Search results for: band ratios
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2035

Search results for: band ratios

1945 The System for Root Canal Length Measurement Based on Multifrequency Impedance Method

Authors: Zheng Zhang, Xin Chen, Guoqing Ding

Abstract:

Electronic apex locators (EAL) has been widely used clinically for measuring root canal working length with high accuracy, which is crucial for successful endodontic treatment. In order to maintain high accuracy in different measurement environments, this study presented a system for root canal length measurement based on multifrequency impedance method. This measuring system can generate a sweep current with frequencies from 100 Hz to 1 MHz through a direct digital synthesizer. Multiple impedance ratios with different combinations of frequencies were obtained and transmitted by an analog-to-digital converter and several of them with representatives will be selected after data process. The system analyzed the functional relationship between these impedance ratios and the distance between the file and the apex with statistics by measuring plenty of teeth. The position of the apical foramen can be determined by the statistical model using these impedance ratios. The experimental results revealed that the accuracy of the system based on multifrequency impedance ratios method to determine the position of the apical foramen was higher than the dual-frequency impedance ratio method. Besides that, for more complex measurement environments, the performance of the system was more stable.

Keywords: root canal length, apex locator, multifrequency impedance, sweep frequency

Procedia PDF Downloads 136
1944 Multi-Band, Polarization Insensitive, Wide Angle Receptive Metamaterial Absorber for Microwave Applications

Authors: Lincy Stephen, N. Yogesh, G. Vasantharajan, V. Subramanian

Abstract:

This paper presents the design and simulation of a five band metamaterial absorber at microwave frequencies. The absorber unit cell consists of squares and strips arranged as the top layer and a metallic ground plane as the bottom layer on a dielectric substrate. Simulation results show five near perfect absorption bands at 3.15 GHz, 7.15 GHz, 11.12 GHz, 13.87 GHz, and 16.85 GHz with absorption magnitudes 99.68%, 99.05%, 96.98%, 98.36% and 99.44% respectively. Further, the proposed absorber exhibits polarization insensitivity and wide angle receptivity. The surface current analysis is presented to explain the mechanism of absorption in the structure. With these preferable features, the proposed absorber can be excellent choice for potential applications such as electromagnetic interference (EMI) shielding, radar cross section reduction.

Keywords: electromagnetic absorber, metamaterial, multi- band, polarization insensitive, wide angle receptive

Procedia PDF Downloads 319
1943 Nitric Oxide and Blood Based Ratios as Promising Immuno-Markers in Patients with Complicated Crohn’s Disease: Benefits for Predicting Therapy Response

Authors: Imene Soufli, Abdelkrim Hablal, Manel Amri, Moussa Labsi, Rania Sihem Boussa, Nassim Sid Idris, Chafia Touil-Boukoffa

Abstract:

Crohn’s Disease (CD) is a relapsing–remitting inflammatory bowel disease with a progressive course. The aim of our study was to evaluate the relationship between the immunomarkers: Nitric Oxide (NO), pro-inflammatory cytokines, and blood count-based ratios and the outcome of corticosteroid or anti-TNF-α therapy in patients with complicated Crohn’s Disease. In this context, we evaluated the NLR as the ratio of neutrophil count to lymphocyte count, PLR as the ratio of platelet counts to lymphocyte count, and MLR as the ratio of monocyte count to lymphocyte count in patients and controls. Furthermore, we assessed NO production by the Griess method in plasma along with iNOS and NF-κB expression by immunofluorescence method in intestinal tissues of patients and controls. In the same way, we evaluated plasma TNF-α, IL-17A, and IL-10 levels using ELISA. Our results indicate that blood count-based ratios NLR, PLR, and MLR were significantly higher in patients compared to controls. In addition, increased systemic levels of NO, TNF-α, and IL-17A and colonic expression of iNOS and NF-κB were observed in the same patients. Interestingly, the high ratio of NLR and MLR, as well as NO production, was significantly decreased in treated patients. Collectively, our findings suggest that Nitric Oxide, as well as the blood count-based ratios (NLR, PLR, MLR), could constitute useful immuno-markers in complicated Crohn’s Disease, predicting the response to treatment

Keywords: complicated crohn’s disease, nitric oxide, blood count-based ratios, treatments, pro-inflammatory cytokines

Procedia PDF Downloads 53
1942 Ab Initio Calculations of Structure and Elastic Properties of BexZn1−xO Alloys

Authors: S. Lakel, F. Elhamra, M. Ibrir, K. Almi

Abstract:

There is a growing interest in Zn1-xBexO (ZBO)/ZnO hetero structures and quantum wells since the band gap energy of Zn1-xBexO solid solutions can be turned over a very large range (3.37–10.6 eV) as a function of the Be composition. ZBO/ZnO has been utilized in ultraviolet light emission diodes and lasers, and may find applications as active elements of various other electronic and optoelectronic devices. Band gap engineering by Be substitution enables the facile preparation of barrier layers and quantum wells in device structures. In addition, ZnO and its ternary alloys, as piezoelectric semiconductors, have been used for high-frequency surface acoustic wave devices in wireless communication systems due to their high acoustic velocities and large electromechanical coupling. However, many important parameters such as elastic constants, bulk modulus, Young’s modulus and band-gap bowing. First-principles calculations of the structural, electrical and elastic properties of Zn1-xBexO as a function of the Be concentration x have been performed within density functional theory using norm-conserving pseudopotentials and local density approximation (LDA) for the exchange and correlation energy. The alloys’ lattice constants may deviate from the Vegard law. As Be concentration increases, the elastic constants, the bulk modulus and Young’s modulus of the alloys increase, the band gap increases with increasing Be concentration and Zn1-xBexO alloys have direct band. Our calculated results are in good agreement with experimental data and other theoretical calculations.

