Search results for: blast furnace sludge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 780

Search results for: blast furnace sludge

690 Total Dissolved Solids and Total Iron in High Rate Activated Sludge System

Authors: M. Y. Saleh, G. M. ELanany, M. H. Elzahar, M. Z. Elshikhipy

Abstract:

Industrial wastewater discharge, which carries high concentrations of dissolved solids and iron, could be treated by high rate activated sludge stage of the multiple-stage sludge treatment plant, a system which is characterized by high treatment efficiency, optimal prices, and small areas compared with conventional activated sludge treatment plants. A pilot plant with an influent industrial discharge flow of 135 L/h was designed following the activated sludge system to simulate between the biological and chemical treatment with the addition of dosages 100, 150, 200 and 250 mg/L alum salt to the aeration tank. The concentrations of total dissolved solids (TDS) and iron (Fe) in industrial discharge flow had an average range of 140000 TDS and 4.5 mg/L iron. The optimization of the chemical-biological process using a dosage of 200 mg/L alum succeeded to improve the removal efficiency of TDS and total iron to 48.15% and 68.11% respectively.

Keywords: wastewater, activated sludge, TDS, total iron

Procedia PDF Downloads 297
689 Hard Sludge Formation and Consolidation in Pressurized Water Reactor Steam Generators: An Experimental Study

Authors: R. Fernandez-Saavedra, M. B. Gomez-Mancebo, D. Gomez-Briceno

Abstract:

The gradual corrosion of PWR (Pressurized Water Reactor) feedwater, condensate and drain systems results in the inevitable liberation of corrosion products, principally metallic oxides, to the secondary circuit. In addition, other contaminants and impurities are introduced into the makeup water, auxiliary feedwater and by condenser leaks. All these compounds circulating in the secondary flow can eventually be transported to steam generators and be transformed into deposits on their surfaces. Deposits that accumulate on the tube sheet are known as sludge piles and when they consolidate and harden become into hard sludge. Hard sludge is especially detrimental because it favors tube deformation or denting at the top of tube sheet and further stress corrosion cracking (SCC). These failures affect the efficiency of nuclear power plants. In a recent work, a model for the formation and consolidation of hard sludge has been formulated, highlighting the influence of aluminum and silicon compounds in the initial formation of hard sludge. In this work, an experimental study has been performed in order to get a deeper understanding of the behavior of Al and Si species in hard sludge formation and consolidation. For this purpose, the key components of hard sludge (magnetite, aluminum and/or silicon sources) have been isothermally autoclaved in representative secondary circuit conditions during one week, and the resulting products have been chemically and structurally characterized by XRF and XRD techniques, respectively.

Keywords: consolidation, hard sludge, secondary circuit, steam generator

Procedia PDF Downloads 191
688 Effect of Aeration on Co-Composting of Mixture of Food Waste with Sawdust and Sewage Sludge from Nicosia Waste Water Treatment Plant

Authors: Azad Khalid, Ime Akanyeti

Abstract:

About 68% of the urban solid waste generated in Turkish Republic of Northern Cyprus TRNC is household solid waste, at present, its disposal in landfills. In other hand more than 3000 ton per year of sewage sludge produces in Nicosia waste water treatment plant, the produced sludge piled up without any processing. Co-composting of organic fraction of municipal solid waste and sewage sludge is diverting of municipal solid waste from landfills and best disposal of wastewater sewage sludge. Three 10 L insulated bioreactor R1, R2 and R3 obtained with aeration rate 0.05 m3/h.kg for R2 and R3, R1 was without aeration. The mixture was destined with ratio of sewage sludge: food waste: sawdust; 1:5:0.8 (w/w). The effective of aeration monitored during 42 days of process through investigation in key parameter moisture, C/N ratio, temperature and pH. Results show that the high moisture content cause problem and around 60% recommend, C/N ratio decreased about 17% in aerated reactors and 10% in without aeration and mixture volume reduced in volume 40% in final compost with size of 1.00 to 20.0 mm. temperature in reactors with aeration reached thermophilic phase above 50 °C and <40 °C in without aeration. The final pH is 6.1 in R1, 8.23 in R2 and 8.1 in R3.

Keywords: aeration, sewage sludge, food waste, sawdust, composting

Procedia PDF Downloads 94
687 Influence of Initial Curing Time, Water Content and Apparent Water Content on Geopolymer Modified Sludge Generated in Landslide Area

Authors: Minh Chien Vu, Tomoaki Satomi, Hiroshi Takahashi

Abstract:

As being lack of sufficient strength to support the loading of construction as well as service life cause the clay content and clay mineralogy, soft and highly compressible soils (sludge) constitute a major problem in geotechnical engineering projects. Geopolymer, a kind of inorganic polymer, is a promising material with a wide range of applications and offers a lower level of CO₂ emissions than conventional Portland cement. However, the feasibility of geopolymer in term of modified the soft and highly compressible soil has not been received much attention due to the requirement of heat treatment for activating the fly ash component and the existence of high content of clay-size particles in the composition of sludge that affected on the efficiency of the reaction. On the other hand, the geopolymer modified sludge could be affected by other important factors such as initial curing time, initial water content and apparent water content. Therefore, this paper describes a different potential application of geopolymer: soil stabilization in landslide areas to adapt to the technical properties of sludge so that heavy machines can move on. Sludge condition process is utilized to demonstrate the possibility for stabilizing sludge using fly ash-based geopolymer at ambient curing condition ( ± 20 °C) in term of failure strength, strain and bulk density. Sludge conditioning is a process whereby sludge is treated with chemicals or various other means to improve the dewatering characteristics of sludge before applying in the construction area. The effect of initial curing time, water content and apparent water content on the modification of sludge are the main focus of this study. Test results indicate that the initial curing time has potential for improving failure strain and strength of modified sludge with the specific condition of soft soil. The result further shows that the initial water content over than 50% total mass of sludge could significantly lead to a decrease of strength performance of geopolymer-based modified sludge. The optimum apparent water content of geopolymer modified sludge is strongly influenced by the amount of geopolymer content and initial water content of sludge. The solution to minimize the effect of high initial water content will be considered deeper in the future.

