Search results for: VX2 tumor model
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 17202

Search results for: VX2 tumor model

17112 Human TP53 Three Dimentional (3D) Core Domain Hot Spot Mutations at Codon, 36, 72 and 240 are Associated with Oral Squamous Cell Carcinoma

Authors: Saima Saleem, Zubair Abbasi, Abdul Hameed, Mansoor Ahmed Khan, Navid Rashid Qureshi, Abid Azhar

Abstract:

Oral Squamous Cell Carcinoma (OSCC) is the leading cause of death in the developing countries like Pakistan. This problem aggravates because of the excessive use of available chewing products. In spite of widespread information on their use and purported legislations against their use the Pakistani markets are classical examples of selling chewable carcinogenic mutagens. Reported studies indicated that these products are rich in reactive oxygen species (ROS) and polyphenols. TP53 gene is involved in the suppression of tumor. It has been reported that somatic mutations caused by TP53 gene are the foundation of the cancer. This study aims to find the loss of TP53 functions due to mutation/polymorphism caused by genomic alteration and interaction with tobacco and its related ingredients. Total 260 tissues and blood specimens were collected from OSCC patients and compared with age and sex matched controls. Mutations in exons 2-11 of TP53 were examined by PCR-SSCP. Samples showing mobility shift were directly sequenced. Two mutations were found in exon 4 at nucleotide position 108 and 215 and one in exon 7 at nucleotide position 719 of the coding sequences in patient’s tumor samples. These results show that substitution of proline with arginine at codon 72 and serine with threonine at codon 240 of p53 protein. These polymorphic changes, found in tumor samples of OSCC, could be involved in loss of heterozygocity and apoptotic activity in the binding domain of TP53. The model of the mutated TP53 gene elaborated a nonfunctional unfolded p53 protein, suggesting an important role of these mutations in p53 protein inactivation and malfunction. This nonfunctional 3D model also indicates that exogenous tobacco related carcinogens may act as DNA-damaging agents affecting the structure of DNA. The interpretations could be helpful in establishing the pathways responsible for tumor formation in OSCC patients.

Keywords: TP53 mutation/polymorphism, OSCC, PCR-SSCP, direct DNA sequencing, 3D structure

Procedia PDF Downloads 363
17111 Identification of Clinical Characteristics from Persistent Homology Applied to Tumor Imaging

Authors: Eashwar V. Somasundaram, Raoul R. Wadhwa, Jacob G. Scott

Abstract:

The use of radiomics in measuring geometric properties of tumor images such as size, surface area, and volume has been invaluable in assessing cancer diagnosis, treatment, and prognosis. In addition to analyzing geometric properties, radiomics would benefit from measuring topological properties using persistent homology. Intuitively, features uncovered by persistent homology may correlate to tumor structural features. One example is necrotic cavities (corresponding to 2D topological features), which are markers of very aggressive tumors. We develop a data pipeline in R that clusters tumors images based on persistent homology is used to identify meaningful clinical distinctions between tumors and possibly new relationships not captured by established clinical categorizations. A preliminary analysis was performed on 16 Magnetic Resonance Imaging (MRI) breast tissue segments downloaded from the 'Investigation of Serial Studies to Predict Your Therapeutic Response with Imaging and Molecular Analysis' (I-SPY TRIAL or ISPY1) collection in The Cancer Imaging Archive. Each segment represents a patient’s breast tumor prior to treatment. The ISPY1 dataset also provided the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) status data. A persistent homology matrix up to 2-dimensional features was calculated for each of the MRI segmentation. Wasserstein distances were then calculated between all pairwise tumor image persistent homology matrices to create a distance matrix for each feature dimension. Since Wasserstein distances were calculated for 0, 1, and 2-dimensional features, three hierarchal clusters were constructed. The adjusted Rand Index was used to see how well the clusters corresponded to the ER/PR/HER2 status of the tumors. Triple-negative cancers (negative status for all three receptors) significantly clustered together in the 2-dimensional features dendrogram (Adjusted Rand Index of .35, p = .031). It is known that having a triple-negative breast tumor is associated with aggressive tumor growth and poor prognosis when compared to non-triple negative breast tumors. The aggressive tumor growth associated with triple-negative tumors may have a unique structure in an MRI segmentation, which persistent homology is able to identify. This preliminary analysis shows promising results in the use of persistent homology on tumor imaging to assess the severity of breast tumors. The next step is to apply this pipeline to other tumor segment images from The Cancer Imaging Archive at different sites such as the lung, kidney, and brain. In addition, whether other clinical parameters, such as overall survival, tumor stage, and tumor genotype data are captured well in persistent homology clusters will be assessed. If analyzing tumor MRI segments using persistent homology consistently identifies clinical relationships, this could enable clinicians to use persistent homology data as a noninvasive way to inform clinical decision making in oncology.

Keywords: cancer biology, oncology, persistent homology, radiomics, topological data analysis, tumor imaging

Procedia PDF Downloads 129
17110 Ellagic Acid Enhanced Apoptotic Radiosensitivity via G1 Cell Cycle Arrest and γ-H2AX Foci Formation in HeLa Cells in vitro

Authors: V. R. Ahire, A. Kumar, B. N. Pandey, K. P. Mishra, G. R. Kulkarni

Abstract:

Radiation therapy is an effective vital strategy used globally in the treatment of cervical cancer. However, radiation efficacy principally depends on the radiosensitivity of the tumor, and not all patient exhibit significant response to irradiation. A radiosensitive tumor is easier to cure than a radioresistant tumor which later advances to local recurrence and metastasis. Herbal polyphenols are gaining attention for exhibiting radiosensitization through various signaling. Current work focuses to study the radiosensitization effect of ellagic acid (EA), on HeLa cells. EA intermediated radiosensitization of HeLa cells was due to the induction γ-H2AX foci formation, G1 phase cell cycle arrest, and loss of reproductive potential, growth inhibition, drop in the mitochondrial membrane potential and protein expression studies that eventually induced apoptosis. Irradiation of HeLa in presence of EA (10 μM) to doses of 2 and 4 Gy γ-radiation produced marked tumor cytotoxicity. EA also demonstrated radio-protective effect on normal cell, NIH3T3 and aided recovery from the radiation damage. Our results advocate EA to be an effective adjuvant for improving cancer radiotherapy as it displays striking tumor cytotoxicity and reduced normal cell damage instigated by irradiation.

