Search results for: Textiles
120 Obtaining Composite Cotton Fabric by Cyclodextrin Grafting
Authors: U. K. Sahin, N. Erdumlu, C. Saricam, I. Gocek, M. H. Arslan, H. Acikgoz-Tufan, B. Kalav
Abstract:
Finishing is an important part of fabric processing with which a wide range of features are imparted to greige or colored fabrics for various end-uses. Especially, by the addition or impartation of nano-scaled particles to the fabric structure composite fabrics, a kind of composite materials can be acquired. Composite materials, generally shortened as composites or in other words composition materials, are engineered or naturally occurring materials made from two or more component materials with significantly different physical, mechanical or chemical characteristics remaining separate and distinctive at the macroscopic or microscopic scale within the end product structure. Therefore, the technique finishing which is one of the fundamental methods to be applied on fabrics for obtainment of composite fabrics with many functionalities was used in the current study with the same purpose. However, regardless of the finishing materials applied, the efficient life of finished product on offering desired feature is low, since the durability of finishes on the material is limited. Any increase in durability of these finishes on textiles would enhance the life of use for textiles, which will result in happier users. Therefore, in this study, since higher durability was desired for the finishing materials fixed on the fabrics, nano-scaled hollow structured cyclodextrins were chemically imparted by grafting to the structure of conventional cotton fabrics by the help of finishing technique in order to be fixed permanently. By this way, a processed and functionalized base fabric having potential to be treated in the subsequent processes with many different finishing agents and nanomaterials could be obtained. Henceforth, this fabric can be used as a multi-functional fabric due to the encapturing ability of cyclodextrins to molecules/particles via physical/chemical means. In this study, scoured and rinsed woven bleached plain weave 100% cotton fabrics were utilized because textiles made of cotton are the most demanded textile products in the textile market by the textile consumers in daily life. Cotton fabric samples were immersed in treating baths containing β-cyclodextrin and 1,2,3,4-butanetetracarboxylic acid and to reduce the curing temperature the catalyst sodium hypophosphite monohydrate was used. All impregnated fabric samples were pre-dried. The reaction of grafting was performed in dry state. The treated and cured fabric samples were rinsed with warm distilled water and dried. The samples were dried for 4 h and weighed before and after finishing and rinsing. Stability and durability of β-cyclodextrins on fabric surface against external factors such as washing as well as strength of functionalized fabric in terms of tensile and tear strength were tested. Presence and homogeneity of distribution of β-cyclodextrins on fabric surface were characterized.Keywords: cotton fabric, cyclodextrine, improved durability, multifunctional composite textile
Procedia PDF Downloads 295119 The Use of Unmanned Aerial System (UAS) in Improving the Measurement System on the Example of Textile Heaps
Authors: Arkadiusz Zurek
Abstract:
The potential of using drones is visible in many areas of logistics, especially in terms of their use for monitoring and control of many processes. The technologies implemented in the last decade concern new possibilities for companies that until now have not even considered them, such as warehouse inventories. Unmanned aerial vehicles are no longer seen as a revolutionary tool for Industry 4.0, but rather as tools in the daily work of factories and logistics operators. The research problem is to develop a method for measuring the weight of goods in a selected link of the clothing supply chain by drones. However, the purpose of this article is to analyze the causes of errors in traditional measurements, and then to identify adverse events related to the use of drones for the inventory of a heap of textiles intended for production purposes. On this basis, it will be possible to develop guidelines to eliminate the causes of these events in the measurement process using drones. In a real environment, work was carried out to determine the volume and weight of textiles, including, among others, weighing a textile sample to determine the average density of the assortment, establishing a local geodetic network, terrestrial laser scanning and photogrammetric raid using an unmanned aerial vehicle. As a result of the analysis of measurement data obtained in the facility, the volume and weight of the assortment and the accuracy of their determination were determined. In this article, this work presents how such heaps are currently being tested, what adverse events occur, indicate and describes the current use of photogrammetric techniques of this type of measurements so far performed by external drones for the inventory of wind farms or construction of the station and compare them with the measurement system of the aforementioned textile heap inside a large-format facility.Keywords: drones, unmanned aerial system, UAS, indoor system, security, process automation, cost optimization, photogrammetry, risk elimination, industry 4.0
Procedia PDF Downloads 86118 Validation of the Recovery of House Dust Mites from Fabrics by Means of Vacuum Sampling
Authors: A. Aljohani, D. Burke, D. Clarke, M. Gormally, M. Byrne, G. Fleming
Abstract:
Introduction: House Dust Mites (HDMs) are a source of allergen particles embedded in textiles and furnishings. Vacuum sampling is commonly used to recover and determine the abundance of HDMs but the efficiency of this method is less than standardized. Here, the efficiency of recovery of HDMs was evaluated from home-associated textiles using vacuum sampling protocols.Methods/Approach: Living Mites (LMs) or dead Mites (DMs) House Dust Mites (Dermatophagoides pteronyssinus: FERA, UK) were separately seeded onto the surfaces of Smooth Cotton, Denim and Fleece (25 mites/10x10cm2 squares) and left for 10 minutes before vacuuming. Fabrics were vacuumed (SKC Flite 2 pump) at a flow rate of 14 L/min for 60, 90 or 120 seconds and the number of mites retained by the filter (0.4μm x 37mm) unit was determined. Vacuuming was carried out in a linear direction (Protocol 1) or in a multidirectional pattern (Protocol 2). Additional fabrics with LMs were also frozen and then thawed, thereby euthanizing live mites (now termed EMs). Results/Findings: While there was significantly greater (p=0.000) recovery of mites (76% greater) in fabrics seeded with DMs than LMs irrespective of vacuuming protocol or fabric type, the efficiency of recovery of DMs (72%-76%) did not vary significantly between fabrics. For fabrics containing EMs, recovery was greatest for Smooth Cotton and Denim (65-73% recovered) and least for Fleece (15% recovered). There was no significant difference (p=0.99) between the recovery of mites across all three mite categories from Smooth Cotton and Denim but significantly fewer (p=0.000) mites were recovered from Fleece. Scanning Electron Microscopy images of HMD-seeded fabrics showed that live mites burrowed deeply into the Fleece weave which reduced their efficiency of recovery by vacuuming. Research Implications: Results presented here have implications for the recovery of HDMs by vacuuming and the choice of fabric to ameliorate HDM-dust sensitization.Keywords: allergy, asthma, dead, fabric, fleece, live mites, sampling
