Search results for: credit default swaps
398 Structural Equation Modeling Semiparametric in Modeling the Accuracy of Payment Time for Customers of Credit Bank in Indonesia
Authors: Adji Achmad Rinaldo Fernandes
Abstract:
The research was conducted to apply semiparametric SEM modeling to the timeliness of paying credit. Semiparametric SEM is structural modeling in which two combined approaches of parametric and nonparametric approaches are used. The analysis method in this research is semiparametric SEM with a nonparametric approach using a truncated spline. The data in the study were obtained through questionnaires distributed to Bank X mortgage debtors and are confidential. The study used 3 variables consisting of one exogenous variable, one intervening endogenous variable, and one endogenous variable. The results showed that (1) the effect of capacity and willingness to pay variables on timeliness of payment is significant, (2) modeling the capacity variable on willingness to pay also produces a significant estimate, (3) the effect of the capacity variable on the timeliness of payment variable is not influenced by the willingness to pay variable as an intervening variable, (4) the R^2 value of 0.763 or 76.33% indicates that the model has good predictive relevance.Keywords: structural equation modeling semiparametric, credit bank, accuracy of payment time, willingness to pay
Procedia PDF Downloads 44397 Consumer Protection: An Exploration of the Role of the State in Protecting Consumers Before and During Inflation
Authors: Fatimah Opebiyi
Abstract:
Economic growth promotion, inflation reduction and consumer protection are among the core public interest aims of governments. Nevertheless, higher rates of default by consumers in relation to credit card loans and mortgages in recent times illustrate that government’s performance in balancing the protection of the economy and consumer is subpar. This thereby raises an important question on the role of government in protecting consumers during prolonged spells of inflation, particularly when such inflationary trends may be traceable to the acts of the government. Adopting a doctrinal research methodology, this article investigates the evolution of the concept of consumer protection in the United Kingdom and also brings to the fore the tensions and conflicts of interests in the aims and practices of the main regulators within the financial services industry. Relying on public interest theories of regulation and responsive regulatory theory, the article explores the limitations in the state’s ability to strike the right balance in meeting regulatory aims of the regulatory agencies at the opposite ends of the spectrum.Keywords: financial regulation, consumer protection, prudential regulation, public interest theories of regulation, central bank
Procedia PDF Downloads 77396 Quantification of Methane Emissions from Solid Waste in Oman Using IPCC Default Methodology
Authors: Wajeeha A. Qazi, Mohammed-Hasham Azam, Umais A. Mehmood, Ghithaa A. Al-Mufragi, Noor-Alhuda Alrawahi, Mohammed F. M. Abushammala
Abstract:
Municipal Solid Waste (MSW) disposed in landfill sites decompose under anaerobic conditions and produce gases which mainly contain carbon dioxide (CO₂) and methane (CH₄). Methane has the potential of causing global warming 25 times more than CO₂, and can potentially affect human life and environment. Thus, this research aims to determine MSW generation and the annual CH₄ emissions from the generated waste in Oman over the years 1971-2030. The estimation of total waste generation was performed using existing models, while the CH₄ emissions estimation was performed using the intergovernmental panel on climate change (IPCC) default method. It is found that total MSW generation in Oman might be reached 3,089 Gg in the year 2030, which approximately produced 85 Gg of CH₄ emissions in the year 2030.Keywords: methane, emissions, landfills, solid waste
Procedia PDF Downloads 510395 Can the Intervention of SCAMPER Bring about Changes of Neural Activation While Taking Creativity Tasks?
Authors: Yu-Chu Yeh, WeiChin Hsu, Chih-Yen Chang
Abstract:
Substitution, combination, modification, putting to other uses, elimination, and rearrangement (SCAMPER) has been regarded as an effective technique that provides a structured way to help people to produce creative ideas and solutions. Although some neuroscience studies regarding creativity training have been conducted, no study has focused on SCAMPER. This study therefore aimed at examining whether the learning of SCAMPER through video tutorials would result in alternations of neural activation. Thirty college students were randomly assigned to the experimental group or the control group. The experimental group was requested to watch SCAMPER videos, whereas the control group was asked to watch natural-scene videos which were regarded as neutral stimulating materials. Each participant was brain scanned in a Functional magnetic resonance imaging (fMRI) machine while undertaking a creativity test before and after watching the videos. Furthermore, a two-way ANOVA was used to analyze the interaction between groups (the experimental group; the control group) and tasks (C task; M task; X task). The results revealed that the left precuneus significantly activated in the interaction of groups and tasks, as well as in the main effect of group. Furthermore, compared with the control group, the experimental group had greater activation in the default mode network (left precuneus and left inferior parietal cortex) and the motor network (left postcentral gyrus and left supplementary area). The findings suggest that the SCAMPER training may facilitate creativity through the stimulation of the default mode network and the motor network.Keywords: creativity, default mode network, neural activation, SCAMPER
Procedia PDF Downloads 100394 Computation of Radiotherapy Treatment Plans Based on CT to ED Conversion Curves
Authors: B. Petrović, L. Rutonjski, M. Baucal, M. Teodorović, O. Čudić, B. Basarić
Abstract:
Radiotherapy treatment planning computers use CT data of the patient. For the computation of a treatment plan, treatment planning system must have an information on electron densities of tissues scanned by CT. This information is given by the conversion curve CT (CT number) to ED (electron density), or simply calibration curve. Every treatment planning system (TPS) has built in default CT to ED conversion curves, for the CTs of different manufacturers. However, it is always recommended to verify the CT to ED conversion curve before actual clinical use. Objective of this study was to check how the default curve already provided matches the curve actually measured on a specific CT, and how much it influences the calculation of a treatment planning computer. The examined CT scanners were from the same manufacturer, but four different scanners from three generations. The measurements of all calibration curves were done with the dedicated phantom CIRS 062M Electron Density Phantom. The phantom was scanned, and according to real HU values read at the CT console computer, CT to ED conversion curves were generated for different materials, for same tube voltage 140 kV. Another phantom, CIRS Thorax 002 LFC which represents an average human torso in proportion, density and two-dimensional structure, was used for verification. The treatment planning was done on CT slices of scanned CIRS LFC 002 phantom, for selected cases. Interest points were set in the lungs, and in the spinal cord, and doses recorded in TPS. The overall calculated treatment times for four scanners and default scanner did not differ more than 0.8%. Overall interest point dose in bone differed max 0.6% while for single fields was maximum 2.7% (lateral field). Overall interest point dose in lungs differed max 1.1% while for single fields was maximum 2.6% (lateral field). It is known that user should verify the CT to ED conversion curve, but often, developing countries are facing lack of QA equipment, and often use default data provided. We have concluded that the CT to ED curves obtained differ in certain points of a curve, generally in the region of higher densities. This influences the treatment planning result which is not significant, but definitely does make difference in the calculated dose.Keywords: Computation of treatment plan, conversion curve, radiotherapy, electron density