Keywords: DFT calculation, norm-conserving pseudopotentials, ZnBeO alloys, ZnO

Procedia PDF Downloads 498
1941 A Low-Power, Low-Noise and High Linearity 60 GHz LNA for WPAN Applications

Authors: Noha Al Majid, Said Mazer, Moulhime El Bekkali, Catherine Algani, Mahmoud Mehdi

Abstract:

A low noise figure (NF) and high linearity V-band Low Noise Amplifier (LNA) is reported in this article. The LNA compromises a three-stage cascode configuration. This LNA will be used as a part of a WPAN (Wireless Personal Area Network) receiver in the millimeter-wave band at 60 GHz. It is designed according to the MMIC technology (Monolithic Microwave Integrated Circuit) in PH 15 process from UMS foundry and uses a 0.15 μm GaAs PHEMT (Pseudomorphic High Electron Mobility Transistor). The particularity of this LNA compared to other LNAs in literature is its very low noise figure which is equal to 1 dB and its high linearity (IIP3 is about 22 dB). The LNA consumes 0.24 Watts, achieving a high gain which is about 23 dB, an input return loss better than -10 dB and an output return loss better than -8 dB.

Keywords: low noise amplifier, V-band, MMIC technology, LNA, amplifier, cascode, pseudomorphic high electron mobility transistor (PHEMT), high linearity

Procedia PDF Downloads 487
1940 Efficiency Improvement for Conventional Rectangular Horn Antenna by Using EBG Technique

Authors: S. Kampeephat, P. Krachodnok, R. Wongsan

Abstract:

The conventional rectangular horn has been used for microwave antenna a long time. Its gain can be increased by enlarging the construction of horn to flare exponentially. This paper presents a study of the shaped woodpile Electromagnetic Band Gap (EBG) to improve its gain for conventional horn without construction enlargement. The gain enhancement synthesis method for shaped woodpile EBG that has to transfer the electromagnetic fields from aperture of a horn antenna through woodpile EBG is presented by using the variety of shaped woodpile EBGs such as planar, triangular, quadratic, circular, gaussian, cosine, and squared cosine structures. The proposed technique has the advantages of low profile, low cost for fabrication and light weight. The antenna characteristics such as reflection coefficient (S11), radiation patterns and gain are simulated by utilized A Computer Simulation Technology (CST) software. With the proposed concept, an antenna prototype was fabricated and experimented. The S11 and radiation patterns obtained from measurements show a good impedance matching and a gain enhancement of the proposed antenna. The gain at dominant frequency of 10 GHz is 25.6 dB, application for X- and Ku-Band Radar, that higher than the gain of the basic rectangular horn antenna around 8 dB with adding only one appropriated EBG structures.

Keywords: conventional rectangular horn antenna, electromagnetic band gap, gain enhancement, X- and Ku-band radar

Procedia PDF Downloads 250
1939 Structural and Optoelectronic Properties of Monovalent Cation Doping PbS Thin Films

Authors: Melissa Chavez Portillo, Hector Juarez Santiesteban, Mauricio Pacio Castillo, Oscar Portillo Moreno

Abstract:

Nanocrystalline Li-doped PbS thin films have been deposited by chemical bath deposition technique. The goal of this work is to study the modification of the optoelectronic and structural properties of Lithium incorporation. The increase of Li doping in PbS thin films leads to an increase of band gap in the range of 1.4-2.3, consequently, quantum size effect becomes pronounced in the Li-doped PbS films, which lead to a significant enhancement in the optical band gap. Doping shows influence in the film growth and results in a reduction of crystallite size from 30 to 14 nm. The refractive index was calculated and a relationship with dielectric constant was investigated. The dc conductivities of Li-doped and undoped samples were measured in the temperature range 290-340K, the conductivity increase with increase of Lithium content in the PbS films.

Keywords: doping, quantum confinement, optical band gap, PbS

Procedia PDF Downloads 359
1938 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy

Procedia PDF Downloads 176
1937 Composition Dependent Spectroscopic Studies of Sm3+-Doped Alkali Fluoro Tungsten Tellurite Glasses

Authors: K. Swapna, Sk. Mahamuda, Ch, Annapurna, A. Srinivasa Rao, G. Vijaya Prakash

Abstract:

Samarium ions doped Alkali Fluoro Tungsten Tellurite (AFTT) Glasses have been prepared by using the melt quenching technique and characterized through various spectroscopic techniques such as optical absorption, excitation, emission and decay spectral studies. From the measured absorption spectra of Sm3+ ions in AFTT glasses, the optical band gap and Urbach energies have been evaluated. The spectroscopic parameters such as oscillator strengths (f), Judd-Ofelt (J-O) intensity parameters (Ωλ), spontaneous emission probability (AR), branching ratios (βR) and radiative lifetimes (τR) of various excited levels have been determined from the absorption spectrum by using J-O analysis. A strong luminescence in the reddish-orange spectral region has been observed for all the Sm3+ ions doped AFTT glasses. It consisting four emission transitions occurring from the 4G5/2metastable state to the lower lying states 6H5/2, 6H7/2, 6H9/2 and 6H11/2 upon exciting the sample with a 478 nm line of an argon ion laser. The stimulated emission cross-sections (σe) and branching ratios (βmeas) were estimated from the emission spectra for all emission transitions. Correlation of the radiative lifetime with the experimental lifetime measured from the day curves allows us to measure the quantum efficiency of the prepared glasses. In order to know the colour emission of the prepared glasses under near UV excitation, the emission intensities were analyzed using CIE 1931 colour chromaticity diagram. The aforementioned spectral studies carried out on Sm3+ ions doped AFTT glasses allowed us to conclude that, these glasses are best suited for orange-red visible lasers.