Keywords: landslide, sludge, fly ash, geopolymer, sludge conditioning

Procedia PDF Downloads 117
686 Safety of Built Infrastructure: Single Degree of Freedom Approach to Blast Resistant RC Wall Panels

Authors: Muizz Sanni-Anibire

Abstract:

The 21st century has witnessed growing concerns for the protection of built facilities against natural and man-made disasters. Studies in earthquake resistant buildings, fire, and explosion resistant buildings now dominate the arena. To protect people and facilities from the effects of the explosion, reinforced concrete walls have been designed to be blast resistant. Understanding the performance of these walls is a key step in ensuring the safety of built facilities. Blast walls are mostly designed using simple techniques such as single degree of freedom (SDOF) method, despite the increasing use of multi-degree of freedom techniques such as the finite element method. This study is the first stage of a continuous research into the safety and reliability of blast walls. It presents the SDOF approach applied to the analysis of a concrete wall panel under three representative bomb situations. These are motorcycle 50 kg, car 400kg and also van with the capacity of 1500 kg of TNT explosive.

Keywords: blast wall, safety, protection, explosion

Procedia PDF Downloads 263
685 Evaluating Acid Buffering Capacity of Sewage Sludge Barrier for Inhibiting Remobilization of Heavy Metals in Tailing Impoundment

Authors: Huyuan Zhang, Yi Chen

Abstract:

Compacted sewage sludge has been proved to be feasible as a barrier material for tailing impoundment because of its low permeability and retardation of heavy metals. The long-term penetration of acid mine drainage, however, would acidify the barrier system and result in remobilization of previously immobilized heavy metal pollutants. In this study, the effect of decreasing pH on the mobility of three typical heavy metals (Zn, Pb, and Cu) is investigated by acid titration test on sewage sludge under various conditions. The remobilization of heavy metals is discussed based on the acid buffering capacity of sewage sludge-leachate system. Test results indicate that heavy metals are dramatically released out when pH is decreased below 6.2, and their amounts take the order of Zn > Cu > Pb. The acid buffering capacity of sewage sludge decreases with the solid-liquid ratio but increases with the anaerobic incubation time, and it is mainly governed by dissolution of contained carbonate and organics. These results reveal that the sewage sludge possesses enough acid buffering capacity to consume protons within the acid mine drainage. Thus, this study suggests that an explosive remobilization of heavy metals is not expected in a long-term perspective.

Keywords: acid buffering capacity, barrier, heavy metals, remobilization, sewage sludge

Procedia PDF Downloads 320
684 Dehydration of Residues from WTP for Application in Building Materials and Reuse of Water from the Waste Treatment: A Feasible Solution to Complete Treatment Systems

Authors: Marco Correa, Flavio Araujo, Paulo Scalize, Antonio Albuquerque

Abstract:

The increasing reduction of the volumes of surface water sources which supply most municipalities, as well as the continued rise of demand for treated water, combined with the disposal of effluents from washing of decanters and filters of the water treatment plants, generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows an alternative for the dehydration of sludge from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, we present a case study for a drainage in tanks geotextile, full-scale, which involve five sludge drainage tanks from WTP of the Rio Verde City. Aiming to the reutilization the water drained from the sludge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to production of building materials.

Keywords: re-use, residue, sustainable, water treatment plants, sludge

Procedia PDF Downloads 492
683 Anaerobic Co-Digestion of Duckweed (Lemna gibba) and Waste Activated Sludge in Batch Mode

Authors: Rubia Gaur, Surindra Suthar

Abstract:

The present study investigates the anaerobic co-digestion of duckweed (Lemna gibba) and waste activated sludge (WAS) of different proportions with acclimatized anaerobic granular sludge (AAGS) as inoculum in mesophilic conditions. Batch experiments were performed in 500 mL capacity reagent bottles at 300C temperature. Varied combinations of pre-treated duckweed biomass with constant volume of anaerobic inoculum (AAGS - 100 mL) and waste activated sludge (WAS - 22.5 mL) were devised into five batch tests. The highest methane generation was observed with batch study, T4. The Gompertz model fits well on the experimental data of the batch study, T4. The values of correlation coefficient were achieved relatively higher (R2 ≥ 0.99). The co-digestion without pre-treatment of both duckweed and WAS shows poor generation of methane gas.

