Search results for: Bouger anomaly
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 199

Search results for: Bouger anomaly

109 Magnetotelluric Method Approach for the 3-D Inversion of Geothermal System’s Dissemination in Indonesia

Authors: Pelangi Wiyantika

Abstract:

Sustainable energy is the main concern in According to solve any problems on energy sectors. One of the sustainable energy that has lack of presentation is Geothermal energy which has developed lately as the new promising sustainable energy. Indonesia as country that has been passed by the ring of fire zone has many geothermal sources. This is the good opportunity to elaborate and learn more about geothermal as sustainable and renewable energy. Geothermal systems have special characteristic whom the zone of sources can be detected by measuring the resistivity of the subsurface. There are many methods to measuring the anomaly of the systems. One of the best method is Magnetotelluric approchment. Magnetotelluric is the passive method which the resistivity is obtained by injecting the eddy current of rocks in the subsurface with the sources. The sources of Magnetotelluric method can be obtained from lightning or solar wind which has the frequencies each below 1 Hz and above 1 Hz.

Keywords: geothermal, magnetotelluric, renewable energy, resistivity, sustainable energy

Procedia PDF Downloads 303
108 Integration of Gravity and Seismic Methods in the Geometric Characterization of a Dune Reservoir: Case of the Zouaraa Basin, NW Tunisia

Authors: Marwa Djebbi, Hakim Gabtni

Abstract:

Gravity is a continuously advancing method that has become a mature technology for geological studies. Increasingly, it has been used to complement and constrain traditional seismic data and even used as the only tool to get information of the sub-surface. In fact, in some regions the seismic data, if available, are of poor quality and hard to be interpreted. Such is the case for the current study area. The Nefza zone is part of the Tellian fold and thrust belt domain in the north west of Tunisia. It is essentially made of a pile of allochthonous units resulting from a major Neogene tectonic event. Its tectonic and stratigraphic developments have always been subject of controversies. Considering the geological and hydrogeological importance of this area, a detailed interdisciplinary study has been conducted integrating geology, seismic and gravity techniques. The interpretation of Gravity data allowed the delimitation of the dune reservoir and the identification of the regional lineaments contouring the area. It revealed the presence of three gravity lows that correspond to the dune of Zouara and Ouchtata separated along with a positive gravity axis espousing the Ain Allega_Aroub Er Roumane axe. The Bouguer gravity map illustrated the compartmentalization of the Zouara dune into two depressions separated by a NW-SE anomaly trend. This constitution was confirmed by the vertical derivative map which showed the individualization of two depressions with slightly different anomaly values. The horizontal gravity gradient magnitude was performed in order to determine the different geological features present in the studied area. The latest indicated the presence of NE-SW parallel folds according to the major Atlasic direction. Also, NW-SE and EW trends were identified. The maxima tracing confirmed this direction by the presence of NE-SW faults, mainly the Ghardimaou_Cap Serrat accident. The quality of the available seismic sections and the absence of borehole data in the region, except few hydraulic wells that been drilled and showing the heterogeneity of the substratum of the dune, required the process of gravity modeling of this challenging area that necessitates to be modeled for the geometrical characterization of the dune reservoir and determine the different stratigraphic series underneath these deposits. For more detailed and accurate results, the scale of study will be reduced in coming research. A more concise method will be elaborated; the 4D microgravity survey. This approach is considered as an expansion of gravity method and its fourth dimension is time. It will allow a continuous and repeated monitoring of fluid movement in the subsurface according to the micro gal (μgall) scale. The gravity effect is a result of a monthly variation of the dynamic groundwater level which correlates with rainfall during different periods.

Keywords: 3D gravity modeling, dune reservoir, heterogeneous substratum, seismic interpretation

Procedia PDF Downloads 298
107 Modelling the Effects of External Factors Affecting Concrete Carbonation

Authors: Abhishek Mangal, Kunal Tongaria, S. Mandal, Devendra Mohan

Abstract:

Carbonation of reinforced concrete structures has emerged as one of the major challenges for Civil engineers across the world. With increasing emissions from various activities, carbon dioxide concentration in the atmosphere has been eve rising, enhancing its penetration in porous concrete, reaching steel bars and ultimately leading to premature failure. Several literatures have been published dealing with the various interdependent variables related to carbonation. However, with innumerable variability a generalization of these data proves to be a troublesome task. This paper looks into this carbonation anomaly in concrete structures caused by various external variables such as relative humidity, concentration of CO2, curing period and ambient temperature. Significant discussions and comparisons have been presented on the basis of various studies conducted with an aim to predict the depth of carbonation as a function of these multidimensional parameters using various numerical and statistical modelling techniques.