Keywords: fluoro tungsten tellurite glasses, judd-ofelt intensity parameters, lifetime, stimulated emission cross-section

Procedia PDF Downloads 258
1936 A Wideband CMOS Power Amplifier with 23.3 dB S21, 10.6 dBm Psat and 12.3% PAE for 60 GHz WPAN and 77 GHz Automobile Radar Systems

Authors: Yo-Sheng Lin, Chien-Chin Wang, Yun-Wen Lin, Chien-Yo Lee

Abstract:

A wide band power amplifier (PA) for 60 GHz and 77 GHz direct-conversion transceiver using standard 90 nm CMOS technology is reported. The PA comprises a cascode input stage with a wide band T-type input-matching network and inductive interconnection and load, followed by a common-source (CS) gain stage and a CS output stage. To increase the saturated output power (PSAT) and power-added efficiency (PAE), the output stage adopts a two-way power dividing and combining architecture. Instead of the area-consumed Wilkinson power divider and combiner, miniature low-loss transmission-line inductors are used at the input and output terminals of each of the output stages for wide band input and output impedance matching to 100 ohm. This in turn results in further PSAT and PAE enhancement. The PA consumes 92.2 mW and achieves maximum power gain (S21) of 23.3 dB at 56 GHz, and S21 of 21.7 dB and 14 dB, respectively, at 60 GHz and 77 GHz. In addition, the PA achieves excellent saturated output power (PSAT) of 10.6 dB and maximum power added efficiency (PAE) of 12.3% at 60 GHz. At 77 GHz, the PA achieves excellent PSAT of 10.4 dB and maximum PAE of 6%. These results demonstrate the proposed wide band PA architecture is very promising for 60 GHz wireless personal local network (WPAN) and 77 GHz automobile radar systems.

Keywords: 60 GHz, 77 GHz, PA, WPAN, automotive radar

Procedia PDF Downloads 559
1935 Optical and Dielectric Properties of Self-Assembled 0D Hybrid Organic-Inorganic Insulator

Authors: S. Kassou, R. El Mrabet, A. Belaaraj, P. Guionneau, N. Hadi, T. Lamcharfi

Abstract:

The organic–inorganic hybrid perovskite-like [C6H5C2H4NH3]2ZnCl4 (PEA-ZnCl4) was synthesized by saturated solutions method. X-ray powder diffraction, Raman spectroscopy, UV-visible transmittance, and capacitance meter measurements have been used to characterize the structure, the functional groups, the optical parameters, and the dielectric constants of the material. The material has a layered structure. The optical transmittance (T %) was recorded and applied to deduce the absorption coefficient (α) and optical band gap (Eg). The hybrid shows an insulator character with a direct band gap about 4.46 eV, and presents high dielectric constants up to a frequency of about 105 Hz, which suggests a ferroelectric behavior. The reported optical and dielectric properties can help to understand the fundamental properties of perovskite materials and also to be used for optimizing or designing new devices.

Keywords: dielectric constants, optical band gap (eg), optical parameters, Raman spectroscopy, self-assembly organic inorganic hybrid

Procedia PDF Downloads 378
1934 Evaluation of Initial Graft Tension during ACL Reconstruction Using a Three-Dimensional Computational Finite Element Simulation: Effect of the Combination of a Band of Gracilis with the Former Graft

Authors: S. Alireza Mirghasemi, Javad Parvizi, Narges R. Gabaran, Shervin Rashidinia, Mahdi M. Bijanabadi, Dariush G. Savadkoohi

Abstract:

Background: The anterior cruciate ligament is one of the most frequent ligament to be disrupted. Surgical reconstruction of the anterior cruciate ligament is a common practice to treat the disability or chronic instability of the knee. Several factors associated with success or failure of the ACL reconstruction including preoperative laxity of the knee, selection of the graft material, surgical technique, graft tension, and postoperative rehabilitation. We aimed to examine the biomechanical properties of any graft type and initial graft tensioning during ACL reconstruction using 3-dimensional computational finite element simulation. Methods: In this paper, 3-dimensional model of the knee was constructed to investigate the effect of graft tensioning on the knee joint biomechanics. Four different grafts were compared: 1) Bone-patellar tendon-bone graft (BPTB) 2) Hamstring tendon 3) BPTB and a band of gracilis4) Hamstring and a band of gracilis. The initial graft tension was set as “0, 20, 40, or 60N”. The anterior loading was set to 134 N. Findings: The resulting stress pattern and deflection in any of these models were compared to that of the intact knee. The obtained results showed that the combination of a band of gracilis with the former graft (BPTB or Hamstring) increases the structural stiffness of the knee. Conclusion: Required pretension during surgery decreases significantly by adding a band of gracilis to the proper graft.