Keywords: aquatic weed, biogas, biomass, Gompertz equation, waste activated sludge

Procedia PDF Downloads 284
682 Blast Load Resistance of Bridge Columns

Authors: Amir Kavousifard, Lan Lin

Abstract:

The objective of this study is to evaluate the effects of the detailing in the seismic design of reinforced concrete (RC) bridge columns on the blast load resistance. A generic two-span continuous RC bridge located in Victoria, British Columbia, which represents the highest seismicity in Canada, was examined in the study. The bridge superstructure consists of a single cell box girder while the substructure consists of two circular columns. The bridge was designed according to the 2006 Canadian Highway Bridge Design Code. More specifically, response spectrum analysis was performed to determine the seismic demands using CSI Bridge. The 3D blast load analysis is carried out in the platform of LS-DYNA. Two charge heights, i.e., one at the mid-height of the column and the other at the bottom of the column, are considered. For each height, three cases are analyzed in order to investigate the effects of standoff and charge weight on the structural response. The blast load resistance of the column is assessed in terms of the concrete failure mechanism, steel stress distribution, and column lateral displacement. The results from the study indicate that a column designed in accordance with the code requirements could survive during the blast attack. Spiral columns perform much better than tied columns. The results also show that the charge weight has more impact on the structural response than the standoff. These results are beneficial for the development of the Canadian standards for the design of bridges under blast loads.

Keywords: blast, bridge, charge, height, seismic, standoff

Procedia PDF Downloads 22
681 The Effect of Traffic Load on the Maximum Response of a Cable-Stayed Bridge under Blast Loads

Authors: S. K. Hashemi, M. A. Bradford, H. R. Valipour

Abstract:

The Recent collapse of bridges has raised the awareness about safety and robustness of bridges subjected to extreme loading scenarios such as intentional/unintentional blast loads. The air blast generated by the explosion of bombs or fuel tankers leads to high-magnitude short-duration loading scenarios that can cause severe structural damage and loss of critical structural members. Hence, more attentions need to put towards bridge structures to develop guidelines to increase the resistance of such structures against the probable blast. Recent advancements in numerical methods have brought about the viable and cost effective facilities to simulate complicated blast scenarios and subsequently provide useful reference for safeguarding design of critical infrastructures. In the previous studies common bridge responses to blast load, the traffic load is sometimes not included in the analysis. Including traffic load will increase the axial compression in bridge piers especially when the axial load is relatively small. Traffic load also can reduce the uplift of girders and deck when the bridge experiences under deck explosion. For more complicated structures like cable-stayed or suspension bridges, however, the effect of traffic loads can be completely different. The tension in the cables increase and progressive collapse is likely to happen while traffic loads exist. Accordingly, this study is an attempt to simulate the effect of traffic load cases on the maximum local and global response of an entire cable-stayed bridge subjected to blast loadings using LS-DYNA explicit finite element code. The blast loads ranged from small to large explosion placed at different positions above the deck. Furthermore, the variation of the traffic load factor in the load combination and its effect on the dynamic response of the bridge under blast load is investigated.

Keywords: blast, cable-stayed bridge, LS-DYNA, numerical, traffic load

Procedia PDF Downloads 333
680 Practical Guidelines for Utilizing WipFrag Software to Assess Oversize Blast Material Using Both Orthomosaic and Digital Images

Authors: Blessing Olamide Taiwo, Andrew Palangio, Chirag Savaliya, Jenil Patel

Abstract:

Oversized material resulting from blasting presents a notable drawback in the transportation of run-off-mine material due to increased expenses associated with handling, decreased efficiency in loading, and greater wear on digging equipment. Its irregular size and weight demand additional resources and time for secondary breakage, impacting overall productivity and profitability. This paper addresses the limitations of interpreting image analysis software results and applying them to the assessment of blast-generated oversized materials. This comprehensive guide utilizes both ortho mosaic and digital photos to provide critical approaches for optimizing fragmentation analysis and improving decision-making in mining operations. It briefly covers post-blast assessment, blast block heat map interpretation, and material loading decision-making recommendations.

Keywords: blast result assessment, WipFrag, oversize identification, orthomosaic images, production optimization

Procedia PDF Downloads 41
679 The Study on Energy Saving in Clarification Process for Water Treatment Plant

Authors: Wiwat Onnakklum

Abstract:

Clarification is the turbidity removal process of water treatment plant. This paper was to study the factors affecting on energy consumption in order to control energy saving strategy. The factors studied were raw water turbidity in the range of 26-40 NTU and production rate in the range of 3.76-5.20 m³/sec. Clarifiers were sludge blanket and sludge recirculation clarifier. Experimental results found that the raw water turbidity was not affected significantly by energy consumption, while the production rate was affected significantly by energy consumption. Sludge blanket clarifier provided lower energy consumption than sludge recirculation clarifier about 32-37%. Subsequently, the operating pattern in production rate can be arranged to decreased energy consumption. The results showed that it can be reduced about 5.09 % of energy saving of clarification process about 754,655 Baht per year.

Keywords: sludge blanket clarifier, sludge recirculation clarifier, water treatment plant, energy

Procedia PDF Downloads 327
678 Effect of Electric Arc Furnace Coarse Slag Aggregate And Ground Granulated Blast Furnace Slag on Mechanical and Durability Properties of Roller Compacted Concrete Pavement

Authors: Amiya Kumar Thakur, Dinesh Ganvir, Prem Pal Bansal

Abstract:

