Search results for: analog signal processing
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5164

Search results for: analog signal processing

5074 Time Delay Estimation Using Signal Envelopes for Synchronisation of Recordings

Authors: Sergei Aleinik, Mikhail Stolbov

Abstract:

In this work, a method of time delay estimation for dual-channel acoustic signals (speech, music, etc.) recorded under reverberant conditions is investigated. Standard methods based on cross-correlation of the signals show poor results in cases involving strong reverberation, large distances between microphones and asynchronous recordings. Under similar conditions, a method based on cross-correlation of temporal envelopes of the signals delivers a delay estimation of acceptable quality. This method and its properties are described and investigated in detail, including its limits of applicability. The method’s optimal parameter estimation and a comparison with other known methods of time delay estimation are also provided.

Keywords: cross-correlation, delay estimation, signal envelope, signal processing

Procedia PDF Downloads 485
5073 Performance Evaluation of Dynamic Signal Control System for Mixed Traffic Conditions

Authors: Aneesh Babu, S. P. Anusha

Abstract:

A dynamic signal control system combines traditional traffic lights with an array of sensors to intelligently control vehicle and pedestrian traffic. The present study focus on evaluating the performance of dynamic signal control systems for mixed traffic conditions. Data collected from four different approaches to a typical four-legged signalized intersection at Trivandrum city in the Kerala state of India is used for the study. Performance of three other dynamic signal control methods, namely (i) Non-sequential method (ii) Webster design for consecutive signal cycle using flow as input, and (iii) dynamic signal control using RFID delay as input, were evaluated. The evaluation of the dynamic signal control systems was carried out using a calibrated VISSIM microsimulation model. Python programming was used to integrate the dynamic signal control algorithm through the COM interface in VISSIM. The intersection delay obtained from different dynamic signal control methods was compared with the delay obtained from fixed signal control. Based on the study results, it was observed that the intersection delay was reduced significantly by using dynamic signal control methods. The dynamic signal control method using delay from RFID sensors resulted in a higher percentage reduction in delay and hence is a suitable choice for implementation under mixed traffic conditions. The developed dynamic signal control strategies can be implemented in ITS applications under mixed traffic conditions.

Keywords: dynamic signal control, intersection delay, mixed traffic conditions, RFID sensors

Procedia PDF Downloads 106
5072 Renewable Energy Micro-Grid Control Using Microcontroller in LabVIEW

Authors: Meena Agrawal, Chaitanya P. Agrawal

Abstract:

The power systems are transforming and becoming smarter with innovations in technologies to enable embark simultaneously upon the sustainable energy needs, rising environmental concerns, economic benefits and quality requirements. The advantages provided by inter-connection of renewable energy resources are becoming more viable and dependable with the smart controlling technologies. The limitation of most renewable resources have their diversity and intermittency causing problems in power quality, grid stability, reliability, security etc. is being cured by these efforts. A necessitate of optimal energy management by intelligent Micro-Grids at the distribution end of the power system has been accredited to accommodate sustainable renewable Distributed Energy Resources on large scale across the power grid. All over the world Smart Grids are emerging now as foremost concern infrastructure upgrade programs. The hardware setup includes NI cRIO 9022, Compact Reconfigurable Input Output microcontroller board connected to the PC on a LAN router with three hardware modules. The Real-Time Embedded Controller is reconfigurable controller device consisting of an embedded real-time processor controller for communication and processing, a reconfigurable chassis housing the user-programmable FPGA, Eight hot-swappable I/O modules, and graphical LabVIEW system design software. It has been employed for signal analysis, controls and acquisition and logging of the renewable sources with the LabVIEW Real-Time applications. The employed cRIO chassis controls the timing for the module and handles communication with the PC over the USB, Ethernet, or 802.11 Wi-Fi buses. It combines modular I/O, real-time processing, and NI LabVIEW programmable. In the presented setup, the Analog Input Module NI 9205 five channels have been used for input analog voltage signals from renewable energy sources and NI 9227 four channels have been used for input analog current signals of the renewable sources. For switching actions based on the programming logic developed in software, a module having Electromechanical Relays (single-pole single throw) with 4-Channels, electrically isolated and LED indicating the state of that channel have been used for isolating the renewable Sources on fault occurrence, which is decided by the logic in the program. The module for Ethernet based Data Acquisition Interface ENET 9163 Ethernet Carrier, which is connected on the LAN Router for data acquisition from a remote source over Ethernet also has the module NI 9229 installed. The LabVIEW platform has been employed for efficient data acquisition, monitoring and control. Control logic utilized in program for operation of the hardware switching Related to Fault Relays has been portrayed as a flowchart. A communication system has been successfully developed amongst the sources and loads connected on different computers using Hypertext transfer protocol, HTTP or Ethernet Local Stacked area Network TCP/IP protocol. There are two main I/O interfacing clients controlling the operation of the switching control of the renewable energy sources over internet or intranet. The paper presents experimental results of the briefed setup for intelligent control of the micro-grid for renewable energy sources, besides the control of Micro-Grid with data acquisition and control hardware based on a microcontroller with visual program developed in LabVIEW.