Procedia PDF Downloads 486393 Biomass Carbon Credit Estimation for Sustainable Urban Planning and Micro-climate Assessment
Authors: R. Niranchana, K. Meena Alias Jeyanthi
Abstract:
As a result of the present climate change dilemma, the energy balancing strategy is to construct a sustainable environment has become a top concern for researchers worldwide. The environment itself has always been a solution from the earliest days of human evolution. Carbon capture begins with its accurate estimation and monitoring credit inventories, and its efficient use. Sustainable urban planning with deliverables of re-use energy models might benefit from assessment methods like biomass carbon credit ranking. The term "biomass energy" refers to the various ways in which living organisms can potentially be converted into a source of energy. The approaches that can be applied to biomass and an algorithm for evaluating carbon credits are presented in this paper. The micro-climate evaluation using Computational Fluid dynamics was carried out across the location (1 km x1 km) at Dindigul, India (10°24'58.68" North, 77°54.1.80 East). Sustainable Urban design must be carried out considering environmental and physiological convection, conduction, radiation and evaporative heat exchange due to proceeding solar access and wind intensities.Keywords: biomass, climate assessment, urban planning, multi-regression, carbon estimation algorithm
Procedia PDF Downloads 94392 Hardships Faced by Entrepreneurs in Marketing Projects for Acquiring Business Loans
Authors: Sudipto Sarkar
Abstract:
Capital is the primary fuel for starting and running a business. Since capital is crucial for every business, entrepreneurs must successfully acquire adequate capital for executing their projects. Sources for the necessary capital for entrepreneurs include their own personal funds from existing bank accounts, or lines of credit or loans from banks or financial institutions, or equity funding from investors. The most commonly selected source of capital is a bank loan. However, acquiring a loan by any entrepreneur requires adhering to strict guidelines, conditions and norms. Because not only they have to show evidence for viability of the project, but also the means to return the acquired loan. On the bank’s part, it requires that every loan officer performs a thorough credit appraisal of the prospective borrowers and makes decisions about whether or not to lend money, how much to lend, and what conditions should be attached to it. Moreover, these credit decisions in general were often based on biases, analytical techniques, or prior experience. A loan can either turn out to be good or poor, irrespective of what type of credit decisions were followed. However, based on prior experience, the loan officers seem to differentiate between a good and a bad loan by examining the borrower’s credit history, pattern of borrowing, volume of borrowing, frequency of borrowing, and reasons for borrowing. As per an article written by Maureen Wallenfang on postcrescent.com dated May 10, 2010, it is observed that borrowers with good credit, solid business plans and adequate collateral security were able to procure loans very easily in the Fox Valley region. Since loans are required to run businesses, and also with the propensity of loans to become bad, loan officers tend to be very critical and cautious before approving and disbursing the loans. The pressure to be critical and cautious, at least partly, is a result of increased scrutiny by the Securities and Exchange Commission. As per Wall Street Journal (Sidel & Eaglesham, March, 3 2011, online), the Securities and Exchange Commission scrutinized banks that have restructured troubled loans in order to make them appear healthier than they really are. Therefore, loan officers’ loan criteria are of immense importance for entrepreneurs and banks alike.Keywords: entrepreneur, loans, marketing, banks
Procedia PDF Downloads 257391 The Critical Relevance of Credit and Debt Data in Household Food Security Analysis: The Risks of Ineffective Response Actions
Authors: Siddharth Krishnaswamy
Abstract:
Problem Statement: Currently, when analyzing household food security, the most commonly studied food access indicators are household income and expenditure. Larger studies do take into account other indices such as credit and employment. But these are baselines studies and by definition are conducted infrequently. Food security analysis for access is usually dedicated to analyzing income and expenditure indicators. And both these indicators are notoriously inconsistent. Yet this data can very often end up being the basis on which household food access is calculated; and by extension, be used for decision making. Objectives: This paper argues that along with income and expenditure, credit and debit information should be collected so that an accurate analysis of household food security (and in particular) food access can be determined. The lack of collection and analysis of this information routinely means that there is often a “masking” of the actual situation; a household’s food access and food availability patterns may be adequate mainly as a result of borrowing and may even be due to a long- term dependency (a debt cycle). In other words, such a household is, in reality, worse off than it appears a factor masked by its performance on basic access indicators. Procedures/methodologies/approaches: Existing food security data sets collected in 2005 in Azerbaijan, 2010 across Myanmar and 2014-15 across Uganda were used to support the theory that analyzing income and expenditure of a HHs and analyzing the same in addition to data on credit & borrowing patterns will result in an entirely different scenario of food access of the household. Furthermore, the data analyzed depicts food consumption patterns across groups of households and then relates this to the extent of dependency on credit, i.e. households borrowing money in order to meet food needs. Finally, response options that were based on analyzing only income and expenditure; and response options based on income, expenditure, credit, and borrowing – from the same geographical area of operation are studied and discussed. Results: The purpose of this work was to see if existing methods of household food security analysis could be improved. It is hoped that food security analysts will collect household level information on credit and debit and analyze them against income, expenditure and consumption patterns. This will help determine if a household’s food access and availability are dependent on unsustainable strategies such as borrowing money for food or undertaking sustained debts. Conclusions: The results clearly show the amount of relevant information that is missing in Food Access analysis if debit and borrowing of the household is not analyzed along with the typical Food Access indicators that are usually analyzed. And the serious repercussions this has on Programmatic response and interventions.Keywords: analysis, food security indicators, response, resilience analysis
Procedia PDF Downloads 331390 Exploring the Impact of Domestic Credit Extension, Government Claims, Inflation, Exchange Rates, and Interest Rates on Manufacturing Output: A Financial Analysis.