Keywords: carbonation, curing, exposure conditions, relative humidity

Procedia PDF Downloads 253
106 The Association of Cone-Shaped Epiphysis and Poland Syndrome: A Case Report

Authors: Mohammad Alqattan, Tala Alkhunani, Reema Al, Aldawish, Felwa Almurshard, Abdullah Alzahrani

Abstract:

: Poland’s Syndrome is a congenital anomaly with two clinical features : unilateral agenesis of the pectoralis major and ipsilateral hand symbrachydactyly. Case presentation: We report a rare case of bilateral Poland’s syndrome with several unique features. Discussion: Poland’s syndrome is thought to be due to a vascular insult to the subclavian axis around the 6th week of gestation. Our patient has multiple rare and unique features of Poland’s syndrome. Conclusion: To our best knowledge, for the first time in the literature we associate Poland’s syndrome with cone-shaped epiphysis of the metacarpals of all fingers. Bilaterality, cleft hand deformity, and dextrocardia, were also rare features in our patient.

Keywords: Poland's syndrome, cleft hand deformity, bilaterality, dextrocardia, cone-shaped epiphysis

Procedia PDF Downloads 129
105 Gradient Length Anomaly Analysis for Landslide Vulnerability Analysis of Upper Alaknanda River Basin, Uttarakhand Himalayas, India

Authors: Hasmithaa Neha, Atul Kumar Patidar, Girish Ch Kothyari

Abstract:

The northward convergence of the Indian plate has a dominating influence over the structural and geomorphic development of the Himalayan region. The highly deformed and complex stratigraphy in the area arises from a confluence of exogenic and endogenetic geological processes. This region frequently experiences natural hazards such as debris flows, flash floods, avalanches, landslides, and earthquakes due to its harsh and steep topography and fragile rock formations. Therefore, remote sensing technique-based examination and real-time monitoring of tectonically sensitive regions may provide crucial early warnings and invaluable data for effective hazard mitigation strategies. In order to identify unusual changes in the river gradients, the current study demonstrates a spatial quantitative geomorphic analysis of the upper Alaknanda River basin, Uttarakhand Himalaya, India, using gradient length anomaly analysis (GLAA). This basin is highly vulnerable to ground creeping and landslides due to the presence of active faults/thrusts, toe-cutting of slopes for road widening, development of heavy engineering projects on the highly sheared bedrock, and periodic earthquakes. The intersecting joint sets developed in the bedrocks have formed wedges that have facilitated the recurrence of several landslides. The main objective of current research is to identify abnormal gradient lengths, indicating potential landslide-prone zones. High-resolution digital elevation data and geospatial techniques are used to perform this analysis. The results of GLAA are corroborated with the historical landslide events and ultimately used for the generation of landslide susceptibility maps of the current study area. The preliminary results indicate that approximately 3.97% of the basin is stable, while about 8.54% is classified as moderately stable and suitable for human habitation. However, roughly 19.89% fall within the zone of moderate vulnerability, 38.06% are classified as vulnerable, and 29% fall within the highly vulnerable zones, posing risks for geohazards, including landslides, glacial avalanches, and earthquakes. This research provides valuable insights into the spatial distribution of landslide-prone areas. It offers a basis for implementing proactive measures for landslide risk reduction, including land-use planning, early warning systems, and infrastructure development techniques.

Keywords: landslide vulnerability, geohazard, GLA, upper Alaknanda Basin, Uttarakhand Himalaya

Procedia PDF Downloads 72
104 Klippel Feil Syndrome: A Case Report and Review of Literature

Authors: Rim Frikha, Nouha Bouayed Abdelmoula, Afifa Sellami, Salima Daoud, Tarek Rebai

Abstract:

Klippel-Feil Syndrome (KFS) is characterized by congenital vertebral fusion of the cervical spine resulting from faulty segmentation along the embryo's developing axis. A wide spectrum of associated anomalies may be present. This heterogeneity has complicated elucidation of the genetic etiology and management of the syndrome. We report a case of an isolated Klippel-Feil Syndrome with C5-C6 fusion on the cervical spine. It‘s the rarest form of congenital fused cervical vertebrae which is predisposed to the risk of spinal cord injury and neurologic problems. The aim of this paper was to review clinical heterogeneity; radiographic abnormalities and genetic etiology in Klippel-Feil Syndrome. We insist in comprehensive evaluation and delineation of diagnostic and prognostic classes.