Keywords: apoptotic radiosensitivity, ellagic acid, mitochondrial potential, cell-cycle arrest

Procedia PDF Downloads 350
17109 The Robotic Factor in Left Atrial Myxoma

Authors: Abraham J. Rizkalla, Tristan D. Yan

Abstract:

Atrial myxoma is the most common primary cardiac tumor, and can result in cardiac failure secondary to obstruction, or systemic embolism due to fragmentation. Traditionally, excision of atrial an myxoma has been performed through median sternotomy, however the robotic approach offers several advantages including less pain, improved cosmesis, and faster recovery. Here, we highlight the less well recognized advantages and technical aspects to robotic myxoma resection. This video-presentation demonstrates the resection of a papillary subtype left atrial myxoma using the DaVinci© Xi surgical robot. The 10x magnification and 3D vision allows for the interface between the tumor and the interatrial septum to be accurately dissected, without the need to patch the interatrial septum. Several techniques to avoid tumor fragmentation and embolization are demonstrated throughout the procedure. The tumor was completely excised with clear margins. There was no atrial septal defect or mitral valve injury on post operative transesophageal echocardiography. The patient was discharged home on the fourth post-operative day. This video-presentation highlights the advantages of the robotic approach in atrial myxoma resection compared with sternotomy, as well as emphasizing several technical considerations to avoid potential complications.

Keywords: cardiac surgery, left atrial myxoma, cardiac tumour, robotic resection

Procedia PDF Downloads 68
17108 Strabismus Management in Retinoblastoma Survivors

Authors: Babak Masoomian, Masoud Khorrami Nejad, Hamid Riazi Esfahani

Abstract:

Purpose: To report the result of strabismus surgery in eye-salvaged retinoblastoma (Rb) patients. Methods: A retrospective case series including 18 patients with Rb and strabismus who underwent strabismus surgery after completing tumor treatment by a single pediatric ophthalmologist. Results: A total of 18 patients (10 females and 8 males) were included with a mean age of 13.3 ± 3.0 (range, 2-39) months at the time tumor presentation and 6.0 ± 1.5 (range, 4-9) years at the time of strabismus surgery. Ten (56%) patients had unilateral, and 8(44%) had bilateral involvement, and the most common worse eye tumor’s group was D (n=11), C (n=4), B (n=2) and E (n=1). Macula was involved by the tumors in 12 (67%) patients. The tumors were managed by intravenous chemotherapy (n=8, 47%), intra-arterial chemotherapy (n=7, 41%) and both (n=3, 17%). After complete treatment, the average time to strabismus surgery was 29.9 ± 20.5 (range, 12-84) months. Except for one, visual acuity was equal or less than 1.0 logMAR (≤ 20/200) in the affected eye. Seven (39%) patients had exotropia, 11(61%) had esotropia (P=0.346) and vertical deviation was found in 8 (48%) cases. The angle of deviation was 42.0 ± 10.4 (range, 30-60) prism diopter (PD) for esotropic and 35.7± 7.9 (range, 25-50) PD for exotropic patients (P=0.32) that after surgery significantly decreased to 8.5 ± 5.3 PD in esotropic cases and 5.9±6.7 PD in exotropic cases (P<0.001). The mean follow-up after surgery was 15.2 ± 2.0 (range, 10-24) months, in which 3 (17%) patients needed a second surgery. Conclusion: Strabismus surgery in treated Rb is safe, and results of the surgeries are acceptable and close to the general population. There was not associated with tumor recurrence or metastasis.

Keywords: retinoblastoma, strabismus, chemotherapy, surgery

Procedia PDF Downloads 55
17107 Benign Osteoblastoma of the Mandible Resection and Replacement of the Defects with Decellularized Cattle Bone Scaffold with Mesenchymal Bone Marrow Stem Cells

Authors: K. Mardaleishvili, G. Loladze, G. Shatirishivili, D. Chakhunashvili, A. Vishnevskaya, Z. Kakabadze

Abstract:

Benign osteoblastoma is a benign tumor of the bone, usually affecting the vertebrae and long tubular bones. It is a rarely seen tumor of the facial bones. The authors present a case of a 28-year-old male patient with a tumor in mandibular body. The lesion was radically resected and histological analysis of the specimen demonstrated features typical of a benign osteoblastoma. The defect of the jaw was reconstructed with titanium implants and decellularized and lyophilized cattle bone matrix with mesenchymal bone marrow stem cells transplantation. This presentation describes the procedures for rehabilitating a patient with decellularized bone scaffold in the region of the face, recovering the facial contours and esthetics of the patient.

Keywords: facial bones, osteoblastoma, stem cells, transplantation

Procedia PDF Downloads 415
17106 Vascular Targeted Photodynamic Therapy Monitored by Real-Time Laser Speckle Imaging

Authors: Ruth Goldschmidt, Vyacheslav Kalchenko, Lilah Agemy, Rachel Elmoalem, Avigdor Scherz

Abstract:

Vascular Targeted Photodynamic therapy (VTP) is a new modality for selective cancer treatment that leads to the complete tumor ablation. A photosensitizer, a bacteriochlorophyll derivative in our case, is first administered to the patient and followed by the illumination of the tumor area, by a near-IR laser for its photoactivation. The photoactivated drug releases reactive oxygen species (ROS) in the circulation, which reacts with blood cells and the endothelium leading to the occlusion of the blood vasculature. If the blood vessels are only partially closed, the tumor may recover, and cancer cells could survive. On the other hand, excessive treatment may lead to toxicity of healthy tissues nearby. Simultaneous VTP monitoring and image processing independent of the photoexcitation laser has not yet been reported, to our knowledge. Here we present a method for blood flow monitoring, using a real-time laser speckle imaging (RTLSI) in the tumor during VTP. We have synthesized over the years a library of bacteriochlorophyll derivatives, among them WST11 and STL-6014. Both are water soluble derivatives that are retained in the blood vasculature through their partial binding to HSA. WST11 has been approved in Mexico for VTP treatment of prostate cancer at a certain drug dose, and time/intensity of illumination. Application to other bacteriochlorophyll derivatives or other cancers may require different treatment parameters (such as light/drug administration). VTP parameters for STL-6014 are still under study. This new derivative mainly differs from WST11 by its lack of the central Palladium, and its conjugation to an Arg-Gly-Asp (RGD) sequence. RGD is a tumor-specific ligand that is used for targeting the necrotic tumor domains through its affinity to αVβ3 integrin receptors. This enables the study of cell-targeted VTP. We developed a special RTLSI module, based on Labview software environment for data processing. The new module enables to acquire raw laser speckle images and calculate the values of the laser temporal statistics of time-integrated speckles in real time, without additional off-line processing. Using RTLSI, we could monitor the tumor’s blood flow following VTP in a CT26 colon carcinoma ear model. VTP with WST11 induced an immediate slow down of the blood flow within the tumor and a complete final flow arrest, after some sporadic reperfusions. If the irradiation continued further, the blood flow stopped also in the blood vessels of the surrounding healthy tissue. This emphasizes the significance of light dose control. Using our RTLSI system, we could prevent any additional healthy tissue damage by controlling the illumination time and restrict blood flow arrest within the tumor only. In addition, we found that VTP with STL-6014 was the most effective when the photoactivation was conducted 4h post-injection, in terms of tumor ablation success in-vivo and blood vessel flow arrest. In conclusion, RTSLI application should allow to optimize VTP efficacy vs. toxicity in both the preclinical and clinical arenas.