Keywords: data acquisition and control, LabVIEW, microcontroller cRIO, Smart Micro-Grid

Procedia PDF Downloads 333
5071 Nonlinear Power Measurement Algorithm of the Input Mix Components of the Noise Signal and Pulse Interference

Authors: Alexey V. Klyuev, Valery P. Samarin, Viktor F. Klyuev, Andrey V. Klyuev

Abstract:

A power measurement algorithm of the input mix components of the noise signal and pulse interference is considered. The algorithm efficiency analysis has been carried out for different interference to signal ratio. Algorithm performance features have been explored by numerical experiment results.

Keywords: noise signal, pulse interference, signal power, spectrum width, detection

Procedia PDF Downloads 337
5070 Early Diagnosis of Alzheimer's Disease Using a Combination of Images Processing and Brain Signals

Authors: E. Irankhah, M. Zarif, E. Mazrooei Rad, K. Ghandehari

Abstract:

Alzheimer's prevalence is on the rise, and the disease comes with problems like cessation of treatment, high cost of treatment, and the lack of early detection methods. The pathology of this disease causes the formation of protein deposits in the brain of patients called plaque amyloid. Generally, the diagnosis of this disease is done by performing tests such as a cerebrospinal fluid, CT scan, MRI, and spinal cord fluid testing, or mental testing tests and eye tracing tests. In this paper, we tried to use the Medial Temporal Atrophy (MTA) method and the Leave One Out (LOO) cycle to extract the statistical properties of the three Fz, Pz, and Cz channels of ERP signals for early diagnosis of this disease. In the process of CT scan images, the accuracy of the results is 81% for the healthy person and 88% for the severe patient. After the process of ERP signaling, the accuracy of the results for a healthy person in the delta band in the Cz channel is 81% and in the alpha band the Pz channel is 90%. In the results obtained from the signal processing, the results of the severe patient in the delta band of the Cz channel were 89% and in the alpha band Pz channel 92%.

Keywords: Alzheimer's disease, image and signal processing, LOO cycle, medial temporal atrophy

Procedia PDF Downloads 198
5069 Efficient Pre-Processing of Single-Cell Assay for Transposase Accessible Chromatin with High-Throughput Sequencing Data

Authors: Fan Gao, Lior Pachter

Abstract:

The primary tool currently used to pre-process 10X Chromium single-cell ATAC-seq data is Cell Ranger, which can take very long to run on standard datasets. To facilitate rapid pre-processing that enables reproducible workflows, we present a suite of tools called scATAK for pre-processing single-cell ATAC-seq data that is 15 to 18 times faster than Cell Ranger on mouse and human samples. Our tool can also calculate chromatin interaction potential matrices, and generate open chromatin signal and interaction traces for cell groups. We use scATAK tool to explore the chromatin regulatory landscape of a healthy adult human brain and unveil cell-type specific features, and show that it provides a convenient and computational efficient approach for pre-processing single-cell ATAC-seq data.

Keywords: single-cell, ATAC-seq, bioinformatics, open chromatin landscape, chromatin interactome

Procedia PDF Downloads 155
5068 Modeling and Simulation of a CMOS-Based Analog Function Generator

Authors: Madina Hamiane

Abstract:

Modelling and simulation of an analogy function generator is presented based on a polynomial expansion model. The proposed function generator model is based on a 10th order polynomial approximation of any of the required functions. The polynomial approximations of these functions can then be implemented using basic CMOS circuit blocks. In this paper, a circuit model is proposed that can simultaneously generate many different mathematical functions. The circuit model is designed and simulated with HSPICE and its performance is demonstrated through the simulation of a number of non-linear functions.