Procedia PDF Downloads 139117 Developments and Implementation of Biomaterials in Textile Coating and Finishing
Authors: David De Smet, Myriam Vanneste
Abstract:
There is a constant need for the improvement of materials applied in textile industries. Nowadays there is a tendency for “bio, eco, natural and environmental friendly” consciousness of the consumer resulting in various textile labels. Materials, totally based on CO2-neutral renewable resources (biopolymers), respond very well to this tendency. Proteins and PLA were evaluated as binders for textile coatings. Much attention is paid to the functionalization of textiles, therefore bio-additves are examined to introduce abrasion resistance, antimicrobial and flame retardant properties.Keywords: biomaterial, textile, coating, finishing
Procedia PDF Downloads 712116 Study of Lamination Quality of Semi-Flexible Solar Modules with Special Textile Materials
Authors: K. Drabczyk, Z. Starowicz, S. Maleczek, P. Zieba
Abstract:
The army, police and fire brigade commonly use dedicated equipment based on special textile materials. The properties of these textiles should ensure human life and health protection. Equally important is the ability to use electronic equipment and this requires access to the source of electricity. Photovoltaic cells integrated with such textiles can be solution for this problem in the most of outdoor circumstances. One idea may be to laminate the cells to textile without changing their properties. The main goal of this work was analyzed lamination quality of special designed semi-flexible solar module with special textile materials as a backsheet. In the first step of investigation, the quality of lamination was determined using device equipped with dynamometer. In this work, the crystalline silicon solar cells 50 x 50 mm and thin chemical tempered glass - 62 x 62 mm and 0.8 mm thick - were used. The obtained results showed the correlation between breaking force and type of textile weave and fiber. The breaking force was in the ranges: 4.5-5.5 N, 15-20 N and 30-33 N depending on the type of wave and fiber type. To verify these observations the microscopic and FTIR analysis of fibers was performed. The studies showed the special textile can be used as a backsheet of semi-flexible solar modules. This work presents a new composition of solar module with special textile layer which, to our best knowledge, has not been published so far. Moreover, the work presents original investigations on adhesion of EVA (ethylene-vinyl acetate) polymer to textile with respect to fiber structure of laminated substrate. This work is realized for the GEKON project (No. GEKON2/O4/268473/23/2016) sponsored by The National Centre for Research and Development and The National Fund for Environmental Protection and Water Management.Keywords: flexible solar modules, lamination process, solar cells, textile for photovoltaics
Procedia PDF Downloads 358115 Plasma Pretreatment for Improving the Durability of Antibacterial Activity of Cotton Using ZnO Nanoparticles
Authors: Sheila Shahidi, Hootan Rezaee, Abosaeed Rashidi, Mahmood Ghoranneviss
Abstract:
Plasma treatment has an explosive increase in interest and use in industrial applications as for example in medical, biomedical, automobile, electronics, semiconductor and textile industry. A lot of intensive basic research has been performed in the last decade in the field of textiles along with technical textiles. Textile manufacturers and end-users alike have been searching for ways to improve the surface properties of natural and man-made fibers. Specifically, there is a need to improve adhesion and wettability. Functional groups may be introduced onto the fiber surface by using gas plasma treatments, improving fiber surface properties without affecting the fiber’s bulk properties. In this research work, ZnO nanoparticles (ZnO-NPs) were insitue synthesized by sonochemical method at room temperature on both untreated and plasma pretreated cotton woven fabric. Oxygen and nitrogen plasmas were used for pre-functionalization of cotton fabric. And the effect of oxygen and nitrogen pre-functionalization on adhesion properties between ZnO nanoparticles and cotton surface were studied. The results show that nanoparticles with average sizes of 20-100 nm with different morphologies have been created on the surface of samples. Synthesis of ZnO-NPs was varied in the morphological transformation by changes in zinc acetate dehydrate concentration. Characterizations were carried out using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), Inductive coupled plasma (ICP) and Spectrophotometery. The antibacterial activities of the fabrics were assessed semi-quantitatively by the colonies count method. The results show that the finished fabric demonstrated significant antibacterial activity against S. aureus in antibacterial test. The wash fastness of both untreated and plasma pretreated samples after 30 times of washing was investigated. The results showed that the parameters of plasma reactor plays very important role for improving the antibacterial durability.Keywords: antibacterial activity, cotton, fabric, nanoparticles, plasma
Procedia PDF Downloads 537114 Competitive Advantage Challenges in the Apparel Manufacturing Industries of South Africa: Application of Porter’s Factor Conditions
Authors: Sipho Mbatha, Anne Mastament-Mason
Abstract:
South African manufacturing global competitiveness was ranked 22nd (out of 38 countries), dropped to 24th in 2013 and is expected to drop further to 25th by 2018. These impacts negatively on the industrialisation project of South Africa. For industrialization to be achieved through labour intensive industries like the Apparel Manufacturing Industries of South Africa (AMISA), South Africa needs to identify and respond to factors negatively impacting on the development of competitive advantage This paper applied factor conditions from Porter’s Diamond Model (1990) to understand the various challenges facing the AMISA. Factor conditions highlighted in Porter’s model are grouped into two groups namely, basic and advance factors. Two AMISA associations representing over 10 000 employees were interviewed. The largest Clothing, Textiles and Leather (CTL) apparel retail group was also interviewed with a government department implementing the industrialisation policy were interviewed The paper points out that while AMISA have basic factor conditions necessary for competitive advantage in the clothing and textiles industries, Advance factor coordination has proven to be a challenging task for the AMISA, Higher Education Institutions (HEIs) and government. Poor infrastructural maintenance has contributed to high manufacturing costs and poor quick response as a result of lack of advanced technologies. The use of Porter’s Factor Conditions as a tool to analyse the sector’s competitive advantage challenges and opportunities has increased knowledge regarding factors that limit the AMISA’s competitiveness. It is therefore argued that other studies on Porter’s Diamond model factors like Demand conditions, Firm strategy, structure and rivalry and Related and supporting industries can be used to analyse the situation of the AMISA for the purposes of improving competitive advantage.Keywords: compliance rule, apparel manufacturing industry, factor conditions, advance skills and South African industrial policy