Keywords: ACL reconstruction, deflection, finite element simulation, stress pattern

Procedia PDF Downloads 276
1933 Approach Based on Fuzzy C-Means for Band Selection in Hyperspectral Images

Authors: Diego Saqui, José H. Saito, José R. Campos, Lúcio A. de C. Jorge

Abstract:

Hyperspectral images and remote sensing are important for many applications. A problem in the use of these images is the high volume of data to be processed, stored and transferred. Dimensionality reduction techniques can be used to reduce the volume of data. In this paper, an approach to band selection based on clustering algorithms is presented. This approach allows to reduce the volume of data. The proposed structure is based on Fuzzy C-Means (or K-Means) and NWHFC algorithms. New attributes in relation to other studies in the literature, such as kurtosis and low correlation, are also considered. A comparison of the results of the approach using the Fuzzy C-Means and K-Means with different attributes is performed. The use of both algorithms show similar good results but, particularly when used attributes variance and kurtosis in the clustering process, however applicable in hyperspectral images.

Keywords: band selection, fuzzy c-means, k-means, hyperspectral image

Procedia PDF Downloads 377
1932 Denoising of Motor Unit Action Potential Based on Tunable Band-Pass Filter

Authors: Khalida S. Rijab, Mohammed E. Safi, Ayad A. Ibrahim

Abstract:

When electrical electrodes are mounted on the skin surface of the muscle, a signal is detected when a skeletal muscle undergoes contraction; the signal is known as surface electromyographic signal (EMG). This signal has a noise-like interference pattern resulting from the temporal and spatial summation of action potentials (AP) of all active motor units (MU) near electrode detection. By appropriate processing (Decomposition), the surface EMG signal may be used to give an estimate of motor unit action potential. In this work, a denoising technique is applied to the MUAP signals extracted from the spatial filter (IB2). A set of signals from a non-invasive two-dimensional grid of 16 electrodes from different types of subjects, muscles, and sex are recorded. These signals will acquire noise during recording and detection. A digital fourth order band- pass Butterworth filter is used for denoising, with a tuned band-pass frequency of suitable choice of cutoff frequencies is investigated, with the aim of obtaining a suitable band pass frequency. Results show an improvement of (1-3 dB) in the signal to noise ratio (SNR) have been achieved, relative to the raw spatial filter output signals for all cases that were under investigation. Furthermore, the research’s goal included also estimation and reconstruction of the mean shape of the MUAP.

Keywords: EMG, Motor Unit, Digital Filter, Denoising

Procedia PDF Downloads 379
1931 Stable Isotope Ratios Data for Tracing the Origin of Greek Olive Oils and Table Olives

Authors: Efthimios Kokkotos, Kostakis Marios, Beis Alexandros, Angelos Patakas, Antonios Avgeris, Vassilios Triantafyllidis

Abstract:

H, C, and O stable isotope ratios were measured in different olive oils and table olives originating from different regions of Greece. In particular, the stable isotope ratios of different olive oils produced in the Lakonia region (Peloponesse – South Greece) from different varieties, i.e., cvs ‘Athinolia’ and ‘koroneiki’, were determined. Additionally, stable isotope ratios were also measured in different table olives (cvs ‘koroneiki’ and ‘kalamon’) produced in the same region (Messinia). The aim of this study was to provide sufficient isotope ratio data regarding each variety and region of origin that could be used in discriminative studies of oil olives and table olives produced by different varieties in other regions. In total, 97 samples of olive oil (cv ‘Athinolia’ and ‘koroneiki’) and 67 samples of table olives (cvs ‘kalmon’ and ‘koroneiki’) collected during two consecutive sampling periods (2021-2022 and 2022-2023) were measured. The C, H, and O isotope ratios were measured using Isotope Ratio Mass Spectrometry (IRMS), and the results obtained were analyzed using chemometric techniques. The measurements of the isotope ratio analyses were expressed in permille (‰) using the delta δ notation (δ=Rsample/Rstandard-1, where Rsample and Rstandardis represent the isotope ratio of sample and standard). Results indicate that stable isotope ratios of C, H, and O ranged between -28,5+0,45‰, -142,83+2,82‰, 25,86+0,56‰ and -29,78+0,71‰, -143,62+1,4‰, 26,32+0,55‰ in olive oils produced in Lakonia region from ‘Athinolia’ and ‘koroneiki ‘varieties, respectively. The C, H, and O values from table olives originated from Messinia region were -28,58+0,63‰, -138,09+3,27‰, 25,45+0,62‰ and -29,41+0,59‰,-137,67+1,15‰, 24,37+0,6‰ for ‘Kalamon’ and ‘koroneiki’ olives respectively. Acknowledgments: This research has been co-financed by the European Regional Development Fund of the European Union and Greek national funds through the Operational Program Competitiveness, Entrepreneurship and Innovation, under the call RESEARCH—CREATE—INNOVATE (Project code: T2EDK-02637; MIS 5075094, Title: ‘Innovative Methodological Tools for Traceability, Certification and Authenticity Assessment of Olive Oil and Olives’).

