IDP. The proposed IDP model recommends an integrated and committed approach to value-based decision making.Keywords: AHP, FMCDM, IDP, ignatian discernment, MCDM, VIKOR
Procedia PDF Downloads 26028464 Understanding the Importance of Participation in the City Planning Process and Its Influencing Factors
Authors: Louis Nwachi
Abstract:
Urban planning systems in most countries still rely on expert-driven, top-down technocratic plan-making processes rather than a public and people-led process. This paper set out to evaluate the need for public participation in the plan-making process and to highlight the factors that affect public participation in the plan-making process. In doing this, it adopted a qualitative approach based on document review and interviews taken from real-world phenomena. A case study strategy using the Metropolitan Area of Abuja, the capital of Nigeria, as the study sample was used in carrying out the research. The research finds that participation is an important tool in the plan-making process and that public engagement in the process contributes to the identification of key urban issues that are unique to the specific local areas, thereby contributing to the establishment of priorities and, in turn, to the mobilization of resources to meet the identified needs. It also finds that the development of a participation model by city authorities encourages public engagement and helps to develop trust between those in authority and the different key stakeholder groups involved in the plan-making process.Keywords: plan-making, participation, urban planning, city
Procedia PDF Downloads 10128463 Mathematics Bridging Theory and Applications for a Data-Driven World
Authors: Zahid Ullah, Atlas Khan
Abstract:
In today's data-driven world, the role of mathematics in bridging the gap between theory and applications is becoming increasingly vital. This abstract highlights the significance of mathematics as a powerful tool for analyzing, interpreting, and extracting meaningful insights from vast amounts of data. By integrating mathematical principles with real-world applications, researchers can unlock the full potential of data-driven decision-making processes. This abstract delves into the various ways mathematics acts as a bridge connecting theoretical frameworks to practical applications. It explores the utilization of mathematical models, algorithms, and statistical techniques to uncover hidden patterns, trends, and correlations within complex datasets. Furthermore, it investigates the role of mathematics in enhancing predictive modeling, optimization, and risk assessment methodologies for improved decision-making in diverse fields such as finance, healthcare, engineering, and social sciences. The abstract also emphasizes the need for interdisciplinary collaboration between mathematicians, statisticians, computer scientists, and domain experts to tackle the challenges posed by the data-driven landscape. By fostering synergies between these disciplines, novel approaches can be developed to address complex problems and make data-driven insights accessible and actionable. Moreover, this abstract underscores the importance of robust mathematical foundations for ensuring the reliability and validity of data analysis. Rigorous mathematical frameworks not only provide a solid basis for understanding and interpreting results but also contribute to the development of innovative methodologies and techniques. In summary, this abstract advocates for the pivotal role of mathematics in bridging theory and applications in a data-driven world. By harnessing mathematical principles, researchers can unlock the transformative potential of data analysis, paving the way for evidence-based decision-making, optimized processes, and innovative solutions to the challenges of our rapidly evolving society.Keywords: mathematics, bridging theory and applications, data-driven world, mathematical models
Procedia PDF Downloads 7528462 Business Intelligence Proposal to Improve Decision Making in Companies Using Google Cloud Platform and Microsoft Power BI
Authors: Joel Vilca Tarazona, Igor Aguilar-Alonso
Abstract:
The problem of this research related to business intelligence is the lack of a tool that supports automated and efficient financial analysis for decision-making and allows an evaluation of the financial statements, which is why the availability of the information is difficult. Relevant information to managers and users as an instrument in decision making financial, and administrative. For them, a business intelligence solution is proposed that will reduce information access time, personnel costs, and process automation, proposing a 4-layer architecture based on what was reviewed by the research methodology.Keywords: decision making, business intelligence, Google Cloud, Microsoft Power BI
Procedia PDF Downloads 10028461 Genetic Testing and Research in South Africa: The Sharing of Data Across Borders
Authors: Amy Gooden, Meshandren Naidoo
Abstract:
Genetic research is not confined to a particular jurisdiction. Using direct-to-consumer genetic testing (DTC-GT) as an example, this research assesses the status of data sharing into and out of South Africa (SA). While SA laws cover the sending of genetic data out of SA, prohibiting such transfer unless a legal ground exists, the position where genetic data comes into the country depends on the laws of the country from where it is sent – making the legal position less clear.Keywords: cross-border, data, genetic testing, law, regulation, research, sharing, South Africa
Procedia PDF Downloads 16228460 Generation-Based Travel Decision Analysis in the Post-Pandemic Era