Industrial by product utilization has been encouraged due to environment and economic factors. Since electric arc furnace slag aggregate is a by-product of steel industry and its storage is a major concern hence it can be used as a replacement of natural aggregate as its physical and mechanical property are comparable or better than the natural aggregates. The present study investigates the effect of partial and full replacement of natural coarse aggregate with coarse EAF slag aggregate and partial replacement of cement with ground granulated blast furnace slag (GGBFS) on the mechanical and durability properties of roller compacted concrete pavement (RCCP).The replacement level of EAF slag aggregate were at five levels (i.e. 0% ,25% ,50%,75% & 100%) and of GGBFS was (0 % & 30%).The EAF slag aggregate was stabilized by exposing to outdoor condition for several years and the volumetric expansion test using steam exposure device was done to check volume stability. Soil compaction method was used for mix proportioning of RCCP. The fresh properties of RCCP investigated were fresh density and modified vebe test was done to measure the consistency of concrete. For investigating the mechanical properties various tests were done at 7 and 28 days (i.e. Compressive strength, split tensile strength, flexure strength modulus of elasticity) and also non-destructive testing was done at 28 days (i.e. Ultra pulse velocity test (UPV) & rebound hammer test). The durability test done at 28 days were water absorption, skid resistance & abrasion resistance. The results showed that with the increase in slag aggregate percentage there was an increase in the fresh density of concrete and also slight increase in the vebe time but with the 30 % GGBFS replacement the vebe time decreased and the fresh density was comparable to 0% GGBFS mix. The compressive strength, split tensile strength, flexure strength & modulus of elasticity increased with the increase in slag aggregate percentage in concrete when compared to control mix. But with the 30 % GGBFS replacement there was slight decrease in mechanical properties when compared to 100 % cement concrete. In UPV test and rebound hammer test all the mixes showed excellent quality of concrete. With the increase in slag aggregate percentage in concrete there was an increase in water absorption, skid resistance and abrasion resistance but with the 30 % GGBFS percentage the skid resistance, water absorption and abrasion resistance decreased when compared to 100 % cement concrete. From the study it was found that the mix containing 30 % GGBFS with different percentages of EAF slag aggregate were having comparable results for all the mechanical and durability property when compared to 100 % cement mixes. Hence 30 % GGBFS can be used as cement replacement with 100 % EAF slag aggregate as natural coarse aggregate replacement.

Keywords: durability properties, electric arc furnace slag aggregate, GGBFS, mechanical properties, roller compacted concrete pavement, soil compaction method

Procedia PDF Downloads 147
677 Industrial Wastewater Sludge Treatment in Chongqing, China

Authors: Victor Emery David Jr., Jiang Wenchao, Yasinta John, Md. Sahadat Hossain

Abstract:

Sludge originates from the process of treatment of wastewater. It is the byproduct of wastewater treatment containing concentrated heavy metals and poorly biodegradable trace organic compounds, as well as potentially pathogenic organisms (viruses, bacteria, etc.) which are usually difficult to treat or dispose of. China, like other countries, is no stranger to the challenges posed by an increase of wastewater. Treatment and disposal of sludge have been a problem for most cities in China. However, this problem has been exacerbated by other issues such as lack of technology, funding, and other factors. Suitable methods for such climatic conditions are still unavailable for modern cities in China. Against this background, this paper seeks to describe the methods used for treatment and disposal of sludge from industries and suggest a suitable method for treatment and disposal in Chongqing/China. From the research conducted, it was discovered that the highest treatment rate of sludge in Chongqing was 10.08%. The industrial waste piping system is not separated from the domestic system. Considering the proliferation of industry and urbanization, there is a likelihood that the production of sludge in Chongqing will increase. If the sludge produced is not properly managed, this may lead to adverse health and environmental effects. Disposal costs and methods for Chongqing were also included in this paper’s analysis. Research showed that incineration is the most expensive method of sludge disposal in China/Chongqing. Subsequent research, therefore, considered optional alternatives such as composting. Composting represents a relatively cheap waste disposal method considering the vast population, current technology and economic conditions of Chongqing, as well as China at large.

Keywords: Chongqing/China, disposal, industrial, sludge, treatment

Procedia PDF Downloads 321
676 Effect of Segregation on the Reaction Rate of Sewage Sludge Pyrolysis in a Bubbling Fluidized Bed

Authors: A. Soria-Verdugo, A. Morato-Godino, L. M. García-Gutiérrez, N. García-Hernando

Abstract:

The evolution of the pyrolysis of sewage sludge in a fixed and a fluidized bed was analyzed using a novel measuring technique. This original measuring technique consists of installing the whole reactor over a precision scale, capable of measuring the mass of the complete reactor with enough precision to detect the mass released by the sewage sludge sample during its pyrolysis. The inert conditions required for the pyrolysis process were obtained supplying the bed with a nitrogen flowrate, and the bed temperature was adjusted to either 500 ºC or 600 ºC using a group of three electric resistors. The sewage sludge sample was supplied through the top of the bed in a batch of 10 g. The measurement of the mass released by the sewage sludge sample was employed to determine the evolution of the reaction rate during the pyrolysis, the total amount of volatile matter released, and the pyrolysis time. The pyrolysis tests of sewage sludge in the fluidized bed were conducted using two different bed materials of the same size but different densities: silica sand and sepiolite particles. The higher density of silica sand particles induces a flotsam behavior for the sewage sludge particles which move close to the bed surface. In contrast, the lower density of sepiolite produces a neutrally-buoyant behavior for the sewage sludge particles, which shows a proper circulation throughout the whole bed in this case. The analysis of the evolution of the pyrolysis process in both fluidized beds show that the pyrolysis is faster when buoyancy effects are negligible, i.e. in the bed conformed by sepiolite particles. Moreover, sepiolite was found to show an absorbent capability for the volatile matter released during the pyrolysis of sewage sludge.