Keywords: blood vessel occlusion, cancer treatment, photodynamic therapy, real time imaging

Procedia PDF Downloads 218
17105 Numerical Simulation of Phase Transfer during Cryosurgery for an Irregular Tumor Using Hybrid Approach

Authors: Rama Bhargava

Abstract:

In the current paper, numerical simulation has been performed for the two-dimensional time dependent Pennes’ heat transfer model which is solved for irregular diseased tumor cells. An elliptic cryoprobe of varying sizes is taken at the center of the computational domain in such a manner that the location of the probe is fixed throughout the computation. The phase transition occurs due to the effect of probe with infusion of different nanoparticles Au, Al₂O₃, Fe₃O₄. The cooling performance of these nanoparticles injected at very low temperature, has been studied by implementing a hybrid FEM/EFGM method in which the whole domain is decomposed into two subdomains. The results are shown in terms of temperature profile inside the computational domain. Rate of cooling is obtained for various nanoparticles and it is observed that infusion of Au nanoparticles is very much efficient in increasing the heating rate than other nanoparticles. Such numerical scheme has direct applications where the domain is irregular.

Keywords: cryosurgery, hybrid EFGM/FEM, nanoparticles, simulation

Procedia PDF Downloads 234
17104 Liver Transplantation after Downstaging with Electrochemotherapy of Large Hepatocellular Carcinoma and Portal Vein Tumor Thrombosis: A Case Report

Authors: Luciano Tarantino, Emanuele Balzano, Aurelio Nasto

Abstract:

S.R. 53 years. January 2009: HCV-related cirrhosis, Child-Pugh A5 class, EGDS no aesophageal Varices. No important comorbidities. Treated with PEG-IFN+Ribavirin (march-november 2009) with subsequent sustained virologic response. HCVRNA absent overtime. October 2016 :CT detected small HCC nodule in the VIII segment (diam.=12 mm). Treated with US guided RF-ablation. November 2016 CT: complete necrosis. Unfortunately, the patient dropped out US and CT follow-up controls.September 2018: asthenia and weight loss. CT showed a large tumor infiltrating V-VII-VI segments and complete PVTT of right portal vein and its branches . Surgical Consultation excluded indication to Liver resection and OLT . 23 october 2018: ECT of a large peri-hilar area of the tumor including the PVTT. 1 and 3 months post-treatment CT showed complete necrosis and retraction of the thrombus and residual viable tumor in the peripheral portion of the right lobe . Therefor, the patient was reevaluated for OLT and considered eligible in waiting list . March 2019: CT showed no perihilar or portal vein recurrence and distant progression in the right lobe . March 2019 : Trans-arterial-Radio-therapy (TARE) of the right lobe. Post-treatment CT demonstrated no perihilar or portal vein recurrence and extensive necrosis of the residual tumor . December 2019: CT demonstrated several recurrences of HCC infiltrating the VI and VII segment . Howewer no recurrence was observed at hepatic hilum and in portal vessels . Therefore, on February 2020 the patient received OLT. At 44 months follow-up, no complication or recurrence or liver disfunction have been observed.

Keywords: hepatocellular carcinoma, portal vein tumor thrombosis, interventional ultrasound, liver tumor ablation, liver transplantation

Procedia PDF Downloads 62
17103 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level

Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti

Abstract:

The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.

Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor

Procedia PDF Downloads 272
17102 Using Multiomic Plasma Profiling From Liquid Biopsies to Identify Potential Signatures for Disease Diagnostics in Late-Stage Non-small Cell Lung Cancer (NSCLC) in Trinidad and Tobago

Authors: Nicole Ramlachan, Samuel Mark West

Abstract:

Lung cancer is the leading cause of cancer-associated deaths in North America, with the vast majority being non-small cell lung cancer (NSCLC), with a five-year survival rate of only 24%. Non-invasive discovery of biomarkers associated with early-diagnosis of NSCLC can enable precision oncology efforts using liquid biopsy-based multiomics profiling of plasma. Although tissue biopsies are currently the gold standard for tumor profiling, this method presents many limitations since these are invasive, risky, and sometimes hard to obtain as well as only giving a limited tumor profile. Blood-based tests provides a less-invasive, more robust approach to interrogate both tumor- and non-tumor-derived signals. We intend to examine 30 stage III-IV NSCLC patients pre-surgery and collect plasma samples.Cell-free DNA (cfDNA) will be extracted from plasma, and next-generation sequencing (NGS) performed. Through the analysis of tumor-specific alterations, including single nucleotide variants (SNVs), insertions, deletions, copy number variations (CNVs), and methylation alterations, we intend to identify tumor-derived DNA—ctDNA among the total pool of cfDNA. This would generate data to be used as an accurate form of cancer genotyping for diagnostic purposes. Using liquid biopsies offer opportunities to improve the surveillance of cancer patients during treatment and would supplement current diagnosis and tumor profiling strategies previously not readily available in Trinidad and Tobago. It would be useful and advantageous to use this in diagnosis and tumour profiling as well as to monitor cancer patients, providing early information regarding disease evolution and treatment efficacy, and reorient treatment strategies in, timethereby improving clinical oncology outcomes.