Keywords: Klippel–Feil anomaly, genetic, clinical heterogeneity, radiographic abnormalities

Procedia PDF Downloads 484
103 Women Empowerment and Sustainable Community Development: Understanding the Challenges for Responsive Action

Authors: Albert T. Akume, Ankama G. Rosecana, Micheal Solomon

Abstract:

Every citizen has rights that must be respected by others in the community. Ironically however, women in most communities are not accorded some of those rights as the male folks. This has not only facilitated their disempowerment but inhibited them from being treated with equal dignity that they deserve as their male counterpart; despite their valuable contribution to the society. Those forces against women empowerment are not limited to socio-cultural practices alone, but the character and nature of the state in Nigeria point to indicators of systemic and structural exclusion embedded in its framework. The consequence of this is that the vital contributions of women to sustainable community development have eluded many communities in Nigeria with adverse tell-tell signs on the environment. It is for this reason that the objective of this study is not only to highlight the causes and challenges associated with women disempowerment, but also to draw attention to the need to correct those anomaly against women in order to genuinely empower them to contribute to sustainable community development in Nigeria.

Keywords: capacity development, community, social sustainability, sustainable development, women empowerment

Procedia PDF Downloads 421
102 Prevalence of Dens Evaginatus in Adolescent Population of Melaka: A Retrospective Study

Authors: Preethy Mary Donald, Renjith George Pallivathukal

Abstract:

Dens evaginatus (DE) is a rare developmental anomaly characterized by a slender enamel-covered tubercle which projects from the occlusal surface of an otherwise normal premolar. DE can often interfere normal occlusion and can lead to complications like sensitivity, pulpal exposure and temporo mandibular joint problems. The orthopantomographs (OPGs) and dental records of patients under the age of 20 who attended the faculty of dentistry, Melaka-Manipal Medical College were examined for DE. Results: The prevalence of DE was 23% among the study group. Males presented with a higher prevalence of 67% and females with 33%. The prevalence of Dens evaginatus was distributed as 28% in maxillary central incisor, 52% in maxillary lateral incisors, 12% in mandibular second premolars. Prevalence in permanent dentitions appeared to be higher than deciduous dentition. The bilateral occurrence of Dens evaginatus is an interesting phenomenon. 57% of the cases of the DE were bilateral.

Keywords: deciduous dentition, dens evaginatus, permanent dentition, prevalence

Procedia PDF Downloads 306
101 Attack Redirection and Detection using Honeypots

Authors: Chowduru Ramachandra Sharma, Shatunjay Rawat

Abstract:

A false positive state is when the IDS/IPS identifies an activity as an attack, but the activity is acceptable behavior in the system. False positives in a Network Intrusion Detection System ( NIDS ) is an issue because they desensitize the administrator. It wastes computational power and valuable resources when rules are not tuned properly, which is the main issue with anomaly NIDS. Furthermore, most false positives reduction techniques are not performed during the real-time of attempted intrusions; instead, they have applied afterward on collected traffic data and generate alerts. Of course, false positives detection in ‘offline mode’ is tremendously valuable. Nevertheless, there is room for improvement here; automated techniques still need to reduce False Positives in real-time. This paper uses the Snort signature detection model to redirect the alerted attacks to Honeypots and verify attacks.

Keywords: honeypot, TPOT, snort, NIDS, honeybird, iptables, netfilter, redirection, attack detection, docker, snare, tanner

Procedia PDF Downloads 156
100 Fast and Robust Long-term Tracking with Effective Searching Model

Authors: Thang V. Kieu, Long P. Nguyen

Abstract:

Kernelized Correlation Filter (KCF) based trackers have gained a lot of attention recently because of their accuracy and fast calculation speed. However, this algorithm is not robust in cases where the object is lost by a sudden change of direction, being obscured or going out of view. In order to improve KCF performance in long-term tracking, this paper proposes an anomaly detection method for target loss warning by analyzing the response map of each frame, and a classification algorithm for reliable target re-locating mechanism by using Random fern. Being tested with Visual Tracker Benchmark and Visual Object Tracking datasets, the experimental results indicated that the precision and success rate of the proposed algorithm were 2.92 and 2.61 times higher than that of the original KCF algorithm, respectively. Moreover, the proposed tracker handles occlusion better than many state-of-the-art long-term tracking methods while running at 60 frames per second.

Keywords: correlation filter, long-term tracking, random fern, real-time tracking

Procedia PDF Downloads 138
99 Wireless Sensor Anomaly Detection Using Soft Computing

Authors: Mouhammd Alkasassbeh, Alaa Lasasmeh

Abstract:

We live in an era of rapid development as a result of significant scientific growth. Like other technologies, wireless sensor networks (WSNs) are playing one of the main roles. Based on WSNs, ZigBee adds many features to devices, such as minimum cost and power consumption, and increasing the range and connect ability of sensor nodes. ZigBee technology has come to be used in various fields, including science, engineering, and networks, and even in medicinal aspects of intelligence building. In this work, we generated two main datasets, the first being based on tree topology and the second on star topology. The datasets were evaluated by three machine learning (ML) algorithms: J48, meta.j48 and multilayer perceptron (MLP). Each topology was classified into normal and abnormal (attack) network traffic. The dataset used in our work contained simulated data from network simulation 2 (NS2). In each database, the Bayesian network meta.j48 classifier achieved the highest accuracy level among other classifiers, of 99.7% and 99.2% respectively.