Authors: Hsuan Yu Lai, Hsuan Hsuan Chang
Abstract:
The consumer decision process steps through problems by weighing evidence, examining alternatives, and choosing a decision path. Currently, the COVID 19 made the tourism industry encounter a huge challenge and suffer the biggest amount of economic loss. It would be very important to reexamine the decision-making process model, especially after the pandemic, and consider the differences among different generations. The tourism industry has been significantly impacted by the global outbreak of COVID-19, but as the pandemic subsides, the sector is recovering. This study addresses the scarcity of research on travel decision-making patterns among generations in Taiwan. Specifically targeting individuals who frequently traveled abroad before the pandemic, the study explores differences in decision-making at different stages post-outbreak. So this study investigates differences in travel decision-making among individuals from different generations during/after the COVID-19 pandemic and examines the moderating effects of social media usage and individuals' perception of health risks. The study hypotheses are “there are significant differences in the decision-making process including travel motivation, information searching preferences, and criteria for decision-making” and that social-media usage and health-risk perception would moderate the results of the previous study hypothesis. The X, Y, and Z generations are defined and categorized based on a literature review. The survey collected data including their social-economic background, travel behaviors, motivations, considerations for destinations, travel information searching preferences, and decision-making criteria before/after the pandemic based on the reviews of previous studies. Data from 656 online questionnaires were collected between January to May 2023 and from Taiwanese travel consumers who used to travel at least one time abroad before Covid-19. SPSS is used to analyze the data with One-Way ANOVA and Two-Way ANOVA. The analysis includes demand perception, information gathering, alternative comparison, purchase behavior, and post-travel experience sharing. Social media influence and perception of health risks are examined as moderating factors. The findings show that before the pandemic, the Y Generation preferred natural environments, while the X Generation favored historical and cultural sites compared to the Z Generation. However, after the outbreak, the Z Generation displayed a significant preference for entertainment activities. This study contributes to understanding changes in travel decision-making patterns following COVID-19 and the influence of social media and health risks. The findings have practical implications for the tourism industry.Keywords: consumer decision-making, generation study, health risk perception, post-pandemic era, social media
Procedia PDF Downloads 6028459 Decision Support System in Air Pollution Using Data Mining
Authors: E. Fathallahi Aghdam, V. Hosseini
Abstract:
Environmental pollution is not limited to a specific region or country; that is why sustainable development, as a necessary process for improvement, pays attention to issues such as destruction of natural resources, degradation of biological system, global pollution, and climate change in the world, especially in the developing countries. According to the World Health Organization, as a developing city, Tehran (capital of Iran) is one of the most polluted cities in the world in terms of air pollution. In this study, three pollutants including particulate matter less than 10 microns, nitrogen oxides, and sulfur dioxide were evaluated in Tehran using data mining techniques and through Crisp approach. The data from 21 air pollution measuring stations in different areas of Tehran were collected from 1999 to 2013. Commercial softwares Clementine was selected for this study. Tehran was divided into distinct clusters in terms of the mentioned pollutants using the software. As a data mining technique, clustering is usually used as a prologue for other analyses, therefore, the similarity of clusters was evaluated in this study through analyzing local conditions, traffic behavior, and industrial activities. In fact, the results of this research can support decision-making system, help managers improve the performance and decision making, and assist in urban studies.Keywords: data mining, clustering, air pollution, crisp approach
Procedia PDF Downloads 42828458 The Quotation-Based Algorithm for Distributed Decision Making
Authors: Gennady P. Ginkul, Sergey Yu. Soloviov
Abstract:
The article proposes to use so-called "quotation-based algorithm" for simulation of decision making process in distributed expert systems and multi-agent systems. The idea was adopted from the techniques for group decision-making. It is based on the assumption that one expert system to perform its logical inference may use rules from another expert system. The application of the algorithm was demonstrated on the example in which the consolidated decision is the decision that requires minimal quotation.Keywords: backward chaining inference, distributed expert systems, group decision making, multi-agent systems
Procedia PDF Downloads 37528457 Employing Operations Research at Universities to Build Management Systems
Authors: Abdallah A. Hlayel
Abstract:
Operations research science (OR) deals with good success in developing and applying scientific methods for problem solving and decision-making. However, by using OR techniques, we can enhance the use of computer decision support systems to achieve optimal management for institutions. OR applies comprehensive analysis including all factors that affect on it and builds mathematical modeling to solve business or organizational problems. In addition, it improves decision-making and uses available resources efficiently. The adoption of OR by universities would definitely contributes to the development and enhancement of the performance of OR techniques. This paper provides an understanding of the structures, approaches and models of OR in problem solving and decision-making.Keywords: best candidates' method, decision making, decision support system, operations research
Procedia PDF Downloads 44528456 Open Data for e-Governance: Case Study of Bangladesh
Authors: Sami Kabir, Sadek Hossain Khoka
Abstract:
Open Government Data (OGD) refers to all data produced by government which are accessible in reusable way by common people with access to Internet and at free of cost. In line with “Digital Bangladesh” vision of Bangladesh government, the concept of open data has been gaining momentum in the country. Opening all government data in digital and customizable format from single platform can enhance e-governance which will make government more transparent to the people. This paper presents a well-in-progress case study on OGD portal by Bangladesh Government in order to link decentralized data. The initiative is intended to facilitate e-service towards citizens through this one-stop web portal. The paper further discusses ways of collecting data in digital format from relevant agencies with a view to making it publicly available through this single point of access. Further, possible layout of this web portal is presented.Keywords: e-governance, one-stop web portal, open government data, reusable data, web of data
Procedia PDF Downloads 35528455 Identifying Critical Success Factors for Data Quality Management through a Delphi Study
Authors: Maria Paula Santos, Ana Lucas
Abstract:
Organizations support their operations and decision making on the data they have at their disposal, so the quality of these data is remarkably important and Data Quality (DQ) is currently a relevant issue, the literature being unanimous in pointing out that poor DQ can result in large costs for organizations. The literature review identified and described 24 Critical Success Factors (CSF) for Data Quality Management (DQM) that were presented to a panel of experts, who ordered them according to their degree of importance, using the Delphi method with the Q-sort technique, based on an online questionnaire. The study shows that the five most important CSF for DQM are: definition of appropriate policies and standards, control of inputs, definition of a strategic plan for DQ, organizational culture focused on quality of the data and obtaining top management commitment and support.Keywords: critical success factors, data quality, data quality management, Delphi, Q-Sort
Procedia PDF Downloads 21728454 Decision Making, Reward Processing and Response Selection
Authors: Benmansour Nassima, Benmansour Souheyla
Abstract:
The appropriate integration of reward processing and decision making provided by the environment is vital for behavioural success and individuals’ well being in everyday life. Functional neurological investigation has already provided an inclusive image on affective and emotional (motivational) processing in the healthy human brain and has recently focused its interest also on the assessment of brain function in anxious and depressed individuals. This article offers an overview on the theoretical approaches that relate emotion and decision-making, and spotlights investigation with anxious or depressed individuals to reveal how emotions can interfere with decision-making. This research aims at incorporating the emotional structure based on response and stimulation with a Bayesian approach to decision-making in terms of probability and value processing. It seeks to show how studies of individuals with emotional dysfunctions bear out that alterations of decision-making can be considered in terms of altered probability and value subtraction. The utmost objective is to critically determine if the probabilistic representation of belief affords could be a critical approach to scrutinize alterations in probability and value representation in subjective with anxiety and depression, and draw round the general implications of this approach.Keywords: decision-making, motivation, alteration, reward processing, response selection
Procedia PDF Downloads 47728453 A Framework on Data and Remote Sensing for Humanitarian Logistics
Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini
Abstract:
Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making
Procedia PDF Downloads 37928452 Triangular Hesitant Fuzzy TOPSIS Approach in Investment Projects Management
Authors: Irina Khutsishvili
Abstract:
The presented study develops a decision support methodology for multi-criteria group decision-making problem. The proposed methodology is based on the TOPSIS (Technique for Order Performance by Similarity to Ideal Solution) approach in the hesitant fuzzy environment. The main idea of decision-making problem is a selection of one best alternative or several ranking alternatives among a set of feasible alternatives. Typically, the process of decision-making is based on an evaluation of certain criteria. In many MCDM problems (such as medical diagnosis, project management, business and financial management, etc.), the process of decision-making involves experts' assessments. These assessments frequently are expressed in fuzzy numbers, confidence intervals, intuitionistic fuzzy values, hesitant fuzzy elements and so on. However, a more realistic approach is using linguistic expert assessments (linguistic variables). In the proposed methodology both the values and weights of the criteria take the form of linguistic variables, given by all decision makers. Then, these assessments are expressed in triangular fuzzy numbers. Consequently, proposed approach is based on triangular hesitant fuzzy TOPSIS decision-making model. Following the TOPSIS algorithm, first, the fuzzy positive ideal solution (FPIS) and the fuzzy negative-ideal solution (FNIS) are defined. Then the ranking of alternatives is performed in accordance with the proximity of their distances to the both FPIS and FNIS. Based on proposed approach the software package has been developed, which was used to rank investment projects in the real investment decision-making problem. The application and testing of the software were carried out based on the data provided by the ‘Bank of Georgia’.Keywords: fuzzy TOPSIS approach, investment project, linguistic variable, multi-criteria decision making, triangular hesitant fuzzy set
Procedia PDF Downloads 42928451 A Pedagogical Case Study on Consumer Decision Making Models: A Selection of Smart Phone Apps
Authors: Yong Bum Shin
Abstract:
This case focuses on Weighted additive difference, Conjunctive, Disjunctive, and Elimination by aspects methodologies in consumer decision-making models and the Simple additive weighting (SAW) approach in the multi-criteria decision-making (MCDM) area. Most decision-making models illustrate that the rank reversal phenomenon is unpreventable. This paper presents that rank reversal occurs in popular managerial methods such as Weighted Additive Difference (WAD), Conjunctive Method, Disjunctive Method, Elimination by Aspects (EBA) and MCDM methods as well as such as the Simple Additive Weighting (SAW) and finally Unified Commensurate Multiple (UCM) models which successfully addresses these rank reversal problems in most popular MCDM methods in decision-making area.Keywords: multiple criteria decision making, rank inconsistency, unified commensurate multiple, analytic hierarchy process
Procedia PDF Downloads 8128450 The Changes in Consumer Behavior and the Decision-making Process After Covid-19 in Greece
Authors: Markou Vasiliki, Serdaris Panagiotis
Abstract:
The consumer behavior and decision-making process of consumers is a process that is affected by the factor of uncertainty. The onslaught of the Covid 19 pandemic has changed the consumer decision-making process in many ways. This change can be seen both in the buying process (how and where they shop) but also in the types of goods and services they are looking for. In addition, due to the mainly economic uncertainty that came from this event, but also the effects on both society and the economy in general, new consumer behaviors were created. Traditional forms of shopping are no longer a primary choice, consumers have turned to digital channels such as e-commerce and social media to fulfill needs. The purpose of this particular article is to examine how much the consumer's decision-making process has been affected after the pandemic and if consumer behavior has changed. An online survey was conducted to examine the change in decision making. Essentially, the demographic factors that influence the decision-making process were examined, as well as the social and economic factors. The research is divided into two parts. The first part included a literature review of the research that has been carried out to identify the factors, and the second part where the empirical investigation was carried out using a questionnaire and was done electronically with the help of Google Forms. The questionnaire was divided into several sections. They included questions about consumer behavior, but mainly about how they make decisions today, whether those decisions have changed due to the pandemic, and whether those changes are permanent. Also, for decision-making, goods were divided into essential products, high-tech products, transactions with the state and others. Αbout 500 consumers aged between 18 and 75 participated in the research. The data was processed with both descriptive statistics and econometric models. The results showed that the consumer behavior and decision-making process has changed. Now consumers widely use the internet for shopping, consumer behaviors and consumer patterns have changed. Social and economic factors play an important role. Income, gender and other factors were found to be statistically significant. In addition, it is worth noting that the percentage who made purchases during the pandemic through the internet for the first time was remarkable and related to age. Essentially, the arrival of the pandemic caused uncertainty for individuals, mainly financial, and this affected the decision-making process. In addition, shopping through the internet is now the first choice, especially among young people, and it seems that it is about to become established.Keywords: consumer behavior, decision making, COVID-19, Greece, behavior change
Procedia PDF Downloads 4728449 The Aspect of the Human Bias in Decision Making within Quality Management Systems and LEAN Theory
Authors: Adriana Avila Zuniga Nordfjeld
Abstract:
This paper provides a literature review to document the state of the art with respect to handling 'human bias' in decision making within the established quality management systems (QMS) and LEAN theory, in the context of shipbuilding. Previous research shows that in shipbuilding there is a huge deviation from the planned man-hours under the project management to the actual man-hours used because of errors in planning and reworks caused by human bias in the information flows among others. This reduces the efficiency and increases operational costs. Thus, the research question is how QMS and LEAN handle biases. The findings show the gap in studying the integration of methods to handle human bias in decision making into QMS and lean, not only within shipbuilding but also in general. Theoretical and practical implications are discussed for researchers and practitioners in the areas of decision making QMS, LEAN, and future research is suggested.Keywords: human bias, decision making, LEAN shipbuilding, quality management systems
Procedia PDF Downloads 54728448 The Utilization of Big Data in Knowledge Management Creation
Authors: Daniel Brian Thompson, Subarmaniam Kannan
Abstract:
The huge weightage of knowledge in this world and within the repository of organizations has already reached immense capacity and is constantly increasing as time goes by. To accommodate these constraints, Big Data implementation and algorithms are utilized to obtain new or enhanced knowledge for decision-making. With the transition from data to knowledge provides the transformational changes which will provide tangible benefits to the individual implementing these practices. Today, various organization would derive knowledge from observations and intuitions where this information or data will be translated into best practices for knowledge acquisition, generation and sharing. Through the widespread usage of Big Data, the main intention is to provide information that has been cleaned and analyzed to nurture tangible insights for an organization to apply to their knowledge-creation practices based on facts and figures. The translation of data into knowledge will generate value for an organization to make decisive decisions to proceed with the transition of best practices. Without a strong foundation of knowledge and Big Data, businesses are not able to grow and be enhanced within the competitive environment.Keywords: big data, knowledge management, data driven, knowledge creation
Procedia PDF Downloads 11628447 The Attentional Focus Impact on the Decision Making in Three-Game Situations in Tennis
Authors: Marina Tsetseli, Eleni Zetou, Maria Michalopoulou, Nikos Vernadakis
Abstract:
Game performance, besides the accuracy and the quality skills execution, depends heavily on where the athletes will focus their attention while performing a skill. The purpose of the present study was to examine and compare the effect of internal and external focus of attention instructions on the decision making in tennis at players 8-9 years old (M=8.4, SD=0.49). The participants (N=40) were divided into two groups and followed an intervention training program that lasted 4 weeks; first group (N=20) under internal focus of attention instructions and the second group (N=20) under external focus of attention instructions. Three measurements took place (pre-test, post-test, and retention test) in which the participants were video recorded while playing matches in real scoring conditions. GPAI (Game Performance Assessment Instrument) was used to evaluate decision making in three game situations; service, return of the service, baseline game. ANOVA repeated measures (2 groups x 3 measurements) revealed a significant interaction between groups and measurements. Specifically, the data analysis showed superiority of the group that was instructed to focus externally. The high scores of the external attention group were maintained at the same level at the third measurement as well, which indicates that the impact was concerning not only performance but also learning. Thus, cues that lead to an external focus of attention enhance the decision-making skill and therefore the game performance of the young tennis players.Keywords: decision making, evaluation, focus of attention, game performance, tennis
Procedia PDF Downloads 35128446 Maker-Based Learning in Secondary Mathematics: Investigating Students’ Proportional Reasoning Understanding through Digital Making
Authors: Juan Torralba
Abstract:
Student digital artifacts were investigated, utilizing a qualitative exploratory research design to understand the ways in which students represented their knowledge of seventh-grade proportionality concepts as they participated in maker-based activities that culminated in the creation of digital 3-dimensional models of their dream homes. Representations of the geometric and numeric dimensions of proportionality were analyzed in the written, verbal, and visual data collected from the students. A directed content analysis approach was utilized in the data analysis, as this work aimed to build upon existing research in the field of maker-based STEAM Education. The results from this work show that students can represent their understanding of proportional reasoning through open-ended written responses more accurately than through verbal descriptions or digital artifacts. The geometric and numeric dimensions of proportionality and their respective components of attributes of similarity representation and percents, rates, and ratios representations were the most represented by the students than any other across the data, suggesting a maker-based instructional approach to teaching proportionality in the middle grades may be promising in helping students gain a solid foundation in those components. Recommendations for practice and research are discussed.Keywords: learning through making, maker-based education, maker education in the middle grades, making in mathematics, the maker movement
Procedia PDF Downloads 71