Keywords: olive oil, table olives, Isotope ratio, IRMS, geographical origin

Procedia PDF Downloads 33
1930 Optimization of Cu (In, Ga)Se₂ Based Thin Film Solar Cells: Simulation

Authors: Razieh Teimouri

Abstract:

Electrical modelling of Cu (In,Ga)Se₂ thin film solar cells is carried out with compositionally graded absorber and CdS buffer layer. Simulation results are compared with experimental data. Surface defect layers (SDL) are located in CdS/CIGS interface for improving open circuit voltage simulated structure through the analysis of the interface is investigated with or without this layer. When SDL removed, by optimizing the conduction band offset (CBO) position of the buffer/absorber layers with its recombination mechanisms and also shallow donor density in the CdS, the open circuit voltage increased significantly. As a result of simulation, excellent performance can be obtained when the conduction band of window layer positions higher by 0.2 eV than that of CIGS and shallow donor density in the CdS was found about 1×10¹⁸ (cm⁻³).

Keywords: CIGS solar cells, thin film, SCAPS, buffer layer, conduction band offset

Procedia PDF Downloads 204
1929 Changes in EEG and Emotion Regulation in the Course of Inward-Attention Meditation Training

Authors: Yuchien Lin

Abstract:

This study attempted to investigate the changes in electroencephalography (EEG) and emotion regulation following eight-week inward-attention meditation training program. The subjects were 24 adults without meditation experiences divided into meditation and control groups. The quantitatively analyzed changes in psychophysiological parameters during inward-attention meditation, and evaluated the emotion scores assessed by the State-Trait Anxiety Inventory (STAI), the Positive and Negative Affect Schedule (PANAS), and the Emotion Regulation Scale (ERS). The results were found: (1) During meditation, significant EEG increased for theta-band activity in the frontal and the bilateral temporal areas, for alpha-band activity in the left and central frontal areas, and for gamma-band activity in the left frontal and the left temporal areas. (2) The meditation group had significantly higher positive affect in posttest than in pretest. (3) There was no significant difference in the changes of EEG spectral characteristics and emotion scores in posttest and pretest for the control group. In the present study, a unique meditative concentration task with a constant level of moderate mental effort focusing on the center of brain was used, so as to enhance frontal midline theta, alpha, and gamma-band activity. These results suggest that this mental training allows individual reach a specific mental state of relaxed but focused awareness. The gamma-band activity, in particular, enhanced over left frontoparietal area may suggest that inward-attention meditation training involves temporal integrative mechanisms and may induce short-term and long-term emotion regulation abilities.

Keywords: meditation, EEG, emotion regulation, gamma activity

Procedia PDF Downloads 189
1928 Optical Bands Splitting in Tm₃Fe₅O₁₂ Thin Films

Authors: R. Vidyasagar, G. L. S. Vilela, B. M. Guiraldelli, A. B. Henriques, J. Moodera

Abstract:

Nano-scaled magnetic systems that can have both magnetic and optical transitions controlled and manipulated by external means have received enormous research attention for their potential applications in magneto-optics and spintronic devices. Among several ferrimagnetic insulators, the Tm₃Fe₅O₁₂ (TmIG) has become a prototype material displaying huge perpendicular magnetic anisotropy. Nevertheless, the optical properties of nano-scale TnIG films have not yet been investigated. We report the observation of giant splitting in the optical transitions of high-quality thin films of Tm₃Fe₅O₁₂ (TmIG) grown by rf sputtering on gadolinium gallium garnet substrates (GGG-111) substrate. The optical absorbance profiles measured with optical absorption spectroscopy show a dual optical transition in visible frequency regimes attributed to the transitions of electrons from the O-2p valence band to the Fe-3d conduction band and from the O-2p valence band to the Fe-2p⁵3d⁶ excitonic states at the Γ-symmetric point of the TmIG Brillouin zone. When the thickness of the film is reduced from 120 nm to 7.5 nm, the 1st optical transition energy shifted from 2.98 to 3.11 eV ( ~130 meV), and the 2nd transition energy shifted from 2.62 to 2.56 eV (~ 60 meV). The giant band splitting of both transitions can be attributed to the population of excited states associated with the atomic modification pertaining to the compressive or tensile strains.

Keywords: optical transitions, thin films, ferrimagnetic insulator, strains

Procedia PDF Downloads 20
1927 The Conditionality of Financial Risk: A Comparative Analysis of High-Tech and Utility Companies Listed on the Shenzhen Stock Exchange (SSE)

Authors: Joseph Paul Chunga

Abstract:

The investment universe is awash with a myriad of financial choices that investors have to opt for, which principally culminates into a duality between aggressive or conservative approaches. Howbeit, it is pertinent to emphasize that the investment vehicles with an aggressive approach tend to take on more risk than the latter group in an effort to generate higher future returns for their respective investors. This study examines the conditionality effect that such partiality in financing has on the High-Tech and Public Utility companies listed on the Shenzhen Stock Exchange (SSE). Specifically, it examines the significance of the relationship between capitalization ratios of Total Debt Ratio (TDR), Degree of Financial Leverage (DFL) and profitability ratios of Earnings per Share (EPS) and Returns on Equity (ROE) on the Financial Risk of the two industries. We employ a modified version of the Panel Regression Model used by Rahman (2017) to estimate the relationship. The study finds that there is a significant positive relationship between the capitalization ratios on the financial risk of Public Utility companies more than High-Tech companies and a substantial negative relationship between the profitability ratios and the financial risk of the former than the latter companies. This then spells an important insight for prospective investors with regards to the volatility of earnings of such companies.