Keywords: bubbling fluidized bed, pyrolysis, reaction rate, segregation effects, sewage sludge

Procedia PDF Downloads 358
675 Dry Binder Mixing of Field Trial Investigation Using Soil Mix Technology: Case Study on Contaminated Site Soil

Authors: Mary Allagoa, Abir Al-Tabbaa

Abstract:

The study explores the use of binders and additives, such as Portland cement, pulverized fuel ash, ground granulated blast furnace slag, and MgO, to decrease the concentration and leachability of pollutants in contaminated site soils. The research investigates their effectiveness and associated risks of using the binders, with a focus on Total Heavy metals (THM) and Total Petroleum Hydrocarbon (TPH). The goal of this research is to evaluate the performance and effectiveness of binders and additives in remediating soil pollutants. The study aims to assess the suitability of the mixtures for ground improvement purposes, determine the optimal dosage, and investigate the associated risks. The research utilizes physical (unconfined compressive strength) and chemical tests (batch leachability test) to assess the efficacy of the binders and additives. A completely randomized design one-way ANOVA is used to determine the significance within mix binders of THM. The study also employs incremental lifetime cancer risk assessments (ILCR) and other indexes to evaluate the associated risks. The study finds that Ground Granulated Blast Furnace Slag (GGBS): MgO is the most effective binder for remediation, particularly when using low dosages of MgO combined with higher dosages of GGBS binders on TPH. The results indicate that binders and additives can encapsulate and immobilize pollutants, thereby reducing their leachability and toxicity. The mean unconfined compressive strength of the soil ranges from 285.0- 320.5 kPa, while THM levels are less than 10 µg/l in GGBS: MgO and CEM: PFA but below 1 µg/l in CEM I based. The ILCR ranged from 6.77E-02 - 2.65E-01 and 5.444E-01 – 3.20 E+00, with the highest values observed under extreme conditions. The hazard index (HI), Risk allowable daily dose intake (ADI), and Risk chronic daily intake (CDI) were all less than 1 for the THM. The study identifies MgO as the best additive for use in soil remediation.

Keywords: risk ADI, risk CDI, ILCR, novel binders, additives binders, hazard index

Procedia PDF Downloads 816
674 Impact of Activated Sludge Bulking and Foaming on the Quality of Kuwait's Irrigation Water

Authors: Abdallah Abusam, Andrzej Mydlarczyk, Fadila Al-Salameen, Moh Elmuntasir Ahmed

Abstract:

Treated municipal wastewater produced in Kuwait is used mainly in agricultural and greenery landscape irrigations. However, there are strong doubts that severe sludge bulking and foaming problems, particularly during winter seasons, may render the treated wastewater to be unsuitable for irrigation purposes. To assess the impact of sludge bulking and foaming problems on the quality of treated effluents, samples were collected weekly for nine months (January to September 2014) from the secondary effluents, tertiary effluents and sludge-mixed liquor streams of the two plants that severely suffer from sludge bulking and foaming problems. Dominant filamentous bacteria were identified and quantified using a molecular method called VIT (Vermicon Identification Technology). Quality of the treated effluents was determined according to water and wastewater standard methods. Obtained results were then statistically analyzed and compared to irrigation water standards. Statistical results indicated that secondary effluents were greatly impacted by sludge bulking and foaming problems, while tertiary effluents were slightly affected. This finding highlights the importance of having tertiary treatment units in plants that encountering sludge bulking and foaming problems.

Keywords: agriculture, filamentous bacteria, reclamation, reuse, wastewater

Procedia PDF Downloads 269
673 Efficient of Technology Remediation Soil That Contaminated by Petroleum Based on Heat without Combustion

Authors: Gavin Hutama Farandiarta, Hegi Adi Prabowo, Istiara Rizqillah Hanifah, Millati Hanifah Saprudin, Raden Iqrafia Ashna

Abstract:

The increase of the petroleum’s consumption rate encourages industries to optimize and increase the activity in processing crude oil into petroleum. However, although the result gives a lot of benefits to humans worldwide, it also gives negative impact to the environment. One of the negative impacts of processing crude oil is the soil will be contaminated by petroleum sewage sludge. This petroleum sewage sludge, contains hydrocarbon compound and it can be calculated by Total Petroleum Hydrocarbon (TPH).Petroleum sludge waste is accounted as hazardous and toxic. The soil contamination caused by the petroleum sludge is very hard to get rid of. However, there is a way to manage the soil that is contaminated by petroleum sludge, which is by using heat (thermal desorption) in the process of remediation. There are several factors that affect the success rate of the remediation with the help of heat which are temperature, time, and air pressure in the desorption column. The remediation process using the help of heat is an alternative in soil recovery from the petroleum pollution which highly effective, cheap, and environmentally friendly that produces uncontaminated soil and the petroleum that can be used again.

Keywords: petroleum sewage sludge, remediation soil, thermal desorption, total petroleum hydrocarbon (TPH)

Procedia PDF Downloads 249
672 Damage Assessment of Reinforced Concrete Slabs Subjected to Blast Loading

Authors: W. Badla

Abstract:

A numerical investigation has been carried out to examine the behaviour of reinforced concrete slabs to uniform blast loading. The aim of this work is to determine the effects of various parameters on the results. Finite element simulations were performed in the non linear dynamic range using an elasto-plastic damage model. The main parameters considered are: the negative phase of blast loading, time duration, equivalent weight of TNT, distance of the explosive and slab dimensions. Numerical modelling has been performed using ABAQUS/Explicit. The results obtained in terms of displacements and propagation of damage show that the above parameters influence considerably the nonlinear dynamic behaviour of reinforced concrete slabs under uniform blast loading.