Keywords: IDS, Machine learning, WSN, ZigBee technology

Procedia PDF Downloads 543
98 The Nature and Impact of Trojan Horses in Cybersecurity

Authors: Mehrab Faraghti

Abstract:

Trojan horses, a form of malware masquerading as legitimate software, pose significant cybersecurity threats. These malicious programs exploit user trust, infiltrate systems, and can lead to data breaches, financial loss, and compromised privacy. This paper explores the mechanisms through which Trojan horses operate, including delivery methods such as phishing and software vulnerabilities. It categorizes various types of Trojan horses and their specific impacts on individuals and organizations. Additionally, the research highlights the evolution of Trojan threats and the importance of user awareness and proactive security measures. By analyzing case studies of notable Trojan attacks, this study identifies common vulnerabilities that can be exploited and offers insights into effective countermeasures, including behavioral analysis, anomaly detection, and robust incident response strategies. The findings emphasize the need for comprehensive cybersecurity education and the implementation of advanced security protocols to mitigate the risks associated with Trojan horses.

Keywords: Trojan horses, cybersecurity, malware, data breach

Procedia PDF Downloads 9
97 Dynamical Models for Enviromental Effect Depuration for Structural Health Monitoring of Bridges

Authors: Francesco Morgan Bono, Simone Cinquemani

Abstract:

This research aims to enhance bridge monitoring by employing innovative techniques that incorporate exogenous factors into the modeling of sensor signals, thereby improving long-term predictability beyond traditional static methods. Using real datasets from two different bridges equipped with Linear Variable Displacement Transducer (LVDT) sensors, the study investigates the fundamental principles governing sensor behavior for more precise long-term forecasts. Additionally, the research evaluates performance on noisy and synthetically damaged data, proposing a residual-based alarm system to detect anomalies in the bridge. In summary, this novel approach combines advanced modeling, exogenous factors, and anomaly detection to extend prediction horizons and improve preemptive damage recognition, significantly advancing structural health monitoring practices.

Keywords: structural health monitoring, dynamic models, sindy, railway bridges

Procedia PDF Downloads 38
96 Predicting Oil Spills in Real-Time: A Machine Learning and AIS Data-Driven Approach

Authors: Tanmay Bisen, Aastha Shayla, Susham Biswas

Abstract:

Oil spills from tankers can cause significant harm to the environment and local communities, as well as have economic consequences. Early predictions of oil spills can help to minimize these impacts. Our proposed system uses machine learning and neural networks to predict potential oil spills by monitoring data from ship Automatic Identification Systems (AIS). The model analyzes ship movements, speeds, and changes in direction to identify patterns that deviate from the norm and could indicate a potential spill. Our approach not only identifies anomalies but also predicts spills before they occur, providing early detection and mitigation measures. This can prevent or minimize damage to the reputation of the company responsible and the country where the spill takes place. The model's performance on the MV Wakashio oil spill provides insight into its ability to detect and respond to real-world oil spills, highlighting areas for improvement and further research.

Keywords: Anomaly Detection, Oil Spill Prediction, Machine Learning, Image Processing, Graph Neural Network (GNN)

Procedia PDF Downloads 73
95 Consideration of Failed Fuel Detector Location through Computational Flow Dynamics Analysis on Primary Cooling System Flow with Two Outlets

Authors: Sanghoon Bae, Hanju Cha

Abstract:

Failed fuel detector (FFD) in research reactor is a very crucial instrument to detect the anomaly from failed fuels in the early stage around primary cooling system (PCS) outlet prior to the decay tank. FFD is considered as a mandatory sensor to ensure the integrity of fuel assemblies and mitigate the consequence from a failed fuel accident. For the effective function of FFD, the location of them should be determined by contemplating the effect from coolant flow around two outlets. For this, the analysis on computational flow dynamics (CFD) should be first performed how the coolant outlet flow including radioactive materials from failed fuels are mixed and discharged through the outlet plenum within certain seconds. The analysis result shows that the outlet flow is well mixed regardless of the position of failed fuel and ultimately illustrates the effect of detector location.