Procedia PDF Downloads 362113 Antimicrobial and Aroma Finishing of Organic Cotton Knits Using Vetiver Oil Microcapsules for Health Care Textiles
Authors: K. J. Sannapapamma, H. Malligawad Lokanath, Sakeena Naikwadi
Abstract:
Eco-friendly textiles are gaining importance among the consumers and textile manufacturers in the healthcare sector due to increased environmental pollution which leads to several health and environmental hazards. Hence, the research was designed to cultivate and develop the organic cotton knit, to prepare and characterize the Vetiver oil microcapsules for textile finishing and to access the wash durability of finished knits. The cotton SAHANA variety grown under organic production systems was processed and spun into 30 single yarn dyed with four natural colorants (Arecanut slurry, Eucalyptus leaves, Pomegranate rind and Indigo) and eco dyed yarn was further used for development of single jersy knitted fabric. Vetiveria zizanioides is an aromatic grass which is being traditionally used in medicine and perfumery. Vetiver essential oil was used for preparation of microcapsules by interfacial polymerization technique subjected to Gas Chromatography Mass Spectrometry (GCMS), Fourier Transform Infrared Spectroscopy (FTIR), Thermo Gravimetric Analyzer (TGA) and Scanning Electron Microscope (SEM) for characterization of microcapsules. The knitted fabric was finished with vetiver oil microcapsules by exhaust and pad dry cure methods. The finished organic knit was assessed for laundering on antimicrobial efficiency and aroma intensity. GCMS spectral analysis showed that, diethyl phthalate (28%) was the major compound found in vetiver oil followed by isoaromadendrene epoxide (7.72%), beta-vetivenene (6.92%), solavetivone (5.58%), aromadenderene, azulene and khusimol. Bioassay explained that, the vetiver oil and diluted vetiver oil possessed greater zone of inhibition against S. aureus and E. coli than the coconut oil. FTRI spectra of vetiver oil and microcapsules possessed similar peaks viz., C-H, C=C & C꞊O stretching and additionally oil microcapsules possessed the peak of 3331.24 cm-1 at 91.14 transmittance was attributed to N-H stretches. TGA of oil microcapsules revealed that, there was a minimum weight loss (5.835%) recorded at 467.09°C compared to vetiver oil i.e., -3.026% at the temperature of 396.24°C. The shape of the microcapsules was regular and round, some were spherical in shape and few were rounded by small aggregates. Irrespective of methods of application, organic cotton knits finished with microcapsules by pad dry cure method showed maximum zone of inhibition compared to knits finished by exhaust method against S. aureus and E. coli. The antimicrobial activity of the finished samples was subjected to multiple washing which indicated that knits finished with pad dry cure method showed a zone of inhibition even after 20th wash and better aroma retention compared to knits finished with the exhaust method of application. Further, the group of respondents rated that the 5th washed samples had the greater aroma intensity in both the methods than the other samples. Thus, the vetiver microencapsulated organic cotton knits are free from hazardous chemicals and have multi-functional properties that can be suitable for medical and healthcare textiles.Keywords: exhaust and pad dry cure finishing, interfacial polymerization, organic cotton knits, vetiver oil microcapsules
Procedia PDF Downloads 281112 A Method for Measurement and Evaluation of Drape of Textiles
Authors: L. Fridrichova, R. Knížek, V. Bajzík
Abstract:
Drape is one of the important visual characteristics of the fabric. This paper is introducing an innovative method of measurement and evaluation of the drape shape of the fabric. The measuring principle is based on the possibility of multiple vertical strain of the fabric. This method more accurately simulates the real behavior of the fabric in the process of draping. The method is fully automated, so the sample can be measured by using any number of cycles in any time horizon. Using the present method of measurement, we are able to describe the viscoelastic behavior of the fabric.Keywords: drape, drape shape, automated drapemeter, fabric
Procedia PDF Downloads 656111 Development of Mesoporous Gel Based Nonwoven Structure for Thermal Barrier Application
Authors: R. P. Naik, A. K. Rakshit
Abstract:
In recent years, with the rapid development in science and technology, people have increasing requirements on uses of clothing for new functions, which contributes to opportunities for further development and incorporation of new technologies along with novel materials. In this context, textiles are of fast decalescence or fast heat radiation media as per as comfort accountability of textile articles are concern. The microstructure and texture of textiles play a vital role in determining the heat-moisture comfort level of the human body because clothing serves as a barrier to the outside environment and a transporter of heat and moisture from the body to the surrounding environment to keep thermal balance between body heat produced and body heat loss. The main bottleneck which is associated with textile materials to be successful as thermal insulation materials can be enumerated as; firstly, high loft or bulkiness of material so as to provide predetermined amount of insulation by ensuring sufficient trapping of air. Secondly, the insulation depends on forced convection; such convective heat loss cannot be prevented by textile material. Third is that the textile alone cannot reach the level of thermal conductivity lower than 0.025 W/ m.k of air. Perhaps, nano-fibers can do so, but still, mass production and cost-effectiveness is a problem. Finally, such high loft materials for thermal insulation becomes heavier and uneasy to manage especially when required to carry over a body. The proposed works aim at developing lightweight effective thermal insulation textiles in combination with nanoporous silica-gel which provides the fundamental basis for the optimization of material properties to achieve good performance of the clothing system. This flexible nonwoven silica-gel composites fabric in intact monolith was successfully developed by reinforcing SiO2-gel in thermal bonded nonwoven fabric via sol-gel processing. Ambient Pressure Drying method is opted for silica gel preparation for cost-effective manufacturing. The formed structure of the nonwoven / SiO₂ -gel composites were analyzed, and the transfer properties were measured. The effects of structure and fibre on the thermal properties of the SiO₂-gel composites were evaluated. Samples are then tested against untreated samples of same GSM in order to study the effect of SiO₂-gel application on various properties of nonwoven fabric. The nonwoven fabric composites reinforced with aerogel showed intact monolith structure were also analyzed for their surface structure, functional group present, microscopic images. Developed product reveals a significant reduction in pores' size and air permeability than the conventional nonwoven fabric. Composite made from polyester fibre with lower GSM shows lowest thermal conductivity. Results obtained were statistically analyzed by using STATISTICA-6 software for their level of significance. Univariate tests of significance for various parameters are practiced which gives the P value for analyzing significance level along with that regression summary for dependent variable are also studied to obtain correlation coefficient.Keywords: silica-gel, heat insulation, nonwoven fabric, thermal barrier clothing