Keywords: modelling and simulation, analog function generator, polynomial approximation, CMOS transistors

Procedia PDF Downloads 459
5067 Optimal Mother Wavelet Function for Shoulder Muscles of Upper Limb Amputees

Authors: Amanpreet Kaur

Abstract:

Wavelet transform (WT) is a powerful statistical tool used in applied mathematics for signal and image processing. The different mother, wavelet basis function, has been compared to select the optimal wavelet function that represents the electromyogram signal characteristics of upper limb amputees. Four different EMG electrode has placed on different location of shoulder muscles. Twenty one wavelet functions from different wavelet families were investigated. These functions included Daubechies (db1-db10), Symlets (sym1-sym5), Coiflets (coif1-coif5) and Discrete Meyer. Using mean square error value, the significance of the mother wavelet functions has been determined for teres, pectorals, and infraspinatus around shoulder muscles. The results show that the best mother wavelet is the db3 from the Daubechies family for efficient classification of the signal.

Keywords: Daubechies, upper limb amputation, shoulder muscles, Symlets, Coiflets

Procedia PDF Downloads 235
5066 The Effectiveness of Energy Index Technique in Bearing Condition Monitoring

Authors: Faisal Alshammari, Abdulmajid Addali, Mosab Alrashed, Taihiret Alhashan

Abstract:

The application of acoustic emission techniques is gaining popularity, as it can monitor the condition of gears and bearings and detect early symptoms of a defect in the form of pitting, wear, and flaking of surfaces. Early detection of these defects is essential as it helps to avoid major failures and the associated catastrophic consequences. Signal processing techniques are required for early defect detection – in this article, a time domain technique called the Energy Index (EI) is used. This article presents an investigation into the Energy Index’s effectiveness to detect early-stage defect initiation and deterioration, and compares it with the common r.m.s. index, Kurtosis, and the Kolmogorov-Smirnov statistical test. It is concluded that EI is a more effective technique for monitoring defect initiation and development than other statistical parameters.

Keywords: acoustic emission, signal processing, kurtosis, Kolmogorov-Smirnov test

Procedia PDF Downloads 366
5065 Information Theoretic Approach for Beamforming in Wireless Communications

Authors: Syed Khurram Mahmud, Athar Naveed, Shoaib Arif

Abstract:

Beamforming is a signal processing technique extensively utilized in wireless communications and radars for desired signal intensification and interference signal minimization through spatial selectivity. In this paper, we present a method for calculation of optimal weight vectors for smart antenna array, to achieve a directive pattern during transmission and selective reception in interference prone environment. In proposed scheme, Mutual Information (MI) extrema are evaluated through an energy constrained objective function, which is based on a-priori information of interference source and desired array factor. Signal to Interference plus Noise Ratio (SINR) performance is evaluated for both transmission and reception. In our scheme, MI is presented as an index to identify trade-off between information gain, SINR, illumination time and spatial selectivity in an energy constrained optimization problem. The employed method yields lesser computational complexity, which is presented through comparative analysis with conventional methods in vogue. MI based beamforming offers enhancement of signal integrity in degraded environment while reducing computational intricacy and correlating key performance indicators.

Keywords: beamforming, interference, mutual information, wireless communications

Procedia PDF Downloads 280
5064 Multi-Impairment Compensation Based Deep Neural Networks for 16-QAM Coherent Optical Orthogonal Frequency Division Multiplexing System

Authors: Ying Han, Yuanxiang Chen, Yongtao Huang, Jia Fu, Kaile Li, Shangjing Lin, Jianguo Yu

Abstract:

In long-haul and high-speed optical transmission system, the orthogonal frequency division multiplexing (OFDM) signal suffers various linear and non-linear impairments. In recent years, researchers have proposed compensation schemes for specific impairment, and the effects are remarkable. However, different impairment compensation algorithms have caused an increase in transmission delay. With the widespread application of deep neural networks (DNN) in communication, multi-impairment compensation based on DNN will be a promising scheme. In this paper, we propose and apply DNN to compensate multi-impairment of 16-QAM coherent optical OFDM signal, thereby improving the performance of the transmission system. The trained DNN models are applied in the offline digital signal processing (DSP) module of the transmission system. The models can optimize the constellation mapping signals at the transmitter and compensate multi-impairment of the OFDM decoded signal at the receiver. Furthermore, the models reduce the peak to average power ratio (PAPR) of the transmitted OFDM signal and the bit error rate (BER) of the received signal. We verify the effectiveness of the proposed scheme for 16-QAM Coherent Optical OFDM signal and demonstrate and analyze transmission performance in different transmission scenarios. The experimental results show that the PAPR and BER of the transmission system are significantly reduced after using the trained DNN. It shows that the DNN with specific loss function and network structure can optimize the transmitted signal and learn the channel feature and compensate for multi-impairment in fiber transmission effectively.