Keywords: financial leverage, debt financing, conservative firms, aggressive firms

Procedia PDF Downloads 148
1926 EEG Correlates of Trait and Mathematical Anxiety during Lexical and Numerical Error-Recognition Tasks

Authors: Alexander N. Savostyanov, Tatiana A. Dolgorukova, Elena A. Esipenko, Mikhail S. Zaleshin, Margherita Malanchini, Anna V. Budakova, Alexander E. Saprygin, Tatiana A. Golovko, Yulia V. Kovas

Abstract:

EEG correlates of mathematical and trait anxiety level were studied in 52 healthy Russian-speakers during execution of error-recognition tasks with lexical, arithmetic and algebraic conditions. Event-related spectral perturbations were used as a measure of brain activity. The ERSP plots revealed alpha/beta desynchronizations within a 500-3000 ms interval after task onset and slow-wave synchronization within an interval of 150-350 ms. Amplitudes of these intervals reflected the accuracy of error recognition, and were differently associated with the three conditions. The correlates of anxiety were found in theta (4-8 Hz) and beta2 (16-20 Hz) frequency bands. In theta band the effects of mathematical anxiety were stronger expressed in lexical, than in arithmetic and algebraic condition. The mathematical anxiety effects in theta band were associated with differences between anterior and posterior cortical areas, whereas the effects of trait anxiety were associated with inter-hemispherical differences. In beta1 and beta2 bands effects of trait and mathematical anxiety were directed oppositely. The trait anxiety was associated with increase of amplitude of desynchronization, whereas the mathematical anxiety was associated with decrease of this amplitude. The effect of mathematical anxiety in beta2 band was insignificant for lexical condition but was the strongest in algebraic condition. EEG correlates of anxiety in theta band could be interpreted as indexes of task emotionality, whereas the reaction in beta2 band is related to tension of intellectual resources.

Keywords: EEG, brain activity, lexical and numerical error-recognition tasks, mathematical and trait anxiety

Procedia PDF Downloads 542
1925 Theoretical Study of Structural and Electronic Properties of Matlockite CaFX (X = I and Br) Compounds

Authors: Meriem Harmel, Houari Khachai

Abstract:

The full potential linearized augmented plane wave (FP-LAPW)method within density functional theory is applied to study, for the first time, the structural and electronic properties of CaFI and to compare them with CaFCl and CaFBr, all compounds belonging to the tetragonal PbFCl structure group with space group P4/nmm. We used the generalized gradient approximation (GGA) based on exchange–correlation energy optimization to calculate the total energy and also the Engel– Vosko GGA formalism, which optimizes the corresponding potential for band structure calculations. Ground state properties such as the lattice parameters, c/a ratio, bulk modulus, pressure derivative of the bulk modulus and cohesive energy are calculated, as well as the optimized internal parameters, by relaxing the atomic position in the force directions. The variations of the calculated interatomic distances and angles between different atomic bonds are discussed. CaFCl was found to have a direct band gap at whereas CaFBr and BaFI have indirect band gaps. From these computed bands, all three materials are found to be insulators having band gaps of 6.28, 5.46, and 4.50 eV, respectively. We also calculated the valence charge density and the total density of states at equilibrium volume for each compound. The results are in reasonable agreement with the available experimental data.

Keywords: DFT, matlockite, structural properties, electronic structure

Procedia PDF Downloads 297
1924 Synthesis, Characterization and Photocatalytic Performance of Visible Light Induced Materials

Authors: M. Muneer, Waseem Raza

Abstract:

Nano-crystalline materials of pure and metal-doped semiconducting materials have been successfully synthesized using sol gel and hydrothermal methods. The prepared materials were characterized by standard analytical techniques, i.e., XRD, SEM, EDX, UV–vis Spectroscopy and FTIR. The (XRD) analysis showed that the obtained particles are present in partial crystalline nature and exhibit no other impurity phase. The EDX and (SEM) images depicted that metals have been successfully loaded on the surface of the semiconductor. FTIR showed an additional absorption band at 910 cm−1, characteristic of absorption band indicating the incorporation of dopant into the lattice in addition to a broad and strong absorption band in the region of 410–580 cm−1 due to metal–O stretching. The UV–vis absorption spectra of synthesized particles indicate that the doping of metals into the lattice shift the absorption band towards the visible region. Thermal analysis, measurement of the synthesized sample showed that the thermal stability of pure semiconducting material is decreased due to increase in dopant concentration. The photocatalytic activity of the synthesized particles was studied by measuring the change in concentration of three different chromophoric dyes as a function of irradiation time. The photocatalytic activity of doped materials were found to increase with increase in dopant concentration.

Keywords: photocatalysis, metal doped semicondcutors, dye degradation, visible light active materials

Procedia PDF Downloads 417
1923 Cost Benefit Analysis: Evaluation among the Millimetre Wavebands and SHF Bands of Small Cell 5G Networks

Authors: Emanuel Teixeira, Anderson Ramos, Marisa Lourenço, Fernando J. Velez, Jon M. Peha

Abstract:

This article discusses the benefit cost analysis aspects of millimetre wavebands (mmWaves) and Super High Frequency (SHF). The devaluation along the distance of the carrier-to-noise-plus-interference ratio with the coverage distance is assessed by considering two different path loss models, the two-slope urban micro Line-of-Sight (UMiLoS) for the SHF band and the modified Friis propagation model, for frequencies above 24 GHz. The equivalent supported throughput is estimated at the 5.62, 28, 38, 60 and 73 GHz frequency bands and the influence of carrier-to-noise-plus-interference ratio in the radio and network optimization process is explored. Mostly owing to the lessening caused by the behaviour of the two-slope propagation model for SHF band, the supported throughput at this band is higher than at the millimetre wavebands only for the longest cell lengths. The benefit cost analysis of these pico-cellular networks was analysed for regular cellular topologies, by considering the unlicensed spectrum. For shortest distances, we can distinguish an optimal of the revenue in percentage terms for values of the cell length, R ≈ 10 m for the millimeter wavebands and for longest distances an optimal of the revenue can be observed at R ≈ 550 m for the 5.62 GHz. It is possible to observe that, for the 5.62 GHz band, the profit is slightly inferior than for millimetre wavebands, for the shortest Rs, and starts to increase for cell lengths approximately equal to the ratio between the break-point distance and the co-channel reuse factor, achieving a maximum for values of R approximately equal to 550 m.

Keywords: millimetre wavebands, SHF band, SINR, cost benefit analysis, 5G

Procedia PDF Downloads 122
1922 Isolation Enhancement of Compact Dual-Band Printed Multiple Input Multiple Output Antenna for WLAN Applications

Authors: Adham M. Salah, Tariq A. Nagem, Raed A. Abd-Alhameed, James M. Noras

Abstract:

Recently, the demand for wireless communications systems to cover more than one frequency band (multi-band) with high data rate has been increased for both fixed and mobile services. Multiple Input Multiple Output (MIMO) technology is one of the significant solutions for attaining these requirements and to achieve the maximum channel capacity of the wireless communications systems. The main issue associated with MIMO antennas especially in portable devices is the compact space between the radiating elements which leads to limit the physical separation between them. This issue exacerbates the performance of the MIMO antennas by increasing the mutual coupling between the radiating elements. In other words, the mutual coupling will be stronger if the radiating elements of the MIMO antenna are closer. This paper presents a low–profile dual-band (2×1) MIMO antenna that works at 2.4GHz, 5.3GHz and 5.8GHz for wireless local area networks (WLAN) applications. A neutralization line (NL) technique for enhancing the isolation has been used by introducing a strip line with a length of λg/4 at the isolation frequency (2.4GHz) between the radiating elements. The overall dimensions of the antenna are 33.5 x 36 x 1.6 mm³. The fabricated prototype shows a good agreement between the simulated and measured results. The antenna impedance bandwidths are 2.38–2.75 GHz and 4.4–6 GHz for the lower and upper band respectively; the reflection coefficient and mutual coupling are better than -25 dB in both lower and higher bands. The MIMO antenna performance characteristics are reported in terms of the scattering parameters, envelope correlation coefficient (ECC), total active reflection coefficient, capacity loss, antenna gain, and radiation patterns. Analysis of these characteristics indicates that the design is appropriate for the WLAN terminal applications.

Keywords: ECC, neutralization line, MIMO antenna, multi-band, mutual coupling, WLAN

Procedia PDF Downloads 114
1921 Electronic and Optical Properties of YNi4Si-Type DyNi4Si Compound: A Full Potential Study

Authors: Dinesh Kumar Maurya, Sapan Mohan Saini

Abstract:

A theoretical formalism to calculate the structural, electronic and optical properties of orthorhombic crystals from first principle calculations is described. This is applied first time to new YNi4Si-type DyNi4Si compound. Calculations are performed using full-potential augmented plane wave (FPLAPW) method in the framework of density functional theory (DFT). The Coulomb corrected local-spin density approximation (LSDA+U) in the self-interaction correction (SIC) has been used for exchange-correlation potential. Our optimized results of lattice parameters show good agreement to the previously reported experimental study. Analysis of the calculated band structure of DyNi4Si compound demonstrates their metallic character. We found Ni-3d states mainly contribute to density of states from -5.0 eV to the Fermi level while the Dy-f states peak stands tall in comparison to the small contributions made by the Ni-d and R-d states above Fermi level, which is consistent with experiment, in DNi4Si compound. Our calculated optical conductivity compares well with the experimental data and the results are analyzed in the light of band-to-band transitions. We also report the frequency-dependent refractive index n(ω) and the extinction coefficient k(ω) of the compound.

Keywords: band structure, density of states, optical properties, LSDA+U approximation, YNi4Si- type DyNi4Si compound

Procedia PDF Downloads 331
1920 An ab initioStudy of the Structural, Elastic, Electronic, and Optical Properties of the Perovskite ScRhO3

Authors: L. Foudia, K. Haddadi, M. Reffas

Abstract:

First principles study of structural, elastic, electronic and optical properties of the monoclinic perovskite type ScRhO₃ has been reported using the pseudo-potential plane wave method within the local density approximation. The calculated lattice parameters, including the lattice constants and angle β, are in excellent agreement with the available experimental data, which proving the reliability of the chosen theoretical approach. Pressure dependence up to 20 GPa of the single crystal and polycrystalline elastic constants has been investigated in details using the strain-stress approach. The mechanical stability, ductility, average elastic wave velocity, Debye temperature and elastic anisotropy were also assessed. Electronic band structure and density of states (DOS) demonstrated its semiconducting nature showing a direct band gap of 1.38 eV. Furthermore, several optical properties, such as absorption coefficient, reflectivity, refractive index, dielectric function, optical conductivity and electron energy loss function, have been calculated for radiation up to 40 eV.