Keywords: genomics, multiomics, clinical genetics, genotyping, oncology, diagnostics

Procedia PDF Downloads 154
17101 An Integrative Computational Pipeline for Detection of Tumor Epitopes in Cancer Patients

Authors: Tanushree Jaitly, Shailendra Gupta, Leila Taher, Gerold Schuler, Julio Vera

Abstract:

Genomics-based personalized medicine is a promising approach to fight aggressive tumors based on patient's specific tumor mutation and expression profiles. A remarkable case is, dendritic cell-based immunotherapy, in which tumor epitopes targeting patient's specific mutations are used to design a vaccine that helps in stimulating cytotoxic T cell mediated anticancer immunity. Here we present a computational pipeline for epitope-based personalized cancer vaccines using patient-specific haplotype and cancer mutation profiles. In the workflow proposed, we analyze Whole Exome Sequencing and RNA Sequencing patient data to detect patient-specific mutations and their expression level. Epitopes including the tumor mutations are computationally predicted using patient's haplotype and filtered based on their expression level, binding affinity, and immunogenicity. We calculate binding energy for each filtered major histocompatibility complex (MHC)-peptide complex using docking studies, and use this feature to select good epitope candidates further.

Keywords: cancer immunotherapy, epitope prediction, NGS data, personalized medicine

Procedia PDF Downloads 244
17100 The Role of Surgery to Remove the Primary Tumor in Patients with Metastatic Breast Cancer

Authors: A. D. Zikiryahodjaev, L. V. Bolotina, A. S. Sukhotko

Abstract:

Purpose. To evaluate the expediency and timeliness of performance of surgical treatment as a component of multi-therapy treatment of patients with stage IV breast cancers. Materials and Methods. This investigation comparatively analyzed the results of complex treatment with or without surgery in patients with metastatic breast cancer. We analyzed retrospectively treatment experience of 196 patients with generalized breast cancer in the department of oncology and breast reconstructive surgery of P.A. Herzen Moscow Cancer Research Institute from 2000 to 2012. The average age was (58±1,1) years. Invasive ductul carcinoma was verified in128 patients (65,3%), invasive lobular carcinoma-33 (16,8%), complex form - 19 (9,7%). Complex palliative care involving drug and radiation therapies was performed in two patient groups. The first group includes 124 patients who underwent surgical intervention as complex treatment, the second group includes 72 patients with only medical therapy. Standard systemic therapy was given to all patients. Results. Overall, 3-and 5-year survival in fist group was 43,8 and 21%, in second - 15,1 and 9,3% respectively [p=0,00002 log-rank]. Median survival in patients with surgical treatment composed 32 months, in patients with only systemic therapy-21. The factors having influencing an influence on the prognosis and the quality of life outcomes for of patients with generalized breast cancer were are also studied: hormone-dependent tumor, Her2/neu hyper-expression, reproductive function status (age, menopause existence). Conclusion.Removing primary breast tumor in patients with generalized breast cancer improve long-term outcomes. Three- and five-year survival increased by 28,7 and 16,3% respectively, and median survival–for 11 months. These patients may benefit from resection of the breast tumor. One explanation for the effect of this resection is that reducing the tumor load influences metastatic growth.

Keywords: breast cancer, combination therapy, factors of prognosis, primary tumor

Procedia PDF Downloads 409
17099 DOG1 Expression Is in Common Human Tumors: A Tissue Microarray Study on More than 15,000 Tissue Samples

Authors: Kristina Jansen, Maximilian Lennartz, Patrick Lebok, Guido Sauter, Ronald Simon, David Dum, Stefan Steurer

Abstract:

DOG1 (Discovered on GIST1) is a voltage-gated calcium-activated chloride and bicarbonate channel that is highly expressed in interstitial cells of Cajal and in gastrointestinal stromal tumors (GIST) derived from Cajal cells. To systematically determine in what tumor entities and normal tissue types DOG1 may be further expressed, a tissue microarray (TMA) containing 15,965 samples from 121 different tumor types and subtypes as well as 608 samples of 76 different normal tissue types were analyzed by immunohistochemistry. DOG1 immunostaining was found in 67 tumor types, including GIST (95.7%), esophageal squamous cell carcinoma (31.9%), pancreatic ductal adenocarcinoma (33.6%), adenocarcinoma of the Papilla Vateri (20%), squamous cell carcinoma of the vulva (15.8%) and the oral cavity (15.3%), mucinous ovarian cancer (15.3%), esophageal adenocarcinoma (12.5%), endometrioid endometrial cancer (12.1%), neuroendocrine carcinoma of the colon (11.1%) and diffuse gastric adenocarcinoma (11%). Low level-DOG1 immunostaining was seen in 17 additional tumor entities. DOG1 expression was unrelated to histopathological parameters of tumor aggressiveness and/or patient prognosis in cancers of the breast (n=1,002), urinary bladder (975), ovary (469), endometrium (173), stomach (233), and thyroid gland (512). High DOG1 expression was linked to estrogen receptor expression in breast cancer (p<0.0001) and the absence of HPV infection in squamous cell carcinomas (p=0.0008). In conclusion, our data identify several tumor entities that can show DOG1 expression levels at similar levels as in GIST. Although DOG1 is tightly linked to a diagnosis of GIST in spindle cell tumors, the differential diagnosis is much broader in DOG1 positive epithelioid neoplasms.

Keywords: biomarker, DOG1, immunohistochemistry, tissue microarray

Procedia PDF Downloads 204
17098 A Dose Distribution Approach Using Monte Carlo Simulation in Dosimetric Accuracy Calculation for Treating the Lung Tumor

Authors: Md Abdullah Al Mashud, M. Tariquzzaman, M. Jahangir Alam, Tapan Kumar Godder, M. Mahbubur Rahman

Abstract:

This paper presents a Monte Carlo (MC) method-based dose distributions on lung tumor for 6 MV photon beam to improve the dosimetric accuracy for cancer treatment. The polystyrene which is tissue equivalent material to the lung tumor density is used in this research. In the empirical calculations, TRS-398 formalism of IAEA has been used, and the setup was made according to the ICRU recommendations. The research outcomes were compared with the state-of-the-art experimental results. From the experimental results, it is observed that the proposed based approach provides more accurate results and improves the accuracy than the existing approaches. The average %variation between measured and TPS simulated values was obtained 1.337±0.531, which shows a substantial improvement comparing with the state-of-the-art technology.