Keywords: computational flow dynamics (CFD), failed fuel detector (FFD), fresh fuel assembly (FFA), spent fuel assembly (SFA)

Procedia PDF Downloads 240
94 Delineation of Different Geological Interfaces Beneath the Bengal Basin: Spectrum Analysis and 2D Density Modeling of Gravity Data

Authors: Md. Afroz Ansari

Abstract:

The Bengal basin is a spectacular example of a peripheral foreland basin formed by the convergence of the Indian plate beneath the Eurasian and Burmese plates. The basin is embraced on three sides; north, west and east by different fault-controlled tectonic features whereas released in the south where the rivers are drained into the Bay of Bengal. The Bengal basin in the eastern part of the Indian subcontinent constitutes the largest fluvio-deltaic to shallow marine sedimentary basin in the world today. This continental basin coupled with the offshore Bengal Fan under the Bay of Bengal forms the biggest sediment dispersal system. The continental basin is continuously receiving the sediments by the two major rivers Ganga and Brahmaputra (known as Jamuna in Bengal), and Meghna (emerging from the point of conflux of the Ganga and Brahmaputra) and large number of rain-fed, small tributaries originating from the eastern Indian Shield. The drained sediments are ultimately delivered into the Bengal fan. The significance of the present study is to delineate the variations in thicknesses of the sediments, different crustal structures, and the mantle lithosphere throughout the onshore-offshore Bengal basin. In the present study, the different crustal/geological units and the shallower mantle lithosphere were delineated by analyzing the Bouguer Gravity Anomaly (BGA) data along two long traverses South-North (running from Bengal fan cutting across the transition offshore-onshore of the Bengal basin and intersecting the Main Frontal Thrust of India-Himalaya collision zone in Sikkim-Bhutan Himalaya) and West-East (running from the Peninsular Indian Shield across the Bengal basin to the Chittagong–Tripura Fold Belt). The BGA map was derived from the analysis of topex data after incorporating Bouguer correction and all terrain corrections. The anomaly map was compared with the available ground gravity data in the western Bengal basin and the sub-continents of India for consistency of the data used. Initially, the anisotropy associated with the thicknesses of the different crustal units, crustal interfaces and moho boundary was estimated through spectral analysis of the gravity data with varying window size over the study area. The 2D density sections along the traverses were finalized after a number of iterations with the acceptable root mean square (RMS) errors. The estimated thicknesses of the different crustal units and dips of the Moho boundary along both the profiles are consistent with the earlier results. Further the results were encouraged by examining the earthquake database and focal mechanism solutions for better understanding the geodynamics. The earthquake data were taken from the catalogue of US Geological Survey, and the focal mechanism solutions were compiled from the Harvard Centroid Moment Tensor Catalogue. The concentrations of seismic events at different depth levels are not uncommon. The occurrences of earthquakes may be due to stress accumulation as a result of resistance from three sides.

Keywords: anisotropy, interfaces, seismicity, spectrum analysis

Procedia PDF Downloads 272
93 Design of an Automated Deep Learning Recurrent Neural Networks System Integrated with IoT for Anomaly Detection in Residential Electric Vehicle Charging in Smart Cities

Authors: Wanchalerm Patanacharoenwong, Panaya Sudta, Prachya Bumrungkun

Abstract:

The paper focuses on the development of a system that combines Internet of Things (IoT) technologies and deep learning algorithms for anomaly detection in residential Electric Vehicle (EV) charging in smart cities. With the increasing number of EVs, ensuring efficient and reliable charging systems has become crucial. The aim of this research is to develop an integrated IoT and deep learning system for detecting anomalies in residential EV charging and enhancing EV load profiling and event detection in smart cities. This approach utilizes IoT devices equipped with infrared cameras to collect thermal images and household EV charging profiles from the database of Thailand utility, subsequently transmitting this data to a cloud database for comprehensive analysis. The methodology includes the use of advanced deep learning techniques such as Recurrent Neural Networks (RNN) and Long Short-Term Memory (LSTM) algorithms. IoT devices equipped with infrared cameras are used to collect thermal images and EV charging profiles. The data is transmitted to a cloud database for comprehensive analysis. The researchers also utilize feature-based Gaussian mixture models for EV load profiling and event detection. Moreover, the research findings demonstrate the effectiveness of the developed system in detecting anomalies and critical profiles in EV charging behavior. The system provides timely alarms to users regarding potential issues and categorizes the severity of detected problems based on a health index for each charging device. The system also outperforms existing models in event detection accuracy. This research contributes to the field by showcasing the potential of integrating IoT and deep learning techniques in managing residential EV charging in smart cities. The system ensures operational safety and efficiency while also promoting sustainable energy management. The data is collected using IoT devices equipped with infrared cameras and is stored in a cloud database for analysis. The collected data is then analyzed using RNN, LSTM, and feature-based Gaussian mixture models. The approach includes both EV load profiling and event detection, utilizing a feature-based Gaussian mixture model. This comprehensive method aids in identifying unique power consumption patterns among EV owners and outperforms existing models in event detection accuracy. In summary, the research concludes that integrating IoT and deep learning techniques can effectively detect anomalies in residential EV charging and enhance EV load profiling and event detection accuracy. The developed system ensures operational safety and efficiency, contributing to sustainable energy management in smart cities.