Keywords: blast loading, reinforced concrete slabs, elasto-plastic damage model, negative phase, time duration, equivalent weight of TNT, explosive distance, slab dimensions

Procedia PDF Downloads 534
671 Stability Analysis of Rock Tunnel Subjected to Internal Blast Loading

Authors: Mohammad Zaid, Md. Rehan Sadique

Abstract:

Underground structures are an integral part of urban infrastructures. Tunnels are being used for the transportation of humans and goods from distance to distance. Terrorist attacks on underground structures such as tunnels have resulted in the improvement of design methodologies of tunnels. The design of underground tunnels must include anti-terror design parameters. The study has been carried out to analyse the rock tunnel when subjected to internal blast loading. The finite element analysis has been carried out for 30m by 30m of the cross-section of the tunnel and 35m length of extrusion of the rock tunnel model. The effect of tunnel diameter and overburden depth of tunnel has been studied under internal blast loading. Four different diameters of tunnel considered are 5m, 6m, 7m, and 8m, and four different overburden depth of tunnel considered are 5m, 7.5m, 10m, and 12.5m. The mohr-coulomb constitutive material model has been considered for the Quartzite rock. A concrete damage plasticity model has been adopted for concrete tunnel lining. For the trinitrotoluene (TNT) Jones-Wilkens-Lee (JWL) material model has been considered. Coupled-Eulerian-Lagrangian (CEL) approach for blast analysis has been considered in the present study. The present study concludes that a shallow tunnel having smaller diameter needs more attention in comparison to blast resistant design of deep tunnel having a larger diameter. Further, in the case of shallow tunnels, more bulging has been observed, and a more substantial zone of rock has been affected by internal blast loading.

Keywords: finite element method, blast, rock, tunnel, CEL, JWL

Procedia PDF Downloads 147
670 Waste from Drinking Water Treatment: The Feasibility for Application in Building Materials

Authors: Marco Correa

Abstract:

The increasing reduction of the volumes of surface water sources supplying most municipalities, as well as the rising demand for treated water, combined with the disposal of effluents from washing of decanters and filters of water treatment plants generates a continuous search for correct environmentally solutions to these problems. The effluents generated by the water treatment industry need to be suitably processed for return to the environment or re-use. This article shows alternatives for sludge dehydration from the water treatment plants (WTP) and eventual disposal of sludge drained. Using the simple design methodology, it is presented a case study for drainage in tanks geotextile, full-scale, which involve five sledge drainage tanks from WTP of the city of Rio Verde. Aiming to the reutilization of drained water from the sledge and enabling its reuse both at the beginning of the treatment process at the WTP and in less noble services as for watering the gardens of the local town hall. The sludge will be used to in the production of building materials.

Keywords: dehydration, effluent discharges, re-use, sludge, WTP sludge

Procedia PDF Downloads 312
669 Factors Affecting Aluminum Dissolve from Acidified Water Purification Sludge

Authors: Wen Po Cheng, Chi Hua Fu, Ping Hung Chen, Ruey Fang Yu

Abstract:

Recovering resources from water purification sludge (WPS) have been gradually stipulated in environmental protection laws and regulations in many nations. Hence, reusing the WPS is becoming an important topic, and recovering alum from WPS is one of the many practical alternatives. Most previous research efforts have been conducted on studying the amphoteric characteristic of aluminum hydroxide for investigating the optimum pH range to dissolve the Al(III) species from WPS, but it has been lack of reaction kinetics or mechanisms related discussion. Therefore, in this investigation, water purification sludge (WPS) solution was broken by ultrasound to make particle size of reactants smaller, specific surface area larger. According to the reaction kinetics, these phenomena let the dissolved aluminum salt quantity increased and the reaction rate go faster.

Keywords: aluminum, acidification, sludge, recovery

Procedia PDF Downloads 631
668 Effect of Lime Stabilization on E. coli Destruction and Heavy Metal Bioavailability in Sewage Sludge for Agricultural Utilization

Authors: G. Petruzzelli, F. Pedron, M. Grifoni, A. Pera, I. Rosellini, B. Pezzarossa

Abstract:

The addition of lime as Ca(OH)2 to sewage sludge to destroy pathogens (Escherichia coli), was evaluated also in relation to heavy metal bioavailability. The obtained results show that the use of calcium hydroxide at the dose of 3% effectively destroyed pathogens ensuring the stability at high pH values over long period and the duration of the sewage sludge stabilization. In general, lime addition decreased the total extractability of heavy metals indicating a reduced bioavailability of these elements. This is particularly important for a safe utilization in agricultural soils to reduce the possible transfer of heavy metals to the food chain.

Keywords: biological sludge, Ca(OH)2, copper, pathogens, sanitation, zinc

Procedia PDF Downloads 426
667 Assessment of Mechanical Properties of Induction Furnace Slag as Partial Replacement of Fine Aggregate in Concrete

Authors: Muhammad Javed Bhatti, Tariq Ali, Muazz Ali

Abstract:

Due to growing environmental awareness in Pakistan, the researchers are increasingly turning to assess and analyze properties of industrial waste and finding solutions on using industrial waste as secondary material. Due to industrialization, enormous by-products are produced and to utilize these by-products is the main challenge faced in Pakistan. Induction furnace slag is one of the industrial by-products from the iron and steel making industries. This paper highlights the true utilization of induction furnace slag as partial replacement of fine aggregate. For the experimental investigation, mixes were prepared with fine aggregate replacement using 0 percent, 5 percent, 10 percent, 15 percent, 20 percent, 25 percent, 30 percent, 35 percent and 40 percent induction furnace slag to evaluate the workability, compaction factor, compressive strength, flexural strength, modulus of elasticity.