Keywords: coherent optical OFDM, deep neural network, multi-impairment compensation, optical transmission

Procedia PDF Downloads 143
5063 The Time-Frequency Domain Reflection Method for Aircraft Cable Defects Localization

Authors: Reza Rezaeipour Honarmandzad

Abstract:

This paper introduces an aircraft cable fault detection and location method in light of TFDR keeping in mind the end goal to recognize the intermittent faults adequately and to adapt to the serial and after-connector issues being hard to be distinguished in time domain reflection. In this strategy, the correlation function of reflected and reference signal is used to recognize and find the airplane fault as per the qualities of reflected and reference signal in time-frequency domain, so the hit rate of distinguishing and finding intermittent faults can be enhanced adequately. In the work process, the reflected signal is interfered by the noise and false caution happens frequently, so the threshold de-noising technique in light of wavelet decomposition is used to diminish the noise interference and lessen the shortcoming alert rate. At that point the time-frequency cross connection capacity of the reference signal and the reflected signal based on Wigner-Ville appropriation is figured so as to find the issue position. Finally, LabVIEW is connected to execute operation and control interface, the primary capacity of which is to connect and control MATLAB and LABSQL. Using the solid computing capacity and the bottomless capacity library of MATLAB, the signal processing turn to be effortlessly acknowledged, in addition LabVIEW help the framework to be more dependable and upgraded effectively.

Keywords: aircraft cable, fault location, TFDR, LabVIEW

Procedia PDF Downloads 476
5062 Musical Tesla Coil Controlled by an Audio Signal Processed in Matlab

Authors: Sandra Cuenca, Danilo Santana, Anderson Reyes

Abstract:

The following project is based on the manipulation of audio signals through the Matlab software, which has an audio signal that is modified, and its resultant obtained through the auxiliary port of the computer is passed through a signal amplifier whose amplified signal is connected to a tesla coil which has a behavior like a vumeter, the flashes at the output of the tesla coil increase and decrease its intensity depending on the audio signal in the computer and also the voltage source from which it is sent. The amplified signal then passes to the tesla coil being shown in the plasma sphere with the respective flashes; this activation is given through the specified parameters that we want to give in the MATLAB algorithm that contains the digital filters for the manipulation of our audio signal sent to the tesla coil to be displayed in a plasma sphere with flashes of the combination of colors commonly pink and purple that varies according to the tone of the song.

Keywords: auxiliary port, tesla coil, vumeter, plasma sphere

Procedia PDF Downloads 90
5061 Analysis of Interleaving Scheme for Narrowband VoIP System under Pervasive Environment

Authors: Monica Sharma, Harjit Pal Singh, Jasbinder Singh, Manju Bala

Abstract:

In Voice over Internet Protocol (VoIP) system, the speech signal is degraded when passed through the network layers. The speech signal is processed through the best effort policy based IP network, which leads to the network degradations including delay, packet loss and jitter. The packet loss is the major issue of the degradation in the VoIP signal quality; even a single lost packet may generate audible distortion in the decoded speech signal. In addition to these network degradations, the quality of the speech signal is also affected by the environmental noises and coder distortions. The signal quality of the VoIP system is improved through the interleaving technique. The performance of the system is evaluated for various types of noises at different network conditions. The performance of the enhanced VoIP signal is evaluated using perceptual evaluation of speech quality (PESQ) measurement for narrow band signal.

Keywords: VoIP, interleaving, packet loss, packet size, background noise

Procedia PDF Downloads 479
5060 Investigation of the Unbiased Characteristic of Doppler Frequency to Different Antenna Array Geometries

Authors: Somayeh Komeylian

Abstract:

Array signal processing techniques have been recently developing in a variety application of the performance enhancement of receivers by refraining the power of jamming and interference signals. In this scenario, biases induced to the antenna array receiver degrade significantly the accurate estimation of the carrier phase. Owing to the integration of frequency becomes the carrier phase, we have obtained the unbiased doppler frequency for the high precision estimation of carrier phase. The unbiased characteristic of Doppler frequency to the power jamming and the other interference signals allows achieving the highly accurate estimation of phase carrier. In this study, we have rigorously investigated the unbiased characteristic of Doppler frequency to the variation of the antenna array geometries. The simulation results have efficiently verified that the Doppler frequency remains also unbiased and accurate to the variation of antenna array geometries.