Keywords: cloud computing framework, recurrent neural networks, long short-term memory, Iot, EV charging, smart grids

Procedia PDF Downloads 64
92 Structural Performance of a Bridge Pier on Dubious Deep Foundation

Authors: Víctor Cecilio, Roberto Gómez, J. Alberto Escobar, Héctor Guerrero

Abstract:

The study of the structural behavior of a support/pier of an elevated viaduct in Mexico City is presented. Detection of foundation piles with uncertain integrity prompted the review of possible situations that could jeopardy the structural safety of the pier. The objective of this paper is to evaluate the structural conditions of the support, taking into account the type of anomaly reported and the depth at which it is located, the position of the pile with uncertain integrity in the foundation system, the stratigraphy of the surrounding soil and the geometry and structural characteristics of the pier. To carry out the above, dynamic analysis, spectral modal, and step-by-step, with elastic and inelastic material models, were performed. Results were evaluated in accordance with the standards used for the design of the original structural project and with the Construction Regulations for Mexico’s Federal District (RCDF-2017, 2017). Comments on the response of the analyzed models are issued, and the conclusions are presented from a structural point of view.

Keywords: dynamic analysis, inelastic models, dubious foundation, bridge pier

Procedia PDF Downloads 137
91 Comparison of Radiated Emissions in Offshore and Onshore Wind Turbine Towers

Authors: Sajeesh Sulaiman, Gomathisankar A., Aravind Devaraj, Aswin R., Vijay Kumar G., Rachana Raj

Abstract:

Wind turbines are the next big answer to the emerging and ever-growing demand for electricity, and this need is increasing day by day. These high mast structures, whether on land or on the sea, has also become one of the big sources of electromagnetic interferences (EMI) in the not so distant past. With the emergence of the AC-AC converter and drawing of large power cables through the wind turbine towers has made this clean and efficient source of renewable energy to become one of the culprits in creating electromagnetic interference. This paper will present the sources of such EMIs, a comparison of radiated emissions (both electric and magnetic field) patterns in wind turbine towers for both onshore and offshore wind turbines and close look into the IEC 61400-40 (new standard for EMC design on wind turbine). At present, offshore wind turbines are tested in onshore facilities. This paper will present the anomaly in results for offshore wind turbines when tested in onshore, which the existing standards and the upcoming standards have failed to address.

Keywords: emissions, electric field, magnetic field, wind turbine, tower, standards and regulations

Procedia PDF Downloads 247
90 Body Dysmorphia in Adolescent's Fixation on Cosmetic Surgeries

Authors: Noha El Toukhy

Abstract:

The ‘beauty is good” stereotype suggests that people perceive attractive people as having several positive characteristics. Likewise, an “anomalous-is-bad” stereotype is hypothesized to facilitate biases against people with anomalous or less attractive faces. Researchers integrated both into a stereotype content model, which is one of the frameworks used in this study to assess how facial anomalies influence people’s social attitudes and, specifically, people’s ratings of warmth and competence. The mind perception theory, as well as the assessment of animalistic and mechanistic dehumanization against facially anomalous people, are two further frameworks that we are using in this study. This study will test the hypothesis that people have negative attitudes towards people with facial anomalies. We also hypothesize that people have negative biases toward faces with visible differences compared to faces without such differences regardless of the specific type of anomaly, as well as that individual differences in psychological dispositions bear on the expression of the anomalous-is-bad stereotype. Using highly controlled and some never-before-used face stimuli, this pre-registered study examines whether moral character influences perceptions of attractiveness, warmth, and competence for facial anomalies.

Keywords: adolescents, attractiveness, competence, social attitudes, warmth

Procedia PDF Downloads 99
89 Securing Healthcare IoT Devices and Enabling SIEM Integration: Addressing

Authors: Mubarak Saadu Nabunkari, Abdullahi Abdu Ibrahim, Muhammad Ilyas

Abstract:

This study looks at how Internet of Things (IoT) devices are used in healthcare to monitor and treat patients better. However, using these devices in healthcare comes with security problems. The research explores using Security Information and Event Management (SIEM) systems with healthcare IoT devices to solve these security challenges. Reviewing existing literature shows the current state of IoT security and emphasizes the need for better protection. The main worry is that healthcare IoT devices can be easily hacked, putting patient data and device functionality at risk. To address this, the research suggests a detailed security framework designed for these devices. This framework, based on literature and best practices, includes important security measures like authentication, data encryption, access controls, and anomaly detection. Adding SIEM systems to this framework helps detect threats in real time and respond quickly to incidents, making healthcare IoT devices more secure. The study highlights the importance of this integration and offers guidance for implementing healthcare IoT securely, efficiently, and effectively.