Keywords: lung tumour, Monte Carlo, polystyrene, Elekta synergy, Monaco planning system

Procedia PDF Downloads 434
17097 Characterization of Herberine Hydrochloride Nanoparticles

Authors: Bao-Fang Wen, Meng-Na Dai, Gao-Pei Zhu, Chen-Xi Zhang, Jing Sun, Xun-Bao Yin, Yu-Han Zhao, Hong-Wei Sun, Wei-Fen Zhang

Abstract:

A drug-loaded nanoparticles containing berberine hydrochloride (BH/FA-CTS-NPs) was prepared. The physicochemical characterizations of BH/FA-CTS-NPs and the inhibitory effect on the HeLa cells were investigated. Folic acid-conjugated chitosan (FA-CTS) was prepared by amino reaction of folic acid active ester and chitosan molecules; BH/FA-CTS-NPs were prepared using ionic cross-linking technique with BH as a model drug. The morphology and particle size were determined by Transmission Electron Microscope (TEM). The average diameters and polydispersity index (PDI) were evaluated by Dynamic Light Scattering (DLS). The interaction between various components and the nanocomplex were characterized by Fourier Transform Infrared Spectroscopy (FT-IR). The entrapment efficiency (EE), drug-loading (DL) and in vitro release were studied by UV spectrophotometer. The effect of cell anti-migratory and anti-invasive actions of BH/FA-CTS-NPs were investigated using MTT assays, wound healing assays, Annexin-V-FITC single staining assays, and flow cytometry, respectively. HeLa nude mice subcutaneously transplanted tumor model was established and treated with different drugs to observe the effect of BH/FA-CTS-NPs in vivo on HeLa bearing tumor. The BH/FA-CTS-NPs prepared in this experiment have a regular shape, uniform particle size, and no aggregation phenomenon. The results of DLS showed that mean particle size, PDI and Zeta potential of BH/FA-CTS NPs were (249.2 ± 3.6) nm, 0.129 ± 0.09, 33.6 ± 2.09, respectively, and the average diameter and PDI were stable in 90 days. The results of FT-IR demonstrated that the characteristic peaks of FA-CTS and BH/FA-CTS-NPs confirmed that FA-CTS cross-linked successfully and BH was encapsulated in NPs. The EE and DL amount were (79.3 ± 3.12) % and (7.24 ± 1.41) %, respectively. The results of in vitro release study indicated that the cumulative release of BH/FA-CTS NPs was (89.48±2.81) % in phosphate-buffered saline (PBS, pH 7.4) within 48h; these results by MTT assays and wund healing assays indicated that BH/FA-CTS NPs not only inhibited the proliferation of HeLa cells in a concentration and time-dependent manner but can induce apoptosis as well. The subcutaneous xenograft tumor formation rate of human cervical cancer cell line HeLa in nude mice was 98% after inoculation for 2 weeks. Compared with BH group and BH/CTS-NPs group, the xenograft tumor growth of BH/FA-CTS-NPs group was obviously slower; the result indicated that BH/FA-CTS-NPs could significantly inhibit the growth of HeLa xenograft tumor. BH/FA-CTS NPs with the sustained release effect could be prepared successfully by the ionic crosslinking method. Considering these properties, block proliferation and impairing the migration of the HeLa cell line, BH/FA-CTS NPs could be an important compound for consideration in the treatment of cervical cancer.

Keywords: folic-acid, chitosan, berberine hydrochloride, nanoparticles, cervical cancer

Procedia PDF Downloads 115
17096 Membrane-Localized Mutations as Predictors of Checkpoint Blockade Efficacy in Cancer

Authors: Zoe Goldberger, Priscilla S. Briquez, Jeffrey A. Hubbell

Abstract:

Tumor cells have mutations resulting from genetic instability that the immune system can actively recognize. Immune checkpoint immunotherapy (ICI) is commonly used in the clinic to re-activate immune reactions against mutated proteins, called neoantigens, resulting in tumor remission in cancer patients. However, only around 20% of patients show durable response to ICI. While tumor mutational burden (TMB) has been approved by the Food and Drug Administration (FDA) as a criterion for ICI therapy, the relevance of the subcellular localizations of the mutated proteins within the tumor cell has not been investigated. Here, we hypothesized that localization of mutations impacts the effect of immune responsiveness to ICI. We analyzed publicly available tumor mutation sequencing data of ICI treated patients from 3 independent datasets. We extracted the subcellular localization from the UniProtKB/Swiss-Prot database and quantified the proportion of membrane, cytoplasmic, nuclear, or secreted mutations per patient. We analyzed this information in relation to response to ICI treatment and overall survival of patients showing with 1722 ICI-treated patients that high mutational burden localized at the membrane (mTMB), correlate with ICI responsiveness, and improved overall survival in multiple cancer types. We anticipate that our results will ameliorate predictability of cancer patient response to ICI with potential implications in clinical guidelines to tailor ICI treatment. This would not only increase patient survival for those receiving ICI, but also patients’ quality of life by reducing the number of patients enduring non-effective ICI treatments.

Keywords: cancer, immunotherapy, membrane neoantigens, efficacy prediction, biomarkers

Procedia PDF Downloads 105
17095 Tumor Detection of Cerebral MRI by Multifractal Analysis

Authors: S. Oudjemia, F. Alim, S. Seddiki

Abstract:

This paper shows the application of multifractal analysis for additional help in cancer diagnosis. The medical image processing is a very important discipline in which many existing methods are in search of solutions to real problems of medicine. In this work, we present results of multifractal analysis of brain MRI images. The purpose of this analysis was to separate between healthy and cancerous tissue of the brain. A nonlinear method based on multifractal detrending moving average (MFDMA) which is a generalization of the detrending fluctuations analysis (DFA) is used for the detection of abnormalities in these images. The proposed method could make separation of the two types of brain tissue with success. It is very important to note that the choice of this non-linear method is due to the complexity and irregularity of tumor tissue that linear and classical nonlinear methods seem difficult to characterize completely. In order to show the performance of this method, we compared its results with those of the conventional method box-counting.

Keywords: irregularity, nonlinearity, MRI brain images, multifractal analysis, brain tumor

Procedia PDF Downloads 437
17094 Effects of α-IFN –SingleWalled Carbon NanoTube and α-IFN-PLGA Encapsulated on Breast Cancer in Rats Induced by DMBA by Using CA15-3 Tumor Marker

Authors: Anoosh Eghdami

Abstract:

Background and aim: Conventional anticancer drugs display significant shortcomings which limit their use in cancer therapy. For this reason, important progress has been achieved in the field of nanotechnology to solve these problems and offer a promising and effective alternative for cancer treatment. Tumor markers may also be measured periodically during cancer therapy. Tumor markers may also be measured after treatment has ended to check for recurrence the return of cancer. The aim of this study was to evaluate the effect of nano drug delivery in induced breast cancer with DMBA by using CA15-3 tumor marker. Material and method: the rats were divided into five groups. The first group (control n=15) were fed only sesame oil as a gavage. In the second group n=15,10 mg DMBA was dissolved in 5ml of sesame oil and were fed as a gavage. In addition to DMBA treatment as the second group, in the 3,4and 5 groups after cancer creation, respectively affected by alpha interferon (α-IFN),alpha interferon conjugated with single walled carbon nano tube (α-IFN-SWNT) and encapsulated in poly lactic poly glycolic acid (α-IFN-PLGA). Tumor marker was measured in recent three groups. Results: The ANOVA test was used to determine the differences among the groups. Cancer inducing in rats (group 2) caused a significant increase in blood levels of CA15-3 (P<0.05). Administration of α-IFN, α-IFN –SWNT and α-IFN-PLGA in 3 groups of cancerous rats caused a significant decrease in blood levels of CA15-3 only the group that treated with α-IFN-PLGA (p<0.05). Conclusion: the results of this study indicate that nano drugs more effective than traditional drug in cancer treatment, although further work is needed to elucidate the safety and side effect of these compound in human.