Keywords: compressive strength, deflection, induction furnace slag, workability

Procedia PDF Downloads 305
666 Improvement Anaerobic Digestion Performance of Sewage Sludge by Co-Digestion with Cattle Manure

Authors: Raouf Hassan

Abstract:

Biogas energy production from sewage sludge is an economically feasible and eco-friendly in nature. Sewage sludge is considered nutrient-rich substrates, but had lower values of carbone which consider an energy source for anaerobic bacteria. The lack or lower values of carbone-to-nitrogen ratio (C/N) reduced biogas yield and fermentation rate. Anaerobic co-digestion of sewage sludge offers several benefits over mono-digestion such as optimize nutrient balance, increased cost-efficiency and increased degradation rate. The high produced amounts of animal manures, which reach up to 90% of the total collected organic wastes, are recommended for the co-digestion with sewage sludge, especially with the limitations of industrial substrates. Moreover, cattle manures had high methane production potential (500 m3/t vsadded). When mixed with sewage sludge the potential methane production increased with increasing cattle manure content. In this paper, the effect of cattle manure (CM) addition as co-substrates on the sewage sludge (SS) anaerobic digestion performance was investigated under mesophilic conditions (35°C) using anaerobic batch reactors. The batch reactors were operated with a working volume 0.8 liter, and a hydraulic retention time of 30 days. The research work focus on studying two main parameters; the biogas yield (expressed as VSS) and pH values inside the reactors.

Keywords: anaerobic digestion, sewage sludge, cattle manure, mesophilic, biogas yield, pH

Procedia PDF Downloads 316
665 Pattern of External Injuries Sustained during Bomb Blast Attacks in Karachi, Pakistan from 2000 to 2007

Authors: Arif Anwar Surani, Salman Ali, Asif Surani, Sohaib Zahid, Akbar Shoukat Ali, Zeeshan-Ul-Hassan Usmani, Joseph Varon, Salim Surani

Abstract:

Objective: Terrorism and suicidal bomb blast attacks are commonplace in Karachi, Pakistan. During the years 2000 to 2007, there were over 60 bomb explosions resulting in more than 1500 casualties. These explosions produce a wide variety of external injuries. We undertook this study to evaluate pattern of external injury produced after bomb blast attacks and to compare injury profile resulting from explosions in open versus semi-confined blast environments. Method: A retrospective, cross-sectional, study was conducted to review injuries sustained after bomb blast attacks in Karachi, Pakistan, from January 2000 to October 2007. Emergency medical records and medico legal certificates of patients presented to three major public sector hospitals of Karachi were evaluated using self-design proforma. Results: Data of 481 victims meet inclusion criteria and were incorporated for final analysis. Of these, 63.6% were injured in open spaces and 36.4% were injured in semi-confined blast environments. Lacerations were commonly encountered as external injury (47.7%) followed by penetrating wounds (15.3%). Lower and upper extremities were most commonly affected (38.6% and 19% respectively). Open and semi-confined blast environments produced a specific injury pattern and profile (p=<0.001). Conclusions: Bomb blast attacks in Karachi produce an external injury pattern consistent with other studies, with exception of an increased frequency in penetrating wounds. Semi-confined blast environments were associated with severe injuries. Further studies are required to better classify injuries and their severity based on standardized scoring systems. Effective emergency response systems must be designed to cope with mass causalities following bomb explosions.

Keywords: bomb blast attacks, injury pattern, external injury, open space, semi-confined space, blast environment

Procedia PDF Downloads 399
664 A Study of Fecal Sludge Management in Auroville and Its Surrounding Villages in Tamilnadu, India

Authors: Preethi Grace Theva Neethi Dhas

Abstract:

A healthy human gut microbiome has commensal and symbiotic functions in digestion and is a decisive factor for human health. The soil microbiome is a crucial component in the ecosystem of soils and their health and resilience. Changes in soil microbiome are linked to human health. Ever since the industrial era, the human and the soil microbiome have been going through drastic changes. The soil microbiome has changed due to industrialization and extensive agricultural practices, whereas humans have less contact with soil and increased intake of highly processed foods, leading to changes in the human gut microbiome. Regenerating the soil becomes crucial in maintaining a healthy ecosystem. The nutrients, once obtained from the soil, need to be given back to the soil. Soil degradation needs to be addressed in effective ways, like adding organic nutrients back to the soil. Manure from animals and humans needs to be returned to the soil, which can complete the nutrient cycle in the soil. On the other hand, fecal sludge management (FSM) is a growing concern in many parts of the developing world. Hence, it becomes crucial to treat and reuse fecal sludge in a safe manner, i.e., low in risk to human health. Co-composting fecal sludge with organic wastes is a practice that allows the safe management of fecal sludge and the safe application of nutrients to the soil. This paper will discuss the possible impact of co-composting fecal sludge with coconut choir waste on the soil, water, and ecosystem at large. Impact parameters like nitrogen, phosphorus, and fecal coliforms will be analyzed. The overall impact of fecal sludge application on the soil will be researched and presented in this study.