Keywords: cyber security, threat intelligence, forensics, heath care

Procedia PDF Downloads 66
88 Women’s Leadership for Sustainable Outcomes: On the Road to Gender Equality for a Better Tomorrow

Authors: Deepika Faugoo

Abstract:

Gender equality stands as the cornerstone of societal progress, intricately woven into the very essence of the 2030 Sustainable Development Goals (SDGs). Yet, the gender leadership gap remains a formidable obstacle hindering global equality. Despite women's educational advancements, their underrepresentation in senior roles persists as a baffling anomaly. Drawing from contemporary research, empirical evidence, and secondary data, this paper underscores the imperative of advancing women in leadership to drive SDGs related to empowerment and gender equality by 2030. It highlights the undeniable link between women leaders and sustainable outcomes, citing case studies and examples of their contributions to financial performance, prosperity, economic growth, and societal well-being. Exploring persistent barriers and emerging challenges, it offers actionable strategies to enhance women's representation in leadership, promising transformative benefits for organizations and societies. Amidst societal upheavals, gender equality emerges as a potent solution, catalyzing change toward a future where every voice resonates, ensuring no one is left behind.

Keywords: senior leadership, empowerment, SDGs, gender equality

Procedia PDF Downloads 68
87 The Existence of a Sciatic Artery in Congenital Lower Limb Deformities

Authors: Waseem Al Talalwah, Shorok Al Dorazi, Roger Soames

Abstract:

Persistent sciatic artery is a rare anatomical vascular variation resulting from a lack of regression of the embryonic dorsal axial artery. The axial artery is the main artery supplying the lower limb during development in the first trimester. The current research includes 206 sciatic artery cases in 171 patients between 1864 and 2012. It aims to identify the risk factor of sciatic artery aneurysm in congenital limb anomalies. Sciatic artery aneurysm was diagnosed incidentally in amniotic band syndrome (ABS) existing with no congenital anomaly in 0.7% or with double knee in 0.7%, with the tibia in 0.7% and with hemihypertrophy or soft tissue hypertrophy in 1.4%. Therefore, the current study indicates a relationship the same gene responsible for the congenital limb deformities may be responsible for non-regression of the sciatic artery. Furthermore, pediatricians should refer cases of congenital limb anomalies for vascular evaluation prior to corrective surgical intervention.

Keywords: amniotic band syndrome, congenital limb deformities, double knee, sciatic artery, sciatic artery aneurysm , soft tissue hypertrophy

Procedia PDF Downloads 376
86 Hybrid Anomaly Detection Using Decision Tree and Support Vector Machine

Authors: Elham Serkani, Hossein Gharaee Garakani, Naser Mohammadzadeh, Elaheh Vaezpour

Abstract:

Intrusion detection systems (IDS) are the main components of network security. These systems analyze the network events for intrusion detection. The design of an IDS is through the training of normal traffic data or attack. The methods of machine learning are the best ways to design IDSs. In the method presented in this article, the pruning algorithm of C5.0 decision tree is being used to reduce the features of traffic data used and training IDS by the least square vector algorithm (LS-SVM). Then, the remaining features are arranged according to the predictor importance criterion. The least important features are eliminated in the order. The remaining features of this stage, which have created the highest level of accuracy in LS-SVM, are selected as the final features. The features obtained, compared to other similar articles which have examined the selected features in the least squared support vector machine model, are better in the accuracy, true positive rate, and false positive. The results are tested by the UNSW-NB15 dataset.

Keywords: decision tree, feature selection, intrusion detection system, support vector machine

Procedia PDF Downloads 265
85 Neural Network Approaches for Sea Surface Height Predictability Using Sea Surface Temperature

Authors: Luther Ollier, Sylvie Thiria, Anastase Charantonis, Carlos E. Mejia, Michel Crépon

Abstract:

Sea Surface Height Anomaly (SLA) is a signature of the sub-mesoscale dynamics of the upper ocean. Sea Surface Temperature (SST) is driven by these dynamics and can be used to improve the spatial interpolation of SLA fields. In this study, we focused on the temporal evolution of SLA fields. We explored the capacity of deep learning (DL) methods to predict short-term SLA fields using SST fields. We used simulated daily SLA and SST data from the Mercator Global Analysis and Forecasting System, with a resolution of (1/12)◦ in the North Atlantic Ocean (26.5-44.42◦N, -64.25–41.83◦E), covering the period from 1993 to 2019. Using a slightly modified image-to-image convolutional DL architecture, we demonstrated that SST is a relevant variable for controlling the SLA prediction. With a learning process inspired by the teaching-forcing method, we managed to improve the SLA forecast at five days by using the SST fields as additional information. We obtained predictions of a 12 cm (20 cm) error of SLA evolution for scales smaller than mesoscales and at time scales of 5 days (20 days), respectively. Moreover, the information provided by the SST allows us to limit the SLA error to 16 cm at 20 days when learning the trajectory.