Keywords: ab-initio, perovskite, DFT, band gap

Procedia PDF Downloads 52
1919 Fabrication and Characterization of Dissolvable Microneedle Patches Using Different Compositions and Ratios of Hyaluronic Acid and Zinc Oxide Nanoparticles

Authors: Dada Kolawole Segun

Abstract:

Transdermal drug delivery has gained popularity as a non-invasive method for controlled drug release compared to traditional delivery routes. Dissolvable transdermal patches have emerged as a promising platform for delivering a variety of drugs due to their ease of use. The objective of this research was to create and characterize dissolvable transdermal patches using various compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. A micromolding technique was utilized to fabricate the patches, which were subsequently characterized using scanning electron microscopy, atomic force microscopy, and tensile strength testing. In vitro drug release studies were conducted to evaluate the drug release kinetics of the patches. The study found that the mechanical strength and dissolution properties of the patches were influenced by the hyaluronic acid and zinc oxide nanoparticle ratios used in the fabrication process. Moreover, the patches demonstrated controlled delivery of model drugs through the skin, highlighting their potential for transdermal drug delivery applications. The results suggest that dissolvable transdermal patches can be tailored to meet specific requirements for drug delivery applications using different compositions and ratios of hyaluronic acid and zinc oxide nanoparticles. This development has the potential to improve treatment outcomes and patient compliance in various therapeutic areas.

Keywords: transdermal drug delivery, characterization, skin permeation, biodegradable materials

Procedia PDF Downloads 59
1918 Trions in Semiconductor Quantum Dot System

Authors: Jayden Leonard, Nguyen Que Huong

Abstract:

In this work, we study the Trion state in a spherical quantum dot of a direct band gap semiconductor with a shell of organic material. The electronic structure of the Trion due to degenerate valence band will be considered. The coupling between the wannier exciton inside the dot and the Frenkel exciton in the shell will make the Trion state become hybrid. The competition between “semiconductor” and “organic” phases of the Trion and the transitions between them depend on Parameters of the system such as the materials, the size of the dot and the thickness of the shell, etc… and could be manipulated using those parameters.

Keywords: trion, exciton, quantum dot, heterostructure

Procedia PDF Downloads 153
1917 Compact Dual-band 4-MIMO Antenna Elements for 5G Mobile Applications

Authors: Fayad Ghawbar

Abstract:

The significance of the Multiple Input Multiple Output (MIMO) system in the 5G wireless communication system is essential to enhance channel capacity and provide a high data rate resulting in a need for dual-polarization in vertical and horizontal. Furthermore, size reduction is critical in a MIMO system to deploy more antenna elements requiring a compact, low-profile design. A compact dual-band 4-MIMO antenna system has been presented in this paper with pattern and polarization diversity. The proposed single antenna structure has been designed using two antenna layers with a C shape in the front layer and a partial slot with a U-shaped cut in the ground to enhance isolation. The single antenna is printed on an FR4 dielectric substrate with an overall size of 18 mm×18 mm×1.6 mm. The 4-MIMO antenna elements were printed orthogonally on an FR4 substrate with a size dimension of 36 × 36 × 1.6 mm3 with zero edge-to-edge separation distance. The proposed compact 4-MIMO antenna elements resonate at 3.4-3.6 GHz and 4.8-5 GHz. The s-parameters measurement and simulation results agree, especially in the lower band with a slight frequency shift of the measurement results at the upper band due to fabrication imperfection. The proposed design shows isolation above -15 dB and -22 dB across the 4-MIMO elements. The MIMO diversity performance has been evaluated in terms of efficiency, ECC, DG, TARC, and CCL. The total and radiation efficiency were above 50 % across all parameters in both frequency bands. The ECC values were lower than 0.10, and the DG results were about 9.95 dB in all antenna elements. TARC results exhibited values lower than 0 dB with values lower than -25 dB in all MIMO elements at the dual-bands. Moreover, the channel capacity losses in the MIMO system were depicted using CCL with values lower than 0.4 Bits/s/Hz.

Keywords: compact antennas, MIMO antenna system, 5G communication, dual band, ECC, DG, TARC

Procedia PDF Downloads 126
1916 Spin-Polarized Investigation of Ferromagnetism on Magnetic Semiconductors MnxCa1-xS in the Rock-salt Phase

Authors: B. Ghebouli, M. A. Ghebouli, H. Choutri, M. Fatmi, L. Louail

Abstract:

The structural, elastic, electronic and magnetic properties of the diluted magnetic semiconductors MnxCa1-xS in the rock-salt phase have been investigated using first-principles calculations. Features such as lattice constant, bulk modulus, elastic constants, spin-polarized band structure, total and local densities of states have been computed. We predict the values of the exchange constants and the band edge spin splitting of the valence and conduction bands. The hybridization between S-3p and Mn-3d produces small local magnetic moment on the nonmagnetic Ca and S sites. The ferromagnetism is induced due to the exchange splitting of S-3p and Mn-3d hybridized bands. The total magnetic moment per Mn of MnxCa1-xS is 4.4µB and is independent of the Mn concentration. The unfilled Mn -3d levels reduce the local magnetic moment of Mn from its free space charge value of 5µB to 4.4µB due to 3p–3d hybridization.

Keywords: semiconductors, Ab initio calculations, band-structure, magnetic properties

Procedia PDF Downloads 330