Keywords: array signal processing, unbiased doppler frequency, GNSS, carrier phase, and slowly fluctuating point target

Procedia PDF Downloads 159
5059 Clutter Suppression Based on Singular Value Decomposition and Fast Wavelet Algorithm

Authors: Ruomeng Xiao, Zhulin Zong, Longfa Yang

Abstract:

Aiming at the problem that the target signal is difficult to detect under the strong ground clutter environment, this paper proposes a clutter suppression algorithm based on the combination of singular value decomposition and the Mallat fast wavelet algorithm. The method first carries out singular value decomposition on the radar echo data matrix, realizes the initial separation of target and clutter through the threshold processing of singular value, and then carries out wavelet decomposition on the echo data to find out the target location, and adopts the discard method to select the appropriate decomposition layer to reconstruct the target signal, which ensures the minimum loss of target information while suppressing the clutter. After the verification of the measured data, the method has a significant effect on the target extraction under low SCR, and the target reconstruction can be realized without the prior position information of the target and the method also has a certain enhancement on the output SCR compared with the traditional single wavelet processing method.

Keywords: clutter suppression, singular value decomposition, wavelet transform, Mallat algorithm, low SCR

Procedia PDF Downloads 118
5058 A Generalized Sparse Bayesian Learning Algorithm for Near-Field Synthetic Aperture Radar Imaging: By Exploiting Impropriety and Noncircularity

Authors: Pan Long, Bi Dongjie, Li Xifeng, Xie Yongle

Abstract:

The near-field synthetic aperture radar (SAR) imaging is an advanced nondestructive testing and evaluation (NDT&E) technique. This paper investigates the complex-valued signal processing related to the near-field SAR imaging system, where the measurement data turns out to be noncircular and improper, meaning that the complex-valued data is correlated to its complex conjugate. Furthermore, we discover that the degree of impropriety of the measurement data and that of the target image can be highly correlated in near-field SAR imaging. Based on these observations, A modified generalized sparse Bayesian learning algorithm is proposed, taking impropriety and noncircularity into account. Numerical results show that the proposed algorithm provides performance gain, with the help of noncircular assumption on the signals.

Keywords: complex-valued signal processing, synthetic aperture radar, 2-D radar imaging, compressive sensing, sparse Bayesian learning

Procedia PDF Downloads 131
5057 A Contactless Capacitive Biosensor for Muscle Activity Measurement

Authors: Charn Loong Ng, Mamun Bin Ibne Reaz

Abstract:

As elderly population grows globally, the percentage of people diagnosed with musculoskeletal disorder (MSD) increase proportionally. Electromyography (EMG) is an important biosignal that contributes to MSD’s clinical diagnose and recovery process. Conventional conductive electrode has many disadvantages in the continuous EMG measurement application. This research has design a new surface EMG biosensor based on the parallel-plate capacitive coupling principle. The biosensor is developed by using a double-sided PCB with having one side of the PCB use to construct high input impedance circuitry while the other side of the copper (CU) plate function as biosignal sensing metal plate. The metal plate is insulated using kapton tape for contactless application. The result implicates that capacitive biosensor is capable to constantly capture EMG signal without having galvanic contact to human skin surface. However, there are noticeable noise couple into the measured signal. Post signal processing is needed in order to present a clean and significant EMG signal. A complete design of single ended, non-contact, high input impedance, front end EMG biosensor is presented in this paper.

Keywords: contactless, capacitive, biosensor, electromyography

Procedia PDF Downloads 450
5056 Graphical User Interface for Presting Matlab Work for Reduction of Chromatic Disperion Using Digital Signal Processing for Optical Communication

Authors: Muhammad Faiz Liew Abdullah, Bhagwan Das, Nor Shahida, Abdul Fattah Chandio

Abstract:

This study presents the designed features of Graphical User Interface (GUI) for chromatic dispersion (CD) reduction using digital signal processing (DSP) techniques. GUI is specially designed for windows platform. The obtained simulation results from matlab are presented via this GUI. After importing results from matlab in GUI, It will present your work on any windows7 and onwards versions platforms without matlab software. First part of the GUI contains the research methodology block diagram and in the second part, output for each stage is shown in separate reserved area for the result display. Each stage of methodology has the captions to display the results. This GUI will be very helpful during presentations instead of making slides this GUI will present all your work easily in the absence of other software’s such as Matlab, Labview, MS PowerPoint. GUI is designed using C programming in MS Visio Studio.