Keywords: breast cancer, nano drug, tumor markers, CA15-3, α-IFN-PLGA, -IFN –SWNT

Procedia PDF Downloads 314
17093 Management of Renal Malignancies with IVC Thrombus: Our Experience

Authors: Sujeet Poudyal

Abstract:

Introduction: Renal cell carcinoma is the most common malignancy associated with Inferior vena cava (IVC) thrombosis. Radical nephrectomy with tumor thrombectomy provides durable cancer-free survival. Other renal malignancies like Wilms’ tumors are also associated with IVC thrombus. We describe our experience with the management of renal malignancies associated with IVC thrombus. Methods: This prospective study included 28 patients undergoing surgery for renal malignancies associated with IVC thrombus from February 2017 to March 2023. Demographics of patients, types of renal malignancy, level of IVC thrombus, intraoperative details, need for venovenous bypass, cardiopulmonary bypass and postoperative outcomes were all documented. Results: Out of a total of 28 patients, 24 patients had clear cell Renal Cell Carcinoma,1 had renal osteosarcoma and 3 patients had Wilms tumor. The levels. of thrombus were II in eight, III in seven, and IV in six patients. The mean age of RCC was 62.81±10.2 years, renal osteosarcoma was 26 years and Wilms tumor was 23 years. There was a need for venovenous bypass in four patients and cardiopulmonary bypass in four patients, and the Postoperative period was uneventful in most cases except for two mortalities, one in Level III due to pneumonia and one in Level IV due to sepsis. All cases followed up till now have no local recurrence and metastasis except one case of RCC with Level IV IVC thrombus, which presented with paraaortic nodal recurrence and is currently managed with sunitinib. Conclusion: The complexity in the management of renal malignancy with IVC thrombus increases with the level of IVC thrombus. As radical nephrectomy with tumor thrombectomy provides durable cancer-free survival in most cases, the surgery should be undertaken in an expert and experienced setup with a strong cardiovascular backup to minimize morbidity and mortality associated with the procedure.

Keywords: renal malignancy, IVC thrombus, radical nephrectomy with tumor thrombectomy, renal cell carcinoma

Procedia PDF Downloads 58
17092 Differential Infection of Primary Human B-Cells and EBV Positive B-Lymphoma Cell Lines by Recombinant AAV Serotypes

Authors: Elham Ahmadi, Mehrdad Ravanshad, Joyce Fingeroth, Mazyar Ziyaeyan, Rajesh Panigrahi, Jun Xie, Gao Guangping

Abstract:

B-cell proliferative disorders often occur among persons that are T-cell compromised. These disorders are primarily EBV+ and can first present with a focal lesion. Direct introduction of oncolytic viruses into localized tumors provides theoretical advantages over chemotherapy and immunotherapy by reducing systemic toxicity, to which the immunocompromised host is most vulnerable. Widely studied as a vehicle for gene therapy, AAV has only rarely been applied to treat cancer. As a prelude to development of a therapeutic vehicle, we assessed the ability of 15 distinct recombinant AAV serotypes (rAAV1, rAAV2, rAAV3b, rAAV4, rAAV5, rAAV6, rAAV6.2, rAAV6TM, rAAV7, rAAV8, rAAVrh8, rAAV9, rAAVrh10, rAAV39, rAAV43) bearing eGFP to infect human B-cell tumor lines compared with primary B-cells in vitro. Enhanced infection of tumor lines by AAV 6.2 was demonstrated by flow cytometry. EBV superinfection of EBV negative B-cell tumor lines increased susceptibility to AAV6.2 infection. As proof of concept, AAV6.2 bearing HSV-1 thymidine kinase in place of eGFP eliminated tumor cells upon exposure to ganciclovir.

Keywords: AAV, gene therapy, lymphoma, malignancy, tropism

Procedia PDF Downloads 110
17091 Functionalized SPIO Conjugated with Doxorubicin for Tumor Diagnosis and Chemotherapy Enhanced by Applying Magnetic Fields

Authors: Po-Chin Liang, Yung-Chu Chen, Chi-Feng Chiang, Yun-Ping Lin, Wen-Yuan Hsieh, Win-Li Lin

Abstract:

The aim of this study was to develop super paramagnetic iron oxide (SPIO) nano-particles comprised of a magnetic Fe3O4 core and a shell of aqueous stable self-doped polyethylene glycol (PEG) with a high loading of doxorubicin (SPIO-PEG-D) for tumor theranostics. The in-vivo MRI study showed that there was a stronger T2-weighted signal enhancement for the group under a magnetic field, and hence it indicated that this group had a better accumulation of SPIO-PEG than the group without a magnetic field. In the anticancer evaluation of SPIO-PEG-D, the group with a magnetic field displayed a significantly smaller tumor size than the group without. The overall results show that SPIO-PEG-D nanoparticles have the potential for the application of MRI/monitoring chemotherapy and the therapy can be locally enhanced by applying an external magnetic field.