Procedia PDF Downloads 111110 Observing Sustainability: Case Studies of Chandigarh Boutiques and Their Textile Waste Reuse
Authors: Prabhdip Brar
Abstract:
Since the ancient times recycling, reusing and upcycling has been strongly practiced in India. However, previously reprocess was common due to lack of resources and availability of free time, especially with women who were homemakers. The upward strategy of design philosophy and drift of sustainability is sustainable fashion which is also termed eco fashion, the aspiration of which is to craft a classification which can be supported ad infinitum in terms of environmentalism and social responsibility. The viable approach of sustaining fashion is part of the larger trend of justifiable design where a product is generated and produced while considering its social impact to the environment. The purpose of this qualitative research paper is to find out if the apparel design boutiques in Chandigarh, (an educated fashion-conscious city) are contributing towards making conscious efforts with the re-use of environmentally responsive materials to rethink about eco-conscious traditional techniques and socially responsible approaches of the invention. Observation method and case studies of ten renowned boutiques of Chandigarh were conducted to find out about the creativity of their waste management and social contribution. Owners were interviewed with open-ended questions to find out their understanding of sustainability. This paper concludes that there are many sustainable ideas existing within India from olden times that can be incorporated into modern manufacturing techniques. The results showed all the designers are aware of sustainability as a concept. In all practical purposes, a patch of fabric is being used for bindings or one over the other as surface ornamentation techniques. Plain Fabrics and traditional prints and fabrics are valued more by the owners for using on other garments. Few of them sort their leftover pieces according to basic colors. Few boutique owners preferred donating it to Non-Government organizations. Still, they have enough waste which is not utilized because of lack of time and labor. This paper discusses how the Indian traditional techniques still derive influences though design and techniques, making India one of the contributing countries to the sustainability of fashion and textiles.Keywords: eco-fashion textile, sustainable textiles, sustainability in india, waste management
Procedia PDF Downloads 107109 Development of Thermal Regulating Textile Material Consisted of Macrocapsulated Phase Change Material
Authors: Surini Duthika Fernandopulle, Kalamba Arachchige Pramodya Wijesinghe
Abstract:
Macrocapsules containing phase change material (PCM) PEG4000 as core and Calcium Alginate as the shell was synthesized by in-situ polymerization process, and their suitability for textile applications was studied. PCM macro-capsules were sandwiched between two polyurethane foams at regular intervals, and the sandwiched foams were subsequently covered with 100% cotton woven fabrics. According to the mathematical modelling and calculations 46 capsules were required to provide cooling for a period of 2 hours at 56ºC, so a panel of 10 cm x 10 cm area with 25 parts (having 5 capsules in each for 9 parts are 16 parts spaced for air permeability) were effectively merged into one textile material without changing the textile's original properties. First, the available cooling techniques related to textiles were considered and the best cooling techniques suiting the Sri Lankan climatic conditions were selected using a survey conducted for Sri Lankan Public based on ASHRAE-55-2010 standard and it consisted of 19 questions under 3 sections categorized as general information, thermal comfort sensation and requirement of Personal Cooling Garments (PCG). The results indicated that during daytime, majority of respondents feel warm and during nighttime also majority have responded as slightly warm. The survey also revealed that around 85% of the respondents are willing to accept a PCG. The developed panels were characterized using Fourier-transform infrared spectroscopy (FTIR) and Thermogravimetric Analysis (TGA) tests and the findings from FTIR showed that the macrocapsules consisted of PEG 4000 as the core material and Calcium Alginate as the shell material and findings from TGA showed that the capsules had the average weight percentage for core with 61,9% and shell with 34,7%. After heating both control samples and samples incorporating PCM panels, it was discovered that only the temperature of the control sample increased after 56ºC, whereas the temperature of the sample incorporating PCM panels began to regulate the temperature at 56ºC, preventing a temperature increase beyond 56ºC.Keywords: phase change materials, thermal regulation, textiles, macrocapsules
Procedia PDF Downloads 127108 Development of a Systematic Approach to Assess the Applicability of Silver Coated Conductive Yarn
Authors: Y. T. Chui, W. M. Au, L. Li
Abstract:
Recently, wearable electronic textiles have been emerging in today’s market and were developed rapidly since, beside the needs for the clothing uses for leisure, fashion wear and personal protection, there also exist a high demand for the clothing to be capable for function in this electronic age, such as interactive interfaces, sensual being and tangible touch, social fabric, material witness and so on. With the requirements of wearable electronic textiles to be more comfortable, adorable, and easy caring, conductive yarn becomes one of the most important fundamental elements within the wearable electronic textile for interconnection between different functional units or creating a functional unit. The properties of conductive yarns from different companies can vary to a large extent. There are vitally important criteria for selecting the conductive yarns, which may directly affect its optimization, prospect, applicability and performance of the final garment. However, according to the literature review, few researches on conductive yarns on shelf focus on the assessment methods of conductive yarns for the scientific selection of material by a