Keywords: Matlab simulation results, C programming, MS VISIO studio, chromatic dispersion

Procedia PDF Downloads 462
5055 A Pole Radius Varying Notch Filter with Transient Suppression for Electrocardiogram

Authors: Ramesh Rajagopalan, Adam Dahlstrom

Abstract:

Noise removal techniques play a vital role in the performance of electrocardiographic (ECG) signal processing systems. ECG signals can be corrupted by various kinds of noise such as baseline wander noise, electromyographic interference, and power-line interference. One of the significant challenges in ECG signal processing is the degradation caused by additive 50 or 60 Hz power-line interference. This work investigates the removal of power line interference and suppression of transient response for filtering noise corrupted ECG signals. We demonstrate the effectiveness of Infinite Impulse Response (IIR) notch filter with time varying pole radius for improving the transient behavior. The temporary change in the pole radius of the filter diminishes the transient behavior. Simulation results show that the proposed IIR filter with time varying pole radius outperforms traditional IIR notch filters in terms of mean square error and transient suppression.

Keywords: notch filter, ECG, transient, pole radius

Procedia PDF Downloads 377
5054 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks

Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone

Abstract:

Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.

Keywords: artificial neural network, data mining, electroencephalogram, epilepsy, feature extraction, seizure detection, signal processing

Procedia PDF Downloads 188
5053 An Improved Two-dimensional Ordered Statistical Constant False Alarm Detection

Authors: Weihao Wang, Zhulin Zong

Abstract:

Two-dimensional ordered statistical constant false alarm detection is a widely used method for detecting weak target signals in radar signal processing applications. The method is based on analyzing the statistical characteristics of the noise and clutter present in the radar signal and then using this information to set an appropriate detection threshold. In this approach, the reference cell of the unit to be detected is divided into several reference subunits. These subunits are used to estimate the noise level and adjust the detection threshold, with the aim of minimizing the false alarm rate. By using an ordered statistical approach, the method is able to effectively suppress the influence of clutter and noise, resulting in a low false alarm rate. The detection process involves a number of steps, including filtering the input radar signal to remove any noise or clutter, estimating the noise level based on the statistical characteristics of the reference subunits, and finally, setting the detection threshold based on the estimated noise level. One of the main advantages of two-dimensional ordered statistical constant false alarm detection is its ability to detect weak target signals in the presence of strong clutter and noise. This is achieved by carefully analyzing the statistical properties of the signal and using an ordered statistical approach to estimate the noise level and adjust the detection threshold. In conclusion, two-dimensional ordered statistical constant false alarm detection is a powerful technique for detecting weak target signals in radar signal processing applications. By dividing the reference cell into several subunits and using an ordered statistical approach to estimate the noise level and adjust the detection threshold, this method is able to effectively suppress the influence of clutter and noise and maintain a low false alarm rate.

Keywords: two-dimensional, ordered statistical, constant false alarm, detection, weak target signals

Procedia PDF Downloads 78
5052 Compressed Sensing of Fetal Electrocardiogram Signals Based on Joint Block Multi-Orthogonal Least Squares Algorithm

Authors: Xiang Jianhong, Wang Cong, Wang Linyu

Abstract:

With the rise of medical IoT technologies, Wireless body area networks (WBANs) can collect fetal electrocardiogram (FECG) signals to support telemedicine analysis. The compressed sensing (CS)-based WBANs system can avoid the sampling of a large amount of redundant information and reduce the complexity and computing time of data processing, but the existing algorithms have poor signal compression and reconstruction performance. In this paper, a Joint block multi-orthogonal least squares (JBMOLS) algorithm is proposed. We apply the FECG signal to the Joint block sparse model (JBSM), and a comparative study of sparse transformation and measurement matrices is carried out. A FECG signal compression transmission mode based on Rbio5.5 wavelet, Bernoulli measurement matrix, and JBMOLS algorithm is proposed to improve the compression and reconstruction performance of FECG signal by CS-based WBANs. Experimental results show that the compression ratio (CR) required for accurate reconstruction of this transmission mode is increased by nearly 10%, and the runtime is saved by about 30%.