Keywords: super paramagnetic iron oxide nano particles, doxorubicin, chemotherapy, MRI, magnetic fields

Procedia PDF Downloads 594
17090 PD-L1 Expression in Papillary Thyroid Carcinoma Arising Denovo or on Top of Autoimmune Thyroiditis

Authors: Dalia M. Abouelfadl, Noha N. Yassen, Marwa E. Shabana

Abstract:

Background: The evolution of immune therapy motivated many to study the relation between immune response and progression of cancer. Little is known about expression of PD-L1 (a newly evolving immunotherapeutic drug) in papillary thyroid carcinoma (PTC) arising de-novo and PTC arising on top of autoimmune thyroiditis (Hashimoto's (HT) and lymphocytic thyroiditis (LT)). The aim of this work is to study the alteration of expression of PD-L1 in PTCs arising from de-novo or on top of HT OR LT using immunohistochemistry and image analyser system. Method: 100 paraffin blocks for PTC cases were collected retrospectively for staining using PD-L1 rabbit monoclonal antibody (BIOCARE-ACI 3171 A, C). The antibody expression is measured digitally using Image Analyzer Leica Qwin 3000, and the membranous and cytoplasmic expression of PD-L1 in tumor cells was considered positive. The results were correlated with tumor grade, size, and LN status. Results: The study samples consisted of 41 cases of PTC arising De novo, 36 cases on top of HT, and 23 on top of LT. Expression of PD-L1 was highest among the PTC-HL group (25 case-69%) followed by PTC-TL group (14 case-60.8%) then de-novo PTC (19 case-46%) with P Value < 0.05. PD-L1 expression correlated with nodal metastasis and was not relevant to tumor size or grade. Conclusion: The severity of the immune response in tumor microenvironment directly influences PTC prognosis. The anti PD-L1 Ab can be a very successful therapeutic agent for PTC arising on top of HT.

Keywords: carcinoma, Hashimoto's, lymphocytic, papillary, PD-L1, thyroiditis

Procedia PDF Downloads 172
17089 Involvement of Multi-Drug Resistance Protein (Mrp) 3 in Resveratrol Protection against Methotrexate-Induced Testicular Damage

Authors: Mohamed A. Morsy, Azza A. K. El-Sheikh, Abdulla Y. Al-Taher

Abstract:

The aim of the present study is to investigate the effect of resveratrol (RES) on methotrexate (MTX)-induced testicular damage. RES (10 mg/kg/day) was given for 8 days orally and MTX (20 mg/kg i.p.) was given at day 4 of experiment, with or without RES in rats. MTX decreased serum testosterone, induced histopathological testicular damage, increased testicular tumor necrosis factor-α level and expression of nuclear factor-κB and cyclooxygenase-2. In MTX/RES group, significant reversal of these parameters was noticed, compared to MTX group. Testicular expression of multidrug resistance protein (Mrp) 3 was three- and five-folds higher in RES- and MTX/RES-treated groups, respectively. In vitro, using prostate cancer cells, each of MTX and RES alone induced cytotoxicity with IC50 0.18 ± 0.08 and 20.5 ± 3.6 µM, respectively. RES also significantly enhanced cytotoxicity of MTX. In conclusion, RES appears to have dual beneficial effect, as it promotes MTX tumor cytotoxicity, while protecting the testes, probably via up-regulation of testicular Mrp3 as a novel mechanism.

Keywords: resveratrol, methotrexate, multidrug resistance protein 3, tumor necrosis factor-α, nuclear factor-κB, cyclooxygenase-2

Procedia PDF Downloads 448
17088 Ancelim: Health System Restoration Protocol for Cancer Patients

Authors: Mark Berry

Abstract:

A number of studies have identified several factors involved in the malignant progression of cancer cells. The Primary modulator in driving inflammation to these transformed cells has been identified as the transcription factor known as nuclear factor-κB. This essential regulator of inflammation and the development of cancer, combined with a microenvironment of inflammation and signaling molecules, plays a major role in the malignant progression of cancer, and this progression is the result of the mutagenic predisposition of persistent substances that combat infection at tumor sites and other areas of chronic inflammation. Inflammation-induced tumors, and their inflammatory cells and regulators may be the primary source of metastasis of tumor cells through angiogenesis. Previous research on cytokines and chemokines, including their downstream targets, has been the focus of the cancer/inflammation connection. The identification of the biological mechanisms of other proteins vital to the inflammation cascade and their interactions are crucial to novel and effective therapeutic protocols for the treatment of inflammation-induced cancers. The Ancelim HSRP Protocol is just such a therapeutic intervention.

Keywords: ancelim, cancer, inflammation, tumor

Procedia PDF Downloads 537
17087 Sider Bee Honey: Antitumor Effect in Some Experimental Tumor Cell Lines

Authors: Aliaa M. Issa, Mahmoud N. ElRouby, Sahar A. S. Ahmad, Mahmoud M. El-Merzabani

Abstract:

Sider honey is a type of honey produced by bees feeding on the nectar of Sider tree, Ziziphus spina-christi (L) Desf . Honey is an effective agent for preventing, inhibiting and treating the growth of human and animal cancer cell lines in vitro and in vivo. The aim of the present study was to evaluate the impact of different dilutions from crude Sider honey and different duration times of exposure on the growth of six tumor cell lines (human cervical cancer cell line, HeLa; human hepatocellular carcinoma cell line, HepG-2; human larynx carcinoma cell line, Hep-2; brain tumor cell line, U251) as well as one animal cancerous cell line (Ehrlich ascites carcinoma cells line, EAC) and one normal cell line, Homo sapiens, human, (WISH) CCL-25. Different concentrations and treatment durations with Sider honey were tested on the growth of several cancer cell lines types. Histopathological changes in the tumor masses, animal survival, apoptosis and necrosis of the used cancer cell lines (using flow cytometry) were evaluated. Sider honey was administers either to the tumor mass itself by intratumoral injection or via drinking water. One-way ANOVA test was used for the analysis of (the means + standard error) of the optical density obtained from the Elisa reader and flow cytometry. The study revealed that different concentrations of Sider honey affected the growth patterns of all the studied cancer cell lines as well as their histopathological changes, and it depended on the cell line nature and the concentration of honey used. It is obvious that the relative animal survival percentage (bearing Ehrlich ascites carcinoma, EAC cells) was proportionally increased with the increase in the used honey concentrations. The study of apoptosis and necrosis using the flow cytometry technique emphasized the viability results. In conclusion, Sider honey was effective as antitumor agent, in the used concentrations.