Keywords: fecal sludge management, nutrient cycle, soil health, composting

Procedia PDF Downloads 80
663 Utilization of Fly Ash Amended Sewage Sludge as Sustainable Building Material

Authors: Kaling Taki, Rohit Gahlot, Manish Kumar

Abstract:

Disposal of Sewage Sludge (SS) is a big issue especially in developing nation like India, where there is no control in the dynamicity of SS produced. The present research work demonstrates the potential application of SS amended with varying percentage (0-100%) of Fly Ash (FA) for brick manufacturing as an alternative of SS management. SS samples were collected from Jaspur sewage treatment plant (Ahmedabad, India) and subjected to different preconditioning treatments: (i) atmospheric drying (ii) pulverization (iii) heat treatment in oven (110°C, moisture removal) and muffle furnace (440°C, organic content removal). Geotechnical parameters of the SS were obtained as liquid limit (52%), plastic limit (24%), shrinkage limit (10%), plasticity index (28%), differential free swell index (DFSI, 47%), silt (68%), clay (27%), organic content (5%), optimum moisture content (OMC, 20%), maximum dry density (MDD, 1.55gm/cc), specific gravity (2.66), swell pressure (57kPa) and unconfined compressive strength (UCS, 207kPa). For FA liquid limit, plastic limit and specific gravity was 44%, 0% and 2.2 respectively. Initially, for brick casting pulverized SS sample was heat treated in a muffle furnace around 440℃ (5 hours) for removal of organic matter. Later, mixing of SS, FA and water by weight ratio was done at OMC. 7*7*7 cm3 sample mold was used for casting bricks at MDD. Brick samples were then first dried in room temperature for 24 hours, then in oven at 100℃ (24 hours) and finally firing in muffle furnace for 1000℃ (10 hours). The fired brick samples were then cured for 3 days according to Indian Standards (IS) common burnt clay building bricks- specification (5th revision). The Compressive strength of brick samples (0, 10, 20, 30, 40, 50 ,60, 70, 80, 90, 100%) of FA were 0.45, 0.76, 1.89, 1.83, 4.02, 3.74, 3.42, 3.19, 2.87, 0.78 and 4.95MPa when evaluated through compressive testing machine (CTM) for a stress rate of 14MPa/min. The highest strength was obtained at 40% FA mixture i.e. 4.02MPa which is much higher than the pure SS brick sample. According to IS 1077: 1992 this combination gives strength more than 3.5 MPa and can be utilized as common building bricks. The loss in weight after firing was much higher than the oven treatment, this might be due to degradation temperature higher than 100℃. The thermal conductivity of the fired brick was obtained as 0.44Wm-1K-1, indicating better insulation properties than other reported studies. TCLP (Toxicity characteristic leaching procedure) test of Cr, Cu, Co, Fe and Ni in raw SS was found as 69, 70, 21, 39502 and 47 mg/kg. The study positively concludes that SS and FA at optimum ratio can be utilized as common building bricks such as partitioning wall and other small strength requirement works. The uniqueness of the work is it emphasizes on utilization of FA for stabilizing SS as construction material as a replacement of natural clay as reported in existing studies.

Keywords: Compressive strength, Curing, Fly Ash, Sewage Sludge.

Procedia PDF Downloads 112
662 Experimental Studies on Fly Ash-Waste Sludge Mix Reinforced with Geofibres

Authors: Malik Shoeb Ahmad

Abstract:

The aim of the present study is to carry out investigations on Class F fly ash obtained from NTPC thermal power plant, Dadri, U.P. (India) and electroplating waste sludge from Aligarh, U.P. (India) along with geofibre for its subsequent utilization in various geotechnical and highway engineering applications. The experimental studies such as California bearing ratio (CBR) tests were carried out to evaluate the strength of plain fly ash as well as fly ash-waste sludge mix reinforced with geofibre, as the CBR value is the vital parameters used in the design of flexible and rigid pavements. Results of the study show that the strength of the mix is highly dependent on the curing period and the sludge and geofibre content. The CBR values were determined for mix containing fly ash (83.5-93.5%), waste sludge (5-15%) and 1-2% geofibre. However, out of the various combinations of mixes the CBR value of the mix 88.5%FA+10%S+1.5%GF at 28 days of curing was found to be 53.52% when compared with the strength of plain fly ash. It has been observed that the fibre inclusion increases the strength of the plain fly ash and fly ash-waste sludge specimens by changing their brittle to ductile behavior. The TCLP leaching test was also conducted to determine the heavy metal concentration in the optimized mix. The results of TCLP test show that the heavy metal concentration in the mix 88.5%FA+10%S+1.5%G at 28 days of curing reduced substantially from 24 to 98% when compared with the concentration of heavy metals in the waste sludge collected from source. It has also been observed that the pH of the leachate of this mix is between 9-11, which ensures the proper stabilization of the heavy metals present in the mix. Hence, this study will certainly help in mass scale utilization of two industrial wastes viz., electroplating waste and fly ash, which are causing pollution to the environment to a great extent.

Keywords: Dadri fly ash, geofibre, electroplating waste sludge, CBR, TCLP

Procedia PDF Downloads 344
661 Investigating the Efficiency of Granular Sludge for Recovery of Phosphate from Wastewater

Authors: Sara Salehi, Ka Yu Cheng, Anna Heitz, Maneesha Ginige

Abstract:

This study investigated the efficiency of granular sludge for phosphorous (P) recovery from wastewater. A laboratory scale sequencing batch reactor (SBR) was operated under alternating aerobic/anaerobic conditions to enrich a P accumulating granular biomass. This study showed that an overall 45-fold increase in P concentration could be achieved by reducing the volume of the P capturing liquor by 5-fold in the anaerobic P release phase. Moreover, different fractions of the granular biomass have different individual contributions towards generating a concentrated stream of P.

Keywords: granular sludge, PAOs, P recovery, SBR

Procedia PDF Downloads 483