Keywords: telemedicine, fetal ECG, compressed sensing, joint sparse reconstruction, block sparse signal

Procedia PDF Downloads 128
5051 A High Time Resolution Digital Pulse Width Modulator Based on Field Programmable Gate Array’s Phase Locked Loop Megafunction

Authors: Jun Wang, Tingcun Wei

Abstract:

The digital pulse width modulator (DPWM) is the crucial building block for digitally-controlled DC-DC switching converter, which converts the digital duty ratio signal into its analog counterpart to control the power MOSFET transistors on or off. With the increase of switching frequency of digitally-controlled DC-DC converter, the DPWM with higher time resolution is required. In this paper, a 15-bits DPWM with three-level hybrid structure is presented; the first level is composed of a7-bits counter and a comparator, the second one is a 5-bits delay line, and the third one is a 3-bits digital dither. The presented DPWM is designed and implemented using the PLL megafunction of FPGA (Field Programmable Gate Arrays), and the required frequency of clock signal is 128 times of switching frequency. The simulation results show that, for the switching frequency of 2 MHz, a DPWM which has the time resolution of 15 ps is achieved using a maximum clock frequency of 256MHz. The designed DPWM in this paper is especially useful for high-frequency digitally-controlled DC-DC switching converters.

Keywords: DPWM, digitally-controlled DC-DC switching converter, FPGA, PLL megafunction, time resolution

Procedia PDF Downloads 480
5050 Forensic Analysis of Signal Messenger on Android

Authors: Ward Bakker, Shadi Alhakimi

Abstract:

The amount of people moving towards more privacy focused instant messaging applications has grown significantly. Signal is one of these instant messaging applications, which makes Signal interesting for digital investigators. In this research, we evaluate the artifacts that are generated by the Signal messenger for Android. This evaluation was done by using the features that Signal provides to create artifacts, whereafter, we made an image of the internal storage and the process memory. This image was analysed manually. The manual analysis revealed the content that Signal stores in different locations during its operation. From our research, we were able to identify the artifacts and interpret how they were used. We also examined the source code of Signal. Using our obtain knowledge from the source code, we developed a tool that decrypts some of the artifacts using the key stored in the Android Keystore. In general, we found that most artifacts are encrypted and encoded, even after decrypting some of the artifacts. During data visualization, some artifacts were found, such as that Signal does not use relationships between the data. In this research, two interesting groups of artifacts were identified, those related to the database and those stored in the process memory dump. In the database, we found plaintext private- and group chats, and in the memory dump, we were able to retrieve the plaintext access code to the application. Nevertheless, we conclude that Signal contains a wealth of artifacts that could be very valuable to a digital forensic investigation.

Keywords: forensic, signal, Android, digital

Procedia PDF Downloads 82
5049 Normalized P-Laplacian: From Stochastic Game to Image Processing

Authors: Abderrahim Elmoataz

Abstract:

More and more contemporary applications involve data in the form of functions defined on irregular and topologically complicated domains (images, meshs, points clouds, networks, etc). Such data are not organized as familiar digital signals and images sampled on regular lattices. However, they can be conveniently represented as graphs where each vertex represents measured data and each edge represents a relationship (connectivity or certain affinities or interaction) between two vertices. Processing and analyzing these types of data is a major challenge for both image and machine learning communities. Hence, it is very important to transfer to graphs and networks many of the mathematical tools which were initially developed on usual Euclidean spaces and proven to be efficient for many inverse problems and applications dealing with usual image and signal domains. Historically, the main tools for the study of graphs or networks come from combinatorial and graph theory. In recent years there has been an increasing interest in the investigation of one of the major mathematical tools for signal and image analysis, which are Partial Differential Equations (PDEs) variational methods on graphs. The normalized p-laplacian operator has been recently introduced to model a stochastic game called tug-of-war-game with noise. Part interest of this class of operators arises from the fact that it includes, as particular case, the infinity Laplacian, the mean curvature operator and the traditionnal Laplacian operators which was extensiveley used to models and to solve problems in image processing. The purpose of this paper is to introduce and to study a new class of normalized p-Laplacian on graphs. The introduction is based on the extension of p-harmonious function introduced in as discrete approximation for both infinity Laplacian and p-Laplacian equations. Finally, we propose to use these operators as a framework for solving many inverse problems in image processing.