Keywords: antitumor, honey, sider, tumor cell lines

Procedia PDF Downloads 530
17086 Numerical Simulation of a Single Cell Passing through a Narrow Slit

Authors: Lanlan Xiao, Yang Liu, Shuo Chen, Bingmei Fu

Abstract:

Most cancer-related deaths are due to metastasis. Metastasis is a complex, multistep processes including the detachment of cancer cells from the primary tumor and the migration to distant targeted organs through blood and/or lymphatic circulations. During hematogenous metastasis, the emigration of tumor cells from the blood stream through the vascular wall into the tissue involves arrest in the microvasculature, adhesion to the endothelial cells forming the microvessel wall and transmigration to the tissue through the endothelial barrier termed as extravasation. The narrow slit between endothelial cells that line the microvessel wall is the principal pathway for tumor cell extravasation to the surrounding tissue. To understand this crucial step for tumor hematogenous metastasis, we used Dissipative Particle Dynamics method to investigate an individual cell passing through a narrow slit numerically. The cell membrane was simulated by a spring-based network model which can separate the internal cytoplasm and surrounding fluid. The effects of the cell elasticity, cell shape and cell surface area increase, and slit size on the cell transmigration through the slit were investigated. Under a fixed driven force, the cell with higher elasticity can be elongated more and pass faster through the slit. When the slit width decreases to 2/3 of the cell diameter, the spherical cell becomes jammed despite reducing its elasticity modulus by 10 times. However, transforming the cell from a spherical to ellipsoidal shape and increasing the cell surface area only by 3% can enable the cell to pass the narrow slit. Therefore the cell shape and surface area increase play a more important role than the cell elasticity in cell passing through the narrow slit. In addition, the simulation results indicate that the cell migration velocity decreases during entry but increases during exit of the slit, which is qualitatively in agreement with the experimental observation.

Keywords: dissipative particle dynamics, deformability, surface area increase, cell migration

Procedia PDF Downloads 329
17085 Brain Tumor Segmentation Based on Minimum Spanning Tree

Authors: Simeon Mayala, Ida Herdlevær, Jonas Bull Haugsøen, Shamundeeswari Anandan, Sonia Gavasso, Morten Brun

Abstract:

In this paper, we propose a minimum spanning tree-based method for segmenting brain tumors. The proposed method performs interactive segmentation based on the minimum spanning tree without tuning parameters. The steps involve preprocessing, making a graph, constructing a minimum spanning tree, and a newly implemented way of interactively segmenting the region of interest. In the preprocessing step, a Gaussian filter is applied to 2D images to remove the noise. Then, the pixel neighbor graph is weighted by intensity differences and the corresponding minimum spanning tree is constructed. The image is loaded in an interactive window for segmenting the tumor. The region of interest and the background are selected by clicking to split the minimum spanning tree into two trees. One of these trees represents the region of interest and the other represents the background. Finally, the segmentation given by the two trees is visualized. The proposed method was tested by segmenting two different 2D brain T1-weighted magnetic resonance image data sets. The comparison between our results and the standard gold segmentation confirmed the validity of the minimum spanning tree approach. The proposed method is simple to implement and the results indicate that it is accurate and efficient.

Keywords: brain tumor, brain tumor segmentation, minimum spanning tree, segmentation, image processing

Procedia PDF Downloads 115
17084 Novel Liposomal Nanocarriers For Long-term Tumor Imaging

Authors: Mohamad Ahrari, Kayvan Sadri, Mahmoud Reza Jafari

Abstract:

PEGylated liposomes have a smaller volume of distribution and decreased clearance, consequently, due to their more prolonged presence in bloodstream and maintaining their stability during this period, these liposomes can be applied for imaging tumoral sites. The purpose of this study is to develop an appropriate radiopharmaceutical agent in long-term imaging for improved diagnosis and evaluation of tumors. In this study, liposomal formulations encapsulating albumin is synthesized by solvent evaporation method along with homogenization, and their characteristics were assessed. Then these liposomes labeled by Philips method and the rate of stability of labeled liposomes in serum, and ultimately the rate of biodistribution and gamma scintigraphy in C26-colon carcinoma tumor-bearing mice, were studied. The result of the study of liposomal characteristics displayed that capable of accumulating in tumor sites based of EPR phenomenon. these liposomes also have high stability for maintaining encapsulated albumin in a long time. In the study of biodistribution of these liposomes in mice, they accumulated more in the kidney, liver, spleen, and tumor sites, which, even after clearing formulations in the bloodstream, they existed in high levels in these organs up to 96 hours. In gamma scintigraphy also, organs with high activity accumulation from early hours up to 96 hours were visible in the form of hot spots. concluded that PEGylated liposomal formulation encapsulating albumin can be labeled with In-Oxine, and obtained stabilized formulation for long-term imaging, that have more favorable conditions for the evaluation of tumors and it will cause early diagnosis of tumors.

Keywords: nano liposome, 111In-oxine, imaging, biodistribution, tumor

Procedia PDF Downloads 107
17083 Noncovalent Antibody-Nanomaterial Conjugates: A Simple Approach to Produce Targeted Nanomedicines

Authors: Nicholas Fletcher, Zachary Houston, Yongmei Zhao, Christopher Howard, Kristofer Thurecht

Abstract:

One promising approach to enhance nanomedicine therapeutic efficacy is to include a targeting agent, such as an antibody, to increase accumulation at the tumor site. However, the application of such targeted nanomedicines remains limited, in part due to difficulties involved with biomolecule conjugation to synthetic nanomaterials. One approach recently developed to overcome this has been to engineer bispecific antibodies (BsAbs) with dual specificity, whereby one portion binds to methoxy polyethyleneglycol (mPEG) epitopes present on synthetic nanomedicines, while the other binds to molecular disease markers of interest. In this way, noncovalent complexes of nanomedicine core, comprising a hyperbranched polymer (HBP) of primarily mPEG, decorated with targeting ligands are able to be produced by simple mixing. Further work in this area has now demonstrated such complexes targeting the breast cancer marker epidermal growth factor receptor (EGFR) to show enhanced binding to tumor cells both in vitro and in vivo. Indeed the enhanced accumulation at the tumor site resulted in improved therapeutic outcomes compared to untargeted nanomedicines and free chemotherapeutics. The current work on these BsAb-HBP conjugates focuses on further probing antibody-nanomaterial interactions and demonstrating broad applicability to a range of cancer types. Herein are reported BsAb-HBP materials targeted towards prostate-specific membrane antigen (PSMA) and study of their behavior in vivo using ⁸⁹Zr positron emission tomography (PET) in a dual-tumor prostate cancer xenograft model. In this model mice bearing both PSMA+ and PSMA- tumors allow for PET imaging to discriminate between nonspecific and targeted uptake in tumors, and better quantify the increased accumulation following BsAb conjugation. Also examined is the potential for formation of these targeted complexes in situ following injection of individual components? The aim of this approach being to avoid undesirable clearance of proteinaceous complexes upon injection limiting available therapeutic. Ultimately these results demonstrate BsAb functionalized nanomaterials as a powerful and versatile approach for producing targeted nanomedicines for a variety of cancers.

Keywords: bioengineering, cancer, nanomedicine, polymer chemistry

Procedia PDF Downloads 135