systematic way under different conditions. Therefore, in this study, direction of selecting high-quality conductive yarns is given. It is to test the stability and reliability of the conductive yarns according the problems industrialists would experience with the yarns during the every manufacturing process, in which, this assessment system can be classified into four stage. That is 1) Yarn stage, 2) Fabric stage, 3) Apparel stage and 4) End user stage. Several tests with clear experiment procedures and parameters are suggested to be carried out in each stage. This assessment method suggested that the optimal conducting yarns should be stable in property and resistant to various corrosions at every production stage or during using them. It is expected that this demonstration of assessment method can serve as a pilot study that assesses the stability of Ag/nylon yarns systematically at various conditions, i.e. during mass production with textile industry procedures, and from the consumer perspective. It aims to assist industrialists to understand the qualities and properties of conductive yarns and suggesting a few important parameters that they should be reminded of for the case of higher level of suitability, precision and controllability.Keywords: applicability, assessment method, conductive yarn, wearable electronics
Procedia PDF Downloads 535107 Water Repellent Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Fabrics can be treated to equip them with certain functional properties in which water repellency is one of the important functional effects. In this study, commercial water repellent agent was used under different application conditions to cotton fabric. Finally, the water repellent effect was evaluated by standard testing method. Thus, the aim of this study is to illustrate the proper application of water repellent finishing to cotton fabric and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, water repellent, textiles, cotton
Procedia PDF Downloads 239106 Automatic Vertical Wicking Tester Based on Optoelectronic Techniques
Authors: Chi-Wai Kan, Kam-Hong Chau, Ho-Shing Law
Abstract:
Wicking property is important for textile finishing and wears comfort. Good wicking properties can ensure uniformity and efficiency of the textiles treatment. In view of wear comfort, quick wicking fabrics facilitate the evaporation of sweat. Therefore, the wetness sensation of the skin is minimised to prevent discomfort. The testing method for vertical wicking was standardised by the American Association of Textile Chemists and Colorists (AATCC) in 2011. The traditional vertical wicking test involves human error to observe fast changing and/or unclear wicking height. This study introduces optoelectronic devices to achieve an automatic Vertical Wicking Tester (VWT) and reduce human error. The VWT can record the wicking time and wicking height of samples. By reducing the difficulties of manual judgment, the reliability of the vertical wicking experiment is highly increased. Furthermore, labour is greatly decreased by using the VWT. The automatic measurement of the VWT has optoelectronic devices to trace the liquid wicking with a simple operation procedure. The optoelectronic devices detect the colour difference between dry and wet samples. This allows high sensitivity to a difference in irradiance down to 10 μW/cm². Therefore, the VWT is capable of testing dark fabric. The VWT gives a wicking distance (wicking height) of 1 mm resolution and a wicking time of one-second resolution. Acknowledgment: This is a research project of HKRITA funded by Innovation and Technology Fund (ITF) with title “Development of an Automatic Measuring System for Vertical Wicking” (ITP/055/20TP). Author would like to thank the financial support by ITF. Any opinions, findings, conclusions or recommendations expressed in this material/event (or by members of the project team) do not reflect the views of the Government of the Hong Kong Special Administrative Region, the Innovation and Technology Commission or the Panel of Assessors for the Innovation and Technology Support Programme of the Innovation and Technology Fund and the Hong Kong Research Institute of Textiles and Apparel. Also, we would like to thank the support and sponsorship from Lai Tak Enterprises Limited, Kingis Development Limited and Wing Yue Textile Company Limited.Keywords: AATCC method, comfort, textile measurement, wetness sensation
Procedia PDF Downloads 101105 Resin Finishing of Cotton: Teaching and Learning Materials
Authors: C. W. Kan
Abstract:
Cotton is the most commonly used material for apparel purpose because of its durability, good perspiration absorption characteristics, comfort during wear and dyeability. However, proneness to creasing and wrinkling give cotton garments a poor rating during actual wear. Resin finishing is a process to bring out crease or wrinkle free/resistant effect to cotton fabric. Thus, the aim of this study is to illustrate the proper application of resin finishing to cotton fabric, and the results could provide guidance note to the students in learning this topic. Acknowledgment: Authors would like to thank the financial support from the Hong Kong Polytechnic University for this work.Keywords: learning materials, resin, textiles, wrinkle
Procedia PDF Downloads 254104 Effects of Surface Textures and Chemistries on Wettability
Authors: Dipti Raj, Himanshu Mishra
Abstract:
Wetting of a solid surface by a liquid is an extremely common yet subtle phenomenon in natural and applied sciences. A clear understanding of both short and long-term wetting behaviors of surfaces is essential for creating robust anti-biofouling coatings, non-wetting textiles, non-fogging mirrors, and preventive linings against dirt and icing. In this study, silica beads (diameter, D ≈ 100 μm) functionalized using different silane reagents were employed to modify the wetting characteristics of smooth polydimethylsiloxane (PDMS) surfaces. Resulting composite surfaces were found to be super-hydrophobic, i.e. contact angle of water,Keywords: contact angle, Cassie-Baxter, PDMS, silica, texture, wetting
Procedia PDF Downloads 254103 Investigation of Antimicrobial Activity of Dielectric Barrier Discharge Oxygen Plasma Combined with ZnO NPs-Treated Cotton Fabric Coated with Natural Green Tea Leaf Extracts
Authors: Fatma A. Mohamed, Hend M. Ahmed
Abstract:
This research explores the antimicrobial effects of dielectric barrier discharge (DBD) oxygen plasma treatment combined with ZnO NPs on the cotton fabric, focusing on various treatment durations (5, 10, 15, 20, and 30 minutes) and discharge powers (15.5–17.35 watts) at flow rate 0.5 l/min. After treatment with oxygen plasma and ZnO NPs, the fabric was printed with green tea (Camellia sinensis) at five different concentrations. The study evaluated the treatment's effectiveness by analyzing surface wettability, specifically through wet-out time and hydrophilicity, as well as measuring contact angles. To investigate the chemical changes on the fabric's surface, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) spectroscopy was employed to identify the functional groups formed as a result of the plasma treatment. This comprehensive approach aims to understand how DBD oxygen plasma treatment and ZnO nanoparticles change cotton fabric properties and enhance its antimicrobial potential, paving the way for innovative applications in textiles. In addition to the chemical analysis, the surface morphology of the O₂ plasma/ZnO NPs-treated cotton fabric was examined using scanning electron microscopy (SEM). FTIR analysis revealed an increase in polar functional groups (-COOH, -OH, and -C≡O) on the fabric's surface, contributing to enhanced hydrophilicity and functionality. The antimicrobial properties were evaluated using qualitative and quantitative methods, including agar plate assays and modified Hoenstein tests against Staphylococcus aureus and Escherichia coli. The results indicated a significant improvement in antimicrobial effectiveness for the cotton fabric treated with plasma and coated with natural extracts, maintaining this efficacy even after four washing cycles. This research demonstrates that utilizing oxygen DBD plasma/ZnO NPs treatment, combined with the absorption of tea and tulsi leaf extracts, presents a promising strategy for developing natural antimicrobial textiles. This approach is particularly relevant given the increasing medical and healthcare demands for effective antimicrobial materials. Overall, the method not only enhances the absorption of plant extracts but also significantly boosts antimicrobial efficacy, offering valuable insights for future textile applications.Keywords: cotton, ZnO NPs, green tea leaf, antimicrobial avtivity, DBD oxygen plasma
Procedia PDF Downloads 9102 Hibiscus Sabdariffa Extracts: A Sustainable and Eco-Friendly Resource for Multifunctional Cellulosic Fibers
Authors: Mohamed Rehan, Gamil E. Ibrahim, Mohamed S. Abdel-Aziz, Shaimaa R. Ibrahim, Tawfik A. Khattab
Abstract:
The utilization of natural products in finishing textiles toward multifunctional applications without side effects is an extremely motivating goal. Hibiscus sabdariffa usually has been used for many traditional medicine applications. To develop an additional use for Hibiscus sabdariffa, an extraction of bioactive compounds from Hibiscus sabdariffa followed by finishing on cellulosic fibers was designed to cleaner production of the value-added textiles fibers with multifunctional applications. The objective of this study is to explore, identify, and evaluate the bioactive compound extracted from Hibiscus sabdariffa by different solvent via ultrasonic technique as a potential eco-friendly agent for multifunctional cellulosic fabrics via two approaches. In the first approach, Hibiscus sabdariffa extract was used as a source of sustainable eco-friendly for simultaneous coloration and multi-finishing of cotton fabrics via in situ incorporations of nanoparticles (silver and metal oxide). In the second approach, the micro-capsulation of Hibiscus sabdariffa extracts was followed by coating onto cotton gauze to introduce multifunctional healthcare applications. The effect of the solvent type was accelerated by ultrasonic on the phytochemical, antioxidant, and volatile compounds of Hibiscus sabdariffa. The surface morphology and elemental content of the treated fabrics were explored using Fourier transform infrared spectroscopy (FT-IR), scanning electron microscope (SEM), and energy-dispersive X-ray spectroscopy (EDX). The multifunctional properties of treated fabrics, including coloration, sensor properties and protective properties against pathogenic microorganisms and UV radiation as well as wound healing property were evaluated. The results showed that the water, as well as ethanol/water, was selected as a solvent for the extraction of natural compounds from Hibiscus Sabdariffa with high in extract yield, total phenolic contents, flavonoid contents, and antioxidant activity. These natural compounds were utilized to enhance cellulosic fibers functionalization by imparting faint/dark red color, antimicrobial against different organisms, and antioxidants as well as UV protection properties. The encapsulation of Hibiscus Sabdariffa extracts, as well as wound healing, is under consideration and evaluation. As a result, the current study presents a sustainable and eco-friendly approach to design cellulosic fabrics for multifunctional medical and healthcare applications.Keywords: cellulosic fibers, Hibiscus sabdariffa extract, multifunctional application, nanoparticles
Procedia PDF Downloads 146101 Knitting Stitches’ Manipulation for Catenary Textile Structures
Authors: Virginia Melnyk
Abstract:
This paper explores the design for catenary structure using knitted textiles. Using the advantages of Grasshopper and Kangaroo parametric software to simulate and pre-design an overall form, the design is then translated to a pattern that can be made with hand manipulated stitches on a knitting machine. The textile takes advantage of the structure of knitted materials and the ability for it to stretch. Using different types of stitches to control the amount of stretch that can occur in portions of the textile generates an overall formal design. The textile is then hardened in an upside-down hanging position and then flipped right-side-up. This then becomes a structural catenary form. The resulting design is used as a small Cat House for a cat to sit inside and climb on top of.Keywords: architectural materials, catenary structures, knitting fabrication, textile design
Procedia PDF Downloads 183100 Conductive and Stretchable Graphene Nanoribbon Coated Textiles
Authors: Lu Gan, Songmin Shang, Marcus Chun Wah Yuen
Abstract:
A conductive and stretchable cotton fabric was prepared in this study through coating the graphene nanoribbon onto the cotton fabric. The mechanical and electrical properties of the prepared cotton fabric were then investigated. As shown in the results, the graphene nanoribbon coated cotton fabric had an improvement in both mechanical strength and electrical conductivity. Moreover, the resistance of the cotton fabric had a linear dependence on the strain applied to it. The prepared graphene nanoribbon coated cotton fabric has great application potentials in smart textile industry.Keywords: conductive fabric, graphene nanoribbon, coating, enhanced properties
Procedia PDF Downloads 35499 Exploring the Concept of Fashion Waste: Hanging by a Thread
Authors: Timothy Adam Boleratzky
Abstract:
The goal of this transformative endeavour lies in the repurposing of textile scraps, heralding a renaissance in the creation of wearable art. Through a judicious fusion of Life Cycle Assessment (LCA) methodologies and cutting-edge techniques, this research embarks upon a voyage of exploration, unraveling the intricate tapestry of environmental implications woven into the fabric of textile waste. Delving deep into the annals of empirical evidence and scholarly discourse, the study not only elucidates the urgent imperative for waste reduction strategies but also unveils the transformative potential inherent in embracing circular economy principles within the hallowed halls of fashion. As the research unfurls its sails, guided by the compass of sustainability, it traverses uncharted territories, charting a course toward a more enlightened and responsible fashion ecosystem. The canvas upon which this journey unfolds is richly adorned with insights gleaned from the crucible of experimentation, laying bare the myriad pathways toward waste minimisation and resource optimisation. From the adoption of recycling strategies to the cultivation of eco-friendly production techniques, the research endeavours to sculpt a blueprint for a more sustainable future, one stitch at a time. In this unfolding narrative, the role of wearable art emerges as a potent catalyst for change, transcending the boundaries of conventional fashion to embrace a more holistic ethos of sustainability. Through the alchemy of creativity and craftsmanship, discarded textile scraps are imbued with new life, morphing into exquisite creations that serve as both a testament to human ingenuity and a rallying cry for environmental preservation. Each thread, each stitch, becomes a silent harbinger of change, weaving together a tapestry of hope in a world besieged by ecological uncertainty. As the research journey culminates, its echoes resonate far beyond the confines of academia, reverberating through the corridors of industry and beyond. In its wake, it leaves a legacy of empowerment and enlightenment, inspiring a generation of designers, entrepreneurs, and consumers to embrace a more sustainable vision of fashion. For in the intricate interplay of threads and textiles lies the promise of a brighter, more resilient future, where beauty coexists harmoniously with responsibility and where fashion becomes not merely an expression of style but a celebration of sustainability.Keywords: fabric-manipulation, sustainability, textiles, waste, wearable-art
Procedia PDF Downloads 4298 Development of Soft 3D Printing Materials for Textile Applications
Authors: Chi-Chung Marven Chick, Chu-Po Ho, Sau-Chuen Joe Au, Wing-Fai Sidney Wong, Chi-Wai Kan
Abstract:
Recently, 3D printing becomes popular process for manufacturing, especially has special attention in textile applications. However, there are various types of 3D printing materials, including plastic, resin, rubber, ceramics, gold, platinum, silver, iron, titanium but not all these materials are suitable for textile application. Generally speaking, 3D printing of textile mainly uses thermoplastic polymers such as acrylonitrile butadiene styrene (ABS), polylactide (PLA), polycaprolactone (PCL), thermoplastic polyurethane (TPU), polyethylene terephthalate glycol-modified (PETG), polystyrene (PS), polypropylene (PP). Due to the characteristics of the polymers, 3D printed textiles usually have low air permeability and poor comfortable. Therefore, in this paper, we will review the possible materials suitable for textile application with desired physical and mechanical properties.Keywords: 3D printing, 3D printing materials, textile, properties
Procedia PDF Downloads 6397 Bio-Based Processes for Circular Economy in the Textile Industry
Authors: Nazanin Forouz
Abstract:
The textile industry faces increasing criticism due to its resource-intensive nature and the negative environmental and societal impacts associated with the manufacturing, use, and disposal of clothes. To address these concerns, there is a growing desire to transition towards a circular economy for textiles, implementing recycling concepts and technologies to protect resources, the environment, and people. While existing recycling processes have focused on chemical and mechanical reuse of textile fibers, bio-based processes have received limited attention beyond end-of-life composting. However, bio-based technologies hold great promise for circularizing the textile life cycle and reducing environmental impacts.Keywords: textile industry, circular economy, bio-based processes, recycling, environmental impacts
Procedia PDF Downloads 9596 African Pattern Trends in Contemporary Textile and Fashion Design: Exploratory Study in African Sources and Technology in Fashion, Art, and Textiles
Authors: Leslie Nobler
Abstract:
African fabrics based specifically on the Dutch Wax Print, or Ankara, popularized during Africa's colonial era, have had an enormous impact on western fashion (especially in the US and UK), in the last half-decade. The trend has had an effect on the world of visual arts as well, which circuitously, also heavily impacts fashion design. In fashion, and notably in celebrity apparel choices, this is in part due to ‘identity’ and taking pride in one's African roots; in the visual arts, artists such as Yinka Shonibare and Njideka Akunyili Crosby are making statements about identity politics, colonialism up through post-colonialism, and racism. The ‘global village’ brought on by the internet has driven this proliferation, as have improvements in the printing technology with which the Ankara print is made, combining wax-resist with roller printing. The newest patterns can now be designed authentically in western African and easily sent electronically to Europe for printing. Examples of Ankara's new reach across the Atlantic abound. They have taken several paths, which the paper will detail. Briefly, the first is its greater utilization in the fashion world, from authentic textile shops in African American neighborhoods to copied (knocked-off) low-end reproductions in discount chains. Secondly, we are seeing far more uses of these textiles/patterns in important works of fine arts from major museums, in Philadelphia to Palm Beach to the Mass MOCA (in the US), all the way to the Israel Museum in Jerusalem, and everywhere in between. And lastly, but quite significantly, we see this trend throughout social media thanks to Instagram, Pinterest and celebrity photos –even at the recent royal wedding. What shall sustain this major new design direction is that Ankara changes with and adapts to the times. Some of it is now printed in West Africa, often in the Nigeria area. And some may be designed in Europe or even at knock-off apparel studios in NY or Asia. But it stays utterly relevant because the motifs are based on objects and scenes in everyday life. In my design studio and university design classes, this idea is first and foremost, from our big spiritual eye motifs to drawings of our art supplies to the ‘politically-loaded’ chain patterns. This first-hand creativity experience becomes part of the research of this paper, along with historic and contemporary sources of inquiry, both through a literature/image search and anecdotal experience into what is behind this exciting and surprising trend.Keywords: African wax print, Ankara, identity (politics), textile design, surface design
Procedia PDF Downloads 13395 Real-Time Working Environment Risk Analysis with Smart Textiles
Authors: Jose A. Diaz-Olivares, Nafise Mahdavian, Farhad Abtahi, Kaj Lindecrantz, Abdelakram Hafid, Fernando Seoane
Abstract:
Despite new recommendations and guidelines for the evaluation of occupational risk assessments and their prevention, work-related musculoskeletal disorders are still one of the biggest causes of work activity disruption, productivity loss, sick leave and chronic work disability. It affects millions of workers throughout Europe, with a large-scale economic and social burden. These specific efforts have failed to produce significant results yet, probably due to the limited availability and high costs of occupational risk assessment at work, especially when the methods are complex, consume excessive resources or depend on self-evaluations and observations of poor accuracy. To overcome these limitations, a pervasive system of risk assessment tools in real time has been developed, which has the characteristics of a systematic approach, with good precision, usability and resource efficiency, essential to facilitate the prevention of musculoskeletal disorders in the long term. The system allows the combination of different wearable sensors, placed on different limbs, to be used for data collection and evaluation by a software solution, according to the needs and requirements in each individual working environment. This is done in a non-disruptive manner for both the occupational health expert and the workers. The creation of this solution allows us to attend different research activities that require, as an essential starting point, the recording of data with ergonomic value of very diverse origin, especially in real work environments. The software platform is here presented with a complimentary smart clothing system for data acquisition, comprised of a T-shirt containing inertial measurement units (IMU), a vest sensorized with textile electronics, a wireless electrocardiogram (ECG) and thoracic electrical bio-impedance (TEB) recorder and a glove sensorized with variable resistors, dependent on the angular position of the wrist. The collected data is processed in real-time through a mobile application software solution, implemented in commercially available Android-based smartphones and tablet platforms. Based on the collection of this information and its analysis, real-time risk assessment and feedback about postural improvement is possible, adapted to different contexts. The result is a tool which provides added value to ergonomists and occupational health agents, as in situ analysis of postural behavior can assist in a quantitative manner in the evaluation of work techniques and the occupational environment.Keywords: ergonomics, mobile technologies, risk assessment, smart textiles
Procedia PDF Downloads 11794 Investigation on Flexural Behavior of Non-Crimp 3D Orthogonal Weave Carbon Composite Reinforcement
Authors: Sh. Minapoor, S. Ajeli
Abstract:
Non-crimp three-dimensional (3D) orthogonal carbon fabrics are one of the useful textiles reinforcements in composites. In this paper, flexural and bending properties of a carbon non-crimp 3D orthogonal woven reinforcement are experimentally investigated. The present study is focused on the understanding and measurement of the main bending parameters including flexural stress, strain, and modulus. For this purpose, the three-point bending test method is used and the load-displacement curves are analyzed. The influence of some weave's parameters such as yarn type, geometry of structure, and fiber volume fraction on bending behavior of non-crimp 3D orthogonal carbon fabric is investigated. The obtained results also represent a dataset for the simulation of flexural behavior of non-crimp 3D orthogonal weave carbon composite reinforcement.Keywords: non-crimp 3D orthogonal weave, carbon composite reinforcement, flexural behavior, three-point bending
Procedia PDF Downloads 29893 Representation of Traditional Ornament in Modern Architecture Yogyakarta
Authors: Eni Puji Astuti
Abstract:
Yogyakarta has a rich and various form of traditional ornament which can be found on many media. Traditional Ornament has a classical form and being a local identity that can be easily recognized. The retention of traditional ornament can be done in many ways, one of them is aplicating tradisional ornament on modern architecture. This paper is aimed at identifiying the representation of traditional ornament on modern architecture in Yogyakarta. Kawung, parang, tumpal are some of Javaness motifs which often implemented on modern architecture because of their simple and welknown form. The motifs that actually aplicate on textiles ornament, recently often applied on modern architecture as aesthetical element on the facade, interior walls and furniture. The application of traditional ornaments as aesthetic architectural elements provide a strong local identity of Yogyakarta. Traditional ornaments that are applied, no longer refers to the origin local values, norms, and traditions. The form previously be simplified and adapted to the shape of minimalist style of modern architecture.Keywords: traditional ornament, representation, Yogyakarta, modern architecture
Procedia PDF Downloads 35792 Fashion as Identity Architect: Sikhs in Perspective
Authors: Anupreet B. Dugal, Suruchi Mittar
Abstract:
The research prospect explores fashion as a tool to effectively emancipate the Sikh identity. The study presents information on how fashion has played a critical and visible role in reflecting and helping to construct identities based on religiosity. It discusses the Sikh identity, its’ origin; its continuity and the contemporary ambivalence. Fashion has mostly, if not always been used as a means of establishing identity. This research creates a gateway to discuss the impact that fashion can have on the existing socio-cultural and religious models. The study focuses on the Sikhs, a small community of India with regard to their visual appearance. The research will be based on the case study of 1469, a store infusing Sikhism as a style quotient. Subsequently, in the research framework, a sample study would be conducted with Sikh youth (18-25 years old) hailing from New Delhi, the capital city of India. 1469 formulates a striking case study for examining the relationship between fashion and religious and personal identity.Keywords: fashion, identity, sikh identity, textiles
Procedia PDF Downloads 47691 Development of ELF Passive Shielding Application Using Magnetic Aqueous Substrate
Authors: W. N. L. Mahadi, S. N. Syed Zin, W. A. R. Othman, N. A. Mohd Rasyid, N. Jusoh
Abstract:
Public concerns on Extremely Low Frequency (ELF) Electromagnetic Field (EMF) exposure have been elongated since the last few decades. Electrical substations and high tension rooms (HT room) in commercial buildings were among the contributing factors emanating ELF magnetic fields. This paper discussed various shielding methods conventionally used in mitigating the ELF exposure. Nevertheless, the standard methods were found to be impractical and incapable of meeting currents shielding demands. In response to that, remarkable researches were conducted in effort to invent novel methods which is more convenient and efficient such as magnetic aqueous shielding or paint, textiles and papers shielding. A mitigation method using magnetic aqueous substrate in shielding application was proposed in this paper for further investigation. using Manganese Zinc Ferrite (Mn0.4Zn0.6Fe2O4). The magnetic field and flux distribution inside the aqueous magnetic material are evaluated to optimize shielding against ELF-EMF exposure, as to mitigate its exposure.Keywords: ELF shielding, magnetic aqueous substrate, shielding effectiveness, passive shielding, magnetic material
Procedia PDF Downloads 531