Keywords: normalized p-laplacian, image processing, stochastic game, inverse problems

Procedia PDF Downloads 512
5048 Neural Network Based Path Loss Prediction for Global System for Mobile Communication in an Urban Environment

Authors: Danladi Ali

Abstract:

In this paper, we measured GSM signal strength in the Dnepropetrovsk city in order to predict path loss in study area using nonlinear autoregressive neural network prediction and we also, used neural network clustering to determine average GSM signal strength receive at the study area. The nonlinear auto-regressive neural network predicted that the GSM signal is attenuated with the mean square error (MSE) of 2.6748dB, this attenuation value is used to modify the COST 231 Hata and the Okumura-Hata models. The neural network clustering revealed that -75dB to -95dB is received more frequently. This means that the signal strength received at the study is mostly weak signal

Keywords: one-dimensional multilevel wavelets, path loss, GSM signal strength, propagation, urban environment and model

Procedia PDF Downloads 382
5047 Enhancing Embedded System Efficiency with Digital Signal Processing Cores

Authors: Anil H. Dhanawade, Akshay S., Harshal M. Lakesar

Abstract:

This paper presents a comprehensive analysis of the performance advantages offered by DSP (Digital Signal Processing) cores compared to traditional MCU (Microcontroller Unit) cores in the execution of various functions critical to real-time applications. The focus is on the integration of DSP functionalities, specifically in the context of motor control applications such as Field-Oriented Control (FOC), trigonometric calculations, back-EMF estimation, digital filtering, and high-resolution PWM generation. Through comparative analysis, it is demonstrated that DSP cores significantly enhance processing efficiency, achieving faster execution times for complex mathematical operations essential for precise torque and speed control. The study highlights the capabilities of DSP cores, including single-cycle Multiply-Accumulate (MAC) operations and optimized hardware for trigonometric functions, which collectively reduce latency and improve real-time performance. In contrast, MCU cores, while capable of performing similar tasks, typically exhibit longer execution times due to reliance on software-based solutions and lack of dedicated hardware acceleration. The findings underscore the critical role of DSP cores in applications requiring high-speed processing and low-latency response, making them indispensable in the automotive, industrial, and robotics sectors. This work serves as a reference for future developments in embedded systems, emphasizing the importance of architecture choice in achieving optimal performance in demanding computational tasks.

Keywords: CPU core, DSP, assembly code, motor control

Procedia PDF Downloads 16
5046 Low Probability of Intercept (LPI) Signal Detection and Analysis Using Choi-Williams Distribution

Authors: V. S. S. Kumar, V. Ramya

Abstract:

In the modern electronic warfare, the signal scenario is changing at a rapid pace with the introduction of Low Probability of Intercept (LPI) radars. In the modern battlefield, radar system faces serious threats from passive intercept receivers such as Electronic Attack (EA) and Anti-Radiation Missiles (ARMs). To perform necessary target detection and tracking and simultaneously hide themselves from enemy attack, radar systems should be LPI. These LPI radars use a variety of complex signal modulation schemes together with pulse compression with the aid of advancement in signal processing capabilities of the radar such that the radar performs target detection and tracking while simultaneously hiding enemy from attack such as EA etc., thus posing a major challenge to the ES/ELINT receivers. Today an increasing number of LPI radars are being introduced into the modern platforms and weapon systems so these LPI radars created a requirement for the armed forces to develop new techniques, strategies and equipment to counter them. This paper presents various modulation techniques used in generation of LPI signals and development of Time Frequency Algorithms to analyse those signals.

Keywords: anti-radiation missiles, cross terms, electronic attack, electronic intelligence, electronic warfare, intercept receiver, low probability of intercept

Procedia PDF Downloads 472
5045 System for Electromyography Signal Emulation Through the Use of Embedded Systems

Authors: Valentina Narvaez Gaitan, Laura Valentina Rodriguez Leguizamon, Ruben Dario Hernandez B.

Abstract:

This work describes a physiological signal emulation system that uses electromyography (EMG) signals obtained from muscle sensors in the first instance. These signals are used to extract their characteristics to model and emulate specific arm movements. The main objective of this effort is to develop a new biomedical software system capable of generating physiological signals through the use of embedded systems by establishing the characteristics of the acquired signals. The acquisition system used was Biosignals, which contains two EMG electrodes used to acquire signals from the forearm muscles placed on the extensor and flexor muscles. Processing algorithms were implemented to classify the signals generated by the arm muscles when performing specific movements such as wrist flexion extension, palmar grip, and wrist pronation-supination. Matlab software was used to condition and preprocess the signals for subsequent classification. Subsequently, the mathematical modeling of each signal is performed to be generated by the embedded system, with a validation of the accuracy of the obtained signal using the percentage of cross-correlation, obtaining a precision of 96%. The equations are then discretized to be emulated in the embedded system, obtaining a system capable of generating physiological signals according to the characteristics of medical analysis.

Keywords: classification, electromyography, embedded system, emulation, physiological signals

Procedia PDF Downloads 111