Authors: Ojo Johnson Adelakun
Abstract:
This study explores the long-term relationships between manufacturing output (MO) and several economic determinants, interest rate (IR), inflation rate (INF), exchange rate (EX), credit to the private sector (CPSM), gross claims on the government sector (GCGS), using monthly data from March 1966 to December 2023. Employing advanced econometric techniques including Fully Modified Ordinary Least Squares (FMOLS), Dynamic Ordinary Least Squares (DOLS), and Canonical Cointegrating Regression (CCR), the analysis provides several key insights. The findings reveal a positive association between interest rates and manufacturing output, which diverges from traditional economic theory that predicts a negative correlation due to increased borrowing costs. This outcome is attributed to the financial resilience of large enterprises, allowing them to sustain investment in production despite higher interest rates. In addition, inflation demonstrates a positive relationship with manufacturing output, suggesting that stable inflation within target ranges creates a favourable environment for investment in productivity-enhancing technologies. Conversely, the exchange rate shows a negative relationship with manufacturing output, reflecting the adverse effects of currency depreciation on the cost of imported raw materials. The negative impact of CPSM underscores the importance of directing credit efficiently towards productive sectors rather than speculative ventures. Moreover, increased government borrowing appears to crowd out private sector credit, negatively affecting manufacturing output. Overall, the study highlights the need for a coordinated policy approach integrating monetary, fiscal, and financial sector strategies. Policymakers should account for the differential impacts of interest rates, inflation, exchange rates, and credit allocation on various sectors. Ensuring stable inflation, efficient credit distribution, and mitigating exchange rate volatility are critical for supporting manufacturing output and promoting sustainable economic growth. This research provides valuable insights into the economic dynamics influencing manufacturing output and offers policy recommendations tailored to South Africa’s economic context.Keywords: domestic credit, government claims, financial variables, manufacturing output, financial analysis
Procedia PDF Downloads 18389 Factors Influencing Adoption of Climate-Smart Agricultural Practices among Maize Farmers in Ondo State, Nigeria
Authors: Oduntan Oluwakemi, Obisesan Adekemi Adebisola, Ayo-Bello Taofeeq Ayodeji
Abstract:
The study examined the factors influencing the adoption of climate-smart agricultural practices among maize farmers in Ondo State, Nigeria. A Multi-stage sampling procedure was used to randomly select one hundred respondents for the study. Primary data were collected from the respondents with the aid of a structured questionnaire and analysed using descriptive statistics and a probit regression model. The results of this study showed that crop diversification was the most adopted climate-smart agricultural practice by the respondents, and adoption of Climate Smart Agricultural practices is still very low among the respondents. Results of probit regression revealed that marital status, access to extension services, farming experience, membership of farmers’ association, and access to credit had a positive influence on the adoption of climate-smart agricultural practices, while age, farm size, and total income had a negative influence. Based on the findings of the study, it was recommended that government should develop suitable policies that will encourage farmers, especially rural farmers, to adopt and utilize Climate Smart Agricultural Practices (CSAP). Equally, the study also recommended government should be geared towards supporting improved extension services, providing on-farm demonstration training, disseminating information about climate-smart agricultural practices, and providing credit facilities through the Agricultural Credit Guarantee Scheme Fund and bank credit to farmers in order to enhance the adoption.Keywords: adoption, agriculture, climate-smart, farmers, maize, Nigeria
Procedia PDF Downloads 133388 Self-Organizing Maps for Credit Card Fraud Detection
Authors: ChunYi Peng, Wei Hsuan CHeng, Shyh Kuang Ueng
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 57387 Self-Organizing Maps for Credit Card Fraud Detection and Visualization
Authors: Peng Chun-Yi, Chen Wei-Hsuan, Ueng Shyh-Kuang
Abstract:
This study focuses on the application of self-organizing maps (SOM) technology in analyzing credit card transaction data, aiming to enhance the accuracy and efficiency of fraud detection. Som, as an artificial neural network, is particularly suited for pattern recognition and data classification, making it highly effective for the complex and variable nature of credit card transaction data. By analyzing transaction characteristics with SOM, the research identifies abnormal transaction patterns that could indicate potentially fraudulent activities. Moreover, this study has developed a specialized visualization tool to intuitively present the relationships between SOM analysis outcomes and transaction data, aiding financial institution personnel in quickly identifying and responding to potential fraud, thereby reducing financial losses. Additionally, the research explores the integration of SOM technology with composite intelligent system technologies (including finite state machines, fuzzy logic, and decision trees) to further improve fraud detection accuracy. This multimodal approach provides a comprehensive perspective for identifying and understanding various types of fraud within credit card transactions. In summary, by integrating SOM technology with visualization tools and composite intelligent system technologies, this research offers a more effective method of fraud detection for the financial industry, not only enhancing detection accuracy but also deepening the overall understanding of fraudulent activities.Keywords: self-organizing map technology, fraud detection, information visualization, data analysis, composite intelligent system technologies, decision support technologies
Procedia PDF Downloads 59386 Use of Multistage Transition Regression Models for Credit Card Income Prediction
Authors: Denys Osipenko, Jonathan Crook
Abstract:
Because of the variety of the card holders’ behaviour types and income sources each consumer account can be transferred to a variety of states. Each consumer account can be inactive, transactor, revolver, delinquent, defaulted and requires an individual model for the income prediction. The estimation of transition probabilities between statuses at the account level helps to avoid the memorylessness of the Markov Chains approach. This paper investigates the transition probabilities estimation approaches to credit cards income prediction at the account level. The key question of empirical research is which approach gives more accurate results: multinomial logistic regression or multistage conditional logistic regression with binary target. Both models have shown moderate predictive power. Prediction accuracy for conditional logistic regression depends on the order of stages for the conditional binary logistic regression. On the other hand, multinomial logistic regression is easier for usage and gives integrate estimations for all states without priorities. Thus further investigations can be concentrated on alternative modeling approaches such as discrete choice models.Keywords: multinomial regression, conditional logistic regression, credit account state, transition probability
Procedia PDF Downloads 487385 The Role of Microfinance in Economic Development
Authors: Babak Salekmahdy
Abstract:
Microfinance is often seen as a means of repairing credit markets and unleashing the potential contribution of impoverished people who rely on self-employment. Since the 1990s, the microfinance industry has expanded rapidly, opening the path for additional kinds of social entrepreneurship and social investment. However, current data indicate relatively few average consumer effects, opposing pushback against microfinance. This research reconsiders microfinance statements, stressing the variety of data on impacts and the essential (but limited) role of reimbursements. The report finishes by explaining a shift in thinking: from microfinance as a strictly defined enterprise finance to microfinance as a more widely defined home finance. Microfinance, under this perspective, provides advantages by providing liquidity for various requirements rather than just by increasing income.Keywords: microfinance, small business, economic development, credit markets
Procedia PDF Downloads 82384 Solving LWE by Pregressive Pumps and Its Optimization
Authors: Leizhang Wang, Baocang Wang
Abstract:
General Sieve Kernel (G6K) is considered as currently the fastest algorithm for the shortest vector problem (SVP) and record holder of open SVP challenge. We study the lattice basis quality improvement effects of the Workout proposed in G6K, which is composed of a series of pumps to solve SVP. Firstly, we use a low-dimensional pump output basis to propose a predictor to predict the quality of high-dimensional Pumps output basis. Both theoretical analysis and experimental tests are performed to illustrate that it is more computationally expensive to solve the LWE problems by using a G6K default SVP solving strategy (Workout) than these lattice reduction algorithms (e.g. BKZ 2.0, Progressive BKZ, Pump, and Jump BKZ) with sieving as their SVP oracle. Secondly, the default Workout in G6K is optimized to achieve a stronger reduction and lower computational cost. Thirdly, we combine the optimized Workout and the Pump output basis quality predictor to further reduce the computational cost by optimizing LWE instances selection strategy. In fact, we can solve the TU LWE challenge (n = 65, q = 4225, = 0:005) 13.6 times faster than the G6K default Workout. Fourthly, we consider a combined two-stage (Preprocessing by BKZ- and a big Pump) LWE solving strategy. Both stages use dimension for free technology to give new theoretical security estimations of several LWE-based cryptographic schemes. The security estimations show that the securities of these schemes with the conservative Newhope’s core-SVP model are somewhat overestimated. In addition, in the case of LAC scheme, LWE instances selection strategy can be optimized to further improve the LWE-solving efficiency even by 15% and 57%. Finally, some experiments are implemented to examine the effects of our strategies on the Normal Form LWE problems, and the results demonstrate that the combined strategy is four times faster than that of Newhope.Keywords: LWE, G6K, pump estimator, LWE instances selection strategy, dimension for free
Procedia PDF Downloads 60383 The Impact of Financial Risk on Banks’ Financial Performance: A Comparative Study of Islamic Banks and Conventional Banks in Pakistan
Authors: Mohammad Yousaf Safi Mohibullah Afghan
Abstract:
The study made on Islamic and conventional banks scrutinizes the risks interconnected with credit and liquidity on the productivity performance of Islamic and conventional banks that operate in Pakistan. Among the banks, only 4 Islamic and 18 conventional banks have been selected to enrich the result of our study on Islamic banks performance in connection to conventional banks. The selection of the banks to the panel is based on collecting quarterly unbalanced data ranges from the first quarter of 2007 to the last quarter of 2017. The data are collected from the Bank’s web sites and State Bank of Pakistan. The data collection is carried out based on Delta-method test. The mentioned test is used to find out the empirical results. In the study, while collecting data on the banks, the return on assets and return on equity have been major factors that are used assignificant proxies in determining the profitability of the banks. Moreover, another major proxy is used in measuring credit and liquidity risks, the loan loss provision to total loan and the ratio of liquid assets to total liability. Meanwhile, with consideration to the previous literature, some other variables such as bank size, bank capital, bank branches, and bank employees have been used to tentatively control the impact of those factors whose direct and indirect effects on profitability is understood. In conclusion, the study emphasizes that credit risk affects return on asset and return on equity positively, and there is no significant difference in term of credit risk between Islamic and conventional banks. Similarly, the liquidity risk has a significant impact on the bank’s profitability, though the marginal effect of liquidity risk is higher for Islamic banks than conventional banks.Keywords: islamic & conventional banks, performance return on equity, return on assets, pakistan banking sectors, profitibility
Procedia PDF Downloads 164382 Evolving Credit Scoring Models using Genetic Programming and Language Integrated Query Expression Trees
Authors: Alexandru-Ion Marinescu
Abstract:
There exist a plethora of methods in the scientific literature which tackle the well-established task of credit score evaluation. In its most abstract form, a credit scoring algorithm takes as input several credit applicant properties, such as age, marital status, employment status, loan duration, etc. and must output a binary response variable (i.e. “GOOD” or “BAD”) stating whether the client is susceptible to payment return delays. Data imbalance is a common occurrence among financial institution databases, with the majority being classified as “GOOD” clients (clients that respect the loan return calendar) alongside a small percentage of “BAD” clients. But it is the “BAD” clients we are interested in since accurately predicting their behavior is crucial in preventing unwanted loss for loan providers. We add to this whole context the constraint that the algorithm must yield an actual, tractable mathematical formula, which is friendlier towards financial analysts. To this end, we have turned to genetic algorithms and genetic programming, aiming to evolve actual mathematical expressions using specially tailored mutation and crossover operators. As far as data representation is concerned, we employ a very flexible mechanism – LINQ expression trees, readily available in the C# programming language, enabling us to construct executable pieces of code at runtime. As the title implies, they model trees, with intermediate nodes being operators (addition, subtraction, multiplication, division) or mathematical functions (sin, cos, abs, round, etc.) and leaf nodes storing either constants or variables. There is a one-to-one correspondence between the client properties and the formula variables. The mutation and crossover operators work on a flattened version of the tree, obtained via a pre-order traversal. A consequence of our chosen technique is that we can identify and discard client properties which do not take part in the final score evaluation, effectively acting as a dimensionality reduction scheme. We compare ourselves with state of the art approaches, such as support vector machines, Bayesian networks, and extreme learning machines, to name a few. The data sets we benchmark against amount to a total of 8, of which we mention the well-known Australian credit and German credit data sets, and the performance indicators are the following: percentage correctly classified, area under curve, partial Gini index, H-measure, Brier score and Kolmogorov-Smirnov statistic, respectively. Finally, we obtain encouraging results, which, although placing us in the lower half of the hierarchy, drive us to further refine the algorithm.Keywords: expression trees, financial credit scoring, genetic algorithm, genetic programming, symbolic evolution
Procedia PDF Downloads 117381 Risk, Capital Buffers, and Bank Lending: The Adjustment of Euro Area Banks
Authors: Laurent Maurin, Mervi Toivanen
Abstract:
This paper estimates euro area banks’ internal target capital ratios and investigates whether banks’ adjustment to the targets have an impact on credit supply and holding of securities during the financial crisis in 2005-2011. Using data on listed banks and country-specific macro-variables a partial adjustment model is estimated in a panel context. The results indicate, firstly, that an increase in the riskiness of banks’ balance sheets influences positively on the target capital ratios. Secondly, the adjustment towards higher equilibrium capital ratios has a significant impact on banks’ assets. The impact is found to be more size-able on security holdings than on loans, thereby suggesting a pecking order.Keywords: Euro area, capital ratios, credit supply, partial adjustment model
Procedia PDF Downloads 448380 A Qualitative Study of Inclusive Growth through Microfinance in India
Authors: Amit Kumar Bardhan, Barnali Nag, Chandra Sekhar Mishra
Abstract:
Microfinance is considered as one of the key drivers of financial inclusion and pro-poor financial growth. Microfinance in India became popular through Self Help Group (SHG) movement initiated by NABARD. In terms of outreach and loan portfolio, SHG Bank Linkage programme (SHG-BLP) has emerged as the largest microfinance initiative in the world. The success of financial inclusion lies in the successful implementation of SHG-BLP. SHGs are generally promoted by social welfare organisations like NGOs, welfare societies, government agencies, Co-operatives etc. and even banks are also involved in SHG formation. Thus, the pro-poor implementation of the scheme largely depends on the credibility of the SHG Promoting Institutions (SHPIs). The rural poor lack education, skills and financial literacy and hence need continuous support and proper training right from planning to implementation. In this study, we have made an attempt to inspect the reasons behind low penetration of SHG financing to the poorest of the poor both from demand and supply side perspective. Banks, SHPIs, and SHGs are three key essential stakeholders in SHG-BLP programmes. All of them have a vital role in programme implementation. The objective of this paper is to find out the drivers and hurdles in the path of financial inclusion through SHG-BLP and the role of SHPIs in reaching out to the ultra poor. We try to address questions like 'what are the challenges faced by SHPIs in targeting the poor?' and, 'what are factors behind the low credit linkage of SHGs?' Our work is based on a qualitative study of SHG programmes in semi-urban towns in the states of West Bengal and Odisha in India. Data are collected through unstructured questionnaire and in-depth interview from the members of SHGs, SHPIs and designated banks. The study provides some valuable insights about the programme and a comprehensive view of problems and challenges faced by SGH, SHPIs, and banks. On the basis of our understanding from the survey, some findings and policy recommendations that seem relevant are: increasing level of non-performing assets (NPA) of commercial banks and wilful default in expectation of loan waiver and subsidy are the prime reasons behind low rate of credit linkage of SHGs. Regular changes in SHG schemes and no incentive for after linkage follow up results in dysfunctional SHGs. Government schemes are mostly focused on creation of SHG and less on livelihood promotion. As a result, in spite of increasing (YoY) trend of number of SHGs promoted, there is no real impact on welfare growth. Government and other SHPIs should focus on resource based SHG promotion rather only increasing the number of SHGs.Keywords: financial inclusion, inclusive growth, microfinance, Self-Help Group (SHG), Self-Help Group Promoting Institution (SHPI)
Procedia PDF Downloads 215379 A Data Mining Approach for Analysing and Predicting the Bank's Asset Liability Management Based on Basel III Norms
Authors: Nidhin Dani Abraham, T. K. Sri Shilpa
Abstract:
Asset liability management is an important aspect in banking business. Moreover, the today’s banking is based on BASEL III which strictly regulates on the counterparty default. This paper focuses on prediction and analysis of counter party default risk, which is a type of risk occurs when the customers fail to repay the amount back to the lender (bank or any financial institutions). This paper proposes an approach to reduce the counterparty risk occurring in the financial institutions using an appropriate data mining technique and thus predicts the occurrence of NPA. It also helps in asset building and restructuring quality. Liability management is very important to carry out banking business. To know and analyze the depth of liability of bank, a suitable technique is required. For that a data mining technique is being used to predict the dormant behaviour of various deposit bank customers. Various models are implemented and the results are analyzed of saving bank deposit customers. All these data are cleaned using data cleansing approach from the bank data warehouse.Keywords: data mining, asset liability management, BASEL III, banking
Procedia PDF Downloads 553378 The Processing of Context-Dependent and Context-Independent Scalar Implicatures
Authors: Liu Jia’nan
Abstract:
The default accounts hold the view that there exists a kind of scalar implicature which can be processed without context and own a psychological privilege over other scalar implicatures which depend on context. In contrast, the Relevance Theorist regards context as a must because all the scalar implicatures have to meet the need of relevance in discourse. However, in Katsos, the experimental results showed: Although quantitatively the adults rejected under-informative utterance with lexical scales (context-independent) and the ad hoc scales (context-dependent) at almost the same rate, adults still regarded the violation of utterance with lexical scales much more severe than with ad hoc scales. Neither default account nor Relevance Theory can fully explain this result. Thus, there are two questionable points to this result: (1) Is it possible that the strange discrepancy is due to other factors instead of the generation of scalar implicature? (2) Are the ad hoc scales truly formed under the possible influence from mental context? Do the participants generate scalar implicatures with ad hoc scales instead of just comparing semantic difference among target objects in the under- informative utterance? In my Experiment 1, the question (1) will be answered by repetition of Experiment 1 by Katsos. Test materials will be showed by PowerPoint in the form of pictures, and each procedure will be done under the guidance of a tester in a quiet room. Our Experiment 2 is intended to answer question (2). The test material of picture will be transformed into the literal words in DMDX and the target sentence will be showed word-by-word to participants in the soundproof room in our lab. Reading time of target parts, i.e. words containing scalar implicatures, will be recorded. We presume that in the group with lexical scale, standardized pragmatically mental context would help generate scalar implicature once the scalar word occurs, which will make the participants hope the upcoming words to be informative. Thus if the new input after scalar word is under-informative, more time will be cost for the extra semantic processing. However, in the group with ad hoc scale, scalar implicature may hardly be generated without the support from fixed mental context of scale. Thus, whether the new input is informative or not does not matter at all, and the reading time of target parts will be the same in informative and under-informative utterances. People’s mind may be a dynamic system, in which lots of factors would co-occur. If Katsos’ experimental result is reliable, will it shed light on the interplay of default accounts and context factors in scalar implicature processing? We might be able to assume, based on our experiments, that one single dominant processing paradigm may not be plausible. Furthermore, in the processing of scalar implicature, the semantic interpretation and the pragmatic interpretation may be made in a dynamic interplay in the mind. As to the lexical scale, the pragmatic reading may prevail over the semantic reading because of its greater exposure in daily language use, which may also lead the possible default or standardized paradigm override the role of context. However, those objects in ad hoc scale are not usually treated as scalar membership in mental context, and thus lexical-semantic association of the objects may prevent their pragmatic reading from generating scalar implicature. Only when the sufficient contextual factors are highlighted, can the pragmatic reading get privilege and generate scalar implicature.Keywords: scalar implicature, ad hoc scale, dynamic interplay, default account, Mandarin Chinese processing
Procedia PDF Downloads 323377 An Attentional Bi-Stream Sequence Learner (AttBiSeL) for Credit Card Fraud Detection
Authors: Amir Shahab Shahabi, Mohsen Hasirian
Abstract:
Modern societies, marked by expansive Internet connectivity and the rise of e-commerce, are now integrated with digital platforms at an unprecedented level. The efficiency, speed, and accessibility of e-commerce have garnered a substantial consumer base. Against this backdrop, electronic banking has undergone rapid proliferation within the realm of online activities. However, this growth has inadvertently given rise to an environment conducive to illicit activities, notably electronic payment fraud, posing a formidable challenge to the domain of electronic banking. A pivotal role in upholding the integrity of electronic commerce and business transactions is played by electronic fraud detection, particularly in the context of credit cards which underscores the imperative of comprehensive research in this field. To this end, our study introduces an Attentional Bi-Stream Sequence Learner (AttBiSeL) framework that leverages attention mechanisms and recurrent networks. By incorporating bidirectional recurrent layers, specifically bidirectional Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) layers, the proposed model adeptly extracts past and future transaction sequences while accounting for the temporal flow of information in both directions. Moreover, the integration of an attention mechanism accentuates specific transactions to varying degrees, as manifested in the output of the recurrent networks. The effectiveness of the proposed approach in automatic credit card fraud classification is evaluated on the European Cardholders' Fraud Dataset. Empirical results validate that the hybrid architectural paradigm presented in this study yields enhanced accuracy compared to previous studies.Keywords: credit card fraud, deep learning, attention mechanism, recurrent neural networks
Procedia PDF Downloads 14376 A Product-Specific/Unobservable Approach to Segmentation for a Value Expressive Credit Card Service
Authors: Manfred F. Maute, Olga Naumenko, Raymond T. Kong
Abstract:
Using data from a nationally representative financial panel of Canadian households, this study develops a psychographic segmentation of the customers of a value-expressive credit card service and tests for effects on relational response differences. The variety of segments elicited by agglomerative and k means clustering and the familiar profiles of individual clusters suggest that the face validity of the psychographic segmentation was quite high. Segmentation had a significant effect on customer satisfaction and relationship depth. However, when socio-demographic characteristics like household size and income were accounted for in the psychographic segmentation, the effect on relational response differences was magnified threefold. Implications for the segmentation of financial services markets are considered.Keywords: customer satisfaction, financial services, psychographics, response differences, segmentation
Procedia PDF Downloads 334375 Early Warning System of Financial Distress Based On Credit Cycle Index
Authors: Bi-Huei Tsai
Abstract:
Previous studies on financial distress prediction choose the conventional failing and non-failing dichotomy; however, the distressed extent differs substantially among different financial distress events. To solve the problem, “non-distressed”, “slightly-distressed” and “reorganization and bankruptcy” are used in our article to approximate the continuum of corporate financial health. This paper explains different financial distress events using the two-stage method. First, this investigation adopts firm-specific financial ratios, corporate governance and market factors to measure the probability of various financial distress events based on multinomial logit models. Specifically, the bootstrapping simulation is performed to examine the difference of estimated misclassifying cost (EMC). Second, this work further applies macroeconomic factors to establish the credit cycle index and determines the distressed cut-off indicator of the two-stage models using such index. Two different models, one-stage and two-stage prediction models, are developed to forecast financial distress, and the results acquired from different models are compared with each other, and with the collected data. The findings show that the two-stage model incorporating financial ratios, corporate governance and market factors has the lowest misclassification error rate. The two-stage model is more accurate than the one-stage model as its distressed cut-off indicators are adjusted according to the macroeconomic-based credit cycle index.Keywords: Multinomial logit model, corporate governance, company failure, reorganization, bankruptcy
Procedia PDF Downloads 377374 Digitalised Welfare: Systems for Both Seeing and Working with Mess
Authors: Amelia Morris, Lizzie Coles-Kemp, Will Jones
Abstract:
This paper examines how community welfare initiatives transform how individuals use and experience an ostensibly universal welfare system. This paper argues that the digitalisation of welfare overlooks the complex reality of being unemployed or in low-wage work, and erects digital barriers to accessing welfare. Utilising analysis of ethnographic research in food banks and community groups, the paper explores the ways that Universal Credit has not abolished face-to-face support, but relocated it to unofficial sites of welfare. The apparent efficiency and simplicity of the state’s digital welfare apparatus, therefore, is produced not by reducing the ‘messiness’ of welfare, but by rendering it invisible within the digital framework. Using the analysis of the study’s data, this paper recommends three principles of service design that would render the messiness visible to the state.Keywords: welfare, digitalisation, food bank, Universal Credit
Procedia PDF Downloads 152373 Analysis of the Effect of Farmers’ Socio-Economic Factors on Net Farm Income of Catfish Farmers in Kwara State, Nigeria
Authors: Olanike A. Ojo, Akindele M. Ojo, Jacob H. Tsado, Ramatu U. Kutigi
Abstract:
The study was carried out on analysis of the effect of farmers’ socio-economic factors on the net farm income of catfish farmers in Kwara State, Nigeria. Primary data were collected from selected catfish farmers with the aid of well-structured questionnaire and a multistage sampling technique was used to select 102 catfish farmers in the area. The analytical techniques involved the use of descriptive statistics and multiple regression analysis. The findings of the analysis of socio-economic characteristics of catfish farmers reveal that 60% of the catfish farmers in the study area were male gender which implied the existence of gender inequality in the area. The mean age of 47 years was an indication that they were at their economically productive age and could contribute positively to increased production of catfish in the area. Also, the mean household size was five while the mean year of experience was five. The latter implied that the farmers were experienced in fishing techniques, breeding and fish culture which would assist in generating more revenue, reduce cost of production and eventual increase in profit levels of the farmers. The result also revealed that stock capacity (X3), accessibility to credit (X7) and labour (X4) were the main determinants of catfish production in the area. In addition, farmer’s sex, household size, no of ponds, distance of the farm from market, access to credit were the main socio-economic factors influencing the net farm income of the catfish farmers in the area. The most serious constraints militating against catfish production in the study area were high mortality rate, insufficient market, inadequate credit facilities/ finance and inadequate skilled labour needed for daily production routine. Based on the findings, it is therefore recommended that, to reduce the mortality rate of catfish extension agents should organize training workshops on improved methods and techniques of raising catfish right from juvenile to market size.Keywords: credit, income, stock, mortality
Procedia PDF Downloads 332372 The Underground Ecosystem of Credit Card Frauds
Authors: Abhinav Singh
Abstract:
Point Of Sale (POS) malwares have been stealing the limelight this year. They have been the elemental factor in some of the biggest breaches uncovered in past couple of years. Some of them include • Target: A Retail Giant reported close to 40 million credit card data being stolen • Home Depot : A home product Retailer reported breach of close to 50 million credit records • Kmart: A US retailer recently announced breach of 800 thousand credit card details. Alone in 2014, there have been reports of over 15 major breaches of payment systems around the globe. Memory scrapping malwares infecting the point of sale devices have been the lethal weapon used in these attacks. These malwares are capable of reading the payment information from the payment device memory before they are being encrypted. Later on these malwares send the stolen details to its parent server. These malwares are capable of recording all the critical payment information like the card number, security number, owner etc. All these information are delivered in raw format. This Talk will cover the aspects of what happens after these details have been sent to the malware authors. The entire ecosystem of credit card frauds can be broadly classified into these three steps: • Purchase of raw details and dumps • Converting them to plastic cash/cards • Shop! Shop! Shop! The focus of this talk will be on the above mentioned points and how they form an organized network of cyber-crime. The first step involves buying and selling of the stolen details. The key point to emphasize are : • How is this raw information been sold in the underground market • The buyer and seller anatomy • Building your shopping cart and preferences • The importance of reputation and vouches • Customer support and replace/refunds These are some of the key points that will be discussed. But the story doesn’t end here. As of now the buyer only has the raw card information. How will this raw information be converted to plastic cash? Now comes in picture the second part of this underground economy where-in these raw details are converted into actual cards. There are well organized services running underground that can help you in converting these details into plastic cards. We will discuss about this technique in detail. At last, the final step involves shopping with the stolen cards. The cards generated with the stolen details can be easily used to swipe-and-pay for purchased goods at different retail shops. Usually these purchases are of expensive items that have good resale value. Apart from using the cards at stores, there are underground services that lets you deliver online orders to their dummy addresses. Once the package is received it will be delivered to the original buyer. These services charge based on the value of item that is being delivered. The overall underground ecosystem of credit card fraud works in a bulletproof way and it involves people working in close groups and making heavy profits. This is a brief summary of what I plan to present at the talk. I have done an extensive research and have collected good deal of material to present as samples. Some of them include: • List of underground forums • Credit card dumps • IRC chats among these groups • Personal chat with big card sellers • Inside view of these forum owners. The talk will be concluded by throwing light on how these breaches are being tracked during investigation. How are credit card breaches tracked down and what steps can financial institutions can build an incidence response over it.Keywords: POS mawalre, credit card frauds, enterprise security, underground ecosystem
Procedia PDF Downloads 439371 A Breakthrough Improvement Brought by Taxi-Calling APPs for Taxi Operation Level
Authors: Yuan-Lin Liu, Ye Li, Tian Xia
Abstract:
Taxi-calling APPs have been used widely, while brought both benefits and a variety of issues for the taxi market. Many countries do not know whether the benefits are remarkable than the issues or not. This paper established a comparison between the basic scenario (2009-2012) and a taxi-calling software usage scenario (2012-2015) to explain the impact of taxi-calling APPs. The impacts of taxi-calling APPs illustrated by the comparison results are: 1) The supply and demand distribution is more balanced, extending from the city center to the suburb. The availability of taxi service has been improved in low density areas, thin market attribute has also been improved; 2)The ratio of short distance taxi trip decreased, long distance service increased, the utilization of mileage increased, and the rate of empty decreased; 3) The popularity of taxi-calling APPs was able to reduce the average empty distance, cruise time, empty mileage rate and average times of loading passengers, can also enhance the average operating speed, improve the taxi operating level, and reduce social cost although there are some disadvantages. This paper argues that the taxi industry and government can establish an integrated third-party credit information platform based on credit evaluated by the data of the drivers’ driving behaviors to supervise the drivers. Taxi-calling APPs under fully covered supervision in the mobile Internet environment will become a new trend.Keywords: taxi, taxi-calling APPs, credit, scenario comparison
Procedia PDF Downloads 254370 Analysis of Technical Efficiency and Its Determinants among Cattle Fattening Enterprises in Kebbi State, Nigeria
Authors: Gona Ayuba, Isiaka Mohammed, Kotom Mohammed Baba, Mohammed Aabubakar Maikasuwa
Abstract:
The study examined the technical efficiency and its determinants of cattle fattening enterprises in Kebbi state, Nigeria. Data were collected from a sample of 160 fatteners between June 2010 and June 2011 using the multistage random sampling technique. Translog stochastic frontier production function was employed for the analysis. Results of the analysis show that technical efficiency indices varied from 0.74 to 0.98%, with a mean of 0.90%, indicating that there was no wide gap between the efficiency of best technical efficient fatteners and that of the average fattener. The result also showed that fattening experience and herd size influenced the level of technical efficiency at 1% levels. It is recommended that credit agencies should ensure that credit made available to the fatteners is monitored to ensure appropriate utilization.Keywords: technical efficiency, determinants, cattle, fattening enterprises
Procedia PDF Downloads 451369 Bank's Role in Economic Growth: Case of Africa
Authors: S. Khalifa, R. Chkoundali
Abstract:
The specific role of banks in economic development varies, depending on scope. Firstly, the participation of banks in economic development focus around providing credit and services to generate revenues, which are then invested back into a local, national or international community. The specific roles banks play in the economic development of a small community differ from the role banks play in national or international economic development. Although the role can vary, factors such as access to credit and bank investment policies or practices remain constant, no matter the scope of economic development. This paper provides an overview of the economic situation of Africa and its short-term outlook. He referred to the progress made in the implementation of the Medium-Term Strategy (2008-2012) and some major achievements of the Bank, as the speed and flexibility with which she responded to the oil crisis, food and financial.Keywords: economic growth, bank, Africa, economic development
Procedia PDF Downloads 462