Keywords: deep-learning, altimetry, sea surface temperature, forecast

Procedia PDF Downloads 90
84 Study of Hydraulic and Tectonic Fracturation within Zemlet El Beidha Area (North Chott Range)

Authors: Nabil Abaab, Dhaou Akrout, Riadh Ahmadi, Mabrouk Montacer

Abstract:

The study of fluid pressure and its evolution have a critical importance as they lead to understanding the tectonic history of the region. Therefore, the present work focuses on a microtectonic study of tectonic and hydraulic fracture at the anticline structure of Zemlet El Beidha (North Chott range). The study and the analysis of several stations of tectonic and hydraulic fracture allow revealing the witnesses of a paléosurpression in the deposits of Lower Cretaceous (Bouhedma Formation). In fact, we noticed that the overpressure is directly involved in the creation of various types of fractures as evidenced by the different measures and the stereographic projections. Thus, the orientations of fibers of mineralization that fills the Beefs type fracture have the same direction as the main constraint. Furthermore, we discussed the different overpressure build-up mechanisms. The results showed that tectonics is likely, responsible for this anomaly. This is confirmed by the description of the fibers and the projection of the different measurements of Beefs. The mineralization transformation from gypsum to anhydrite is heavily involved in this stress regime especially in the presence of all necessary conditions of dehydration of gypsum.

Keywords: Zemlet El Beidha, overpressure, tectonic fracture, hydraulic fracture, gypsum beefs

Procedia PDF Downloads 286
83 An Online Adaptive Thresholding Method to Classify Google Trends Data Anomalies for Investor Sentiment Analysis

Authors: Duygu Dere, Mert Ergeneci, Kaan Gokcesu

Abstract:

Google Trends data has gained increasing popularity in the applications of behavioral finance, decision science and risk management. Because of Google’s wide range of use, the Trends statistics provide significant information about the investor sentiment and intention, which can be used as decisive factors for corporate and risk management fields. However, an anomaly, a significant increase or decrease, in a certain query cannot be detected by the state of the art applications of computation due to the random baseline noise of the Trends data, which is modelled as an Additive white Gaussian noise (AWGN). Since through time, the baseline noise power shows a gradual change an adaptive thresholding method is required to track and learn the baseline noise for a correct classification. To this end, we introduce an online method to classify meaningful deviations in Google Trends data. Through extensive experiments, we demonstrate that our method can successfully classify various anomalies for plenty of different data.

Keywords: adaptive data processing, behavioral finance , convex optimization, online learning, soft minimum thresholding

Procedia PDF Downloads 167
82 Effect of Weathering on the Mineralogy and Geochemistry of Sediments of the Hyper Saline Urmia Salt Lake, Iran

Authors: Samad Alipour, Khadije Mosavi Onlaghi

Abstract:

Urmia Salt Lake (USL) is a hypersaline lake in the northwest of Iran. It contains halite as main dissolved and precipitated mineral and the major mineral mixed with lake bed sediments. Other detrital minerals such as calcite, aragonite, dolomite, quartz, feldspars, augite are forming lake sediments. This study examined the impact of weathering of this sediments collected from 1.5 meters depth and augite placers. The study indicated that weathering of tephritic and adakite rocks of the Islamic Island at the immediate boundary of the lake play a main control of lake bed sediments and has produced a large volume of augite placer along the lake bank. Weathering increases from south to toward north with increasing distance from Islamic Island. Geochemistry of lake sediments demonstrated the enrichment of MgO, CaO, Sr with an elevated anomaly of Eu, possibly due to surface absorbance of Mn and Fe associated Sr elevation originating from adakite volcanic rocks in the vicinity of the lake basin. The study shows the local geology is the major factor in origin of lake sediments than chemical and biochemical produced mineral during diagenetic processes.

Keywords: Urmia Lake, weathering, mineralogy, augite, Iran

Procedia PDF Downloads 230
81 Vibration-Based Data-Driven Model for Road Health Monitoring

Authors: Guru Prakash, Revanth Dugalam

Abstract:

A road’s condition often deteriorates due to harsh loading such as overload due to trucks, and severe environmental conditions such as heavy rain, snow load, and cyclic loading. In absence of proper maintenance planning, this results in potholes, wide cracks, bumps, and increased roughness of roads. In this paper, a data-driven model will be developed to detect these damages using vibration and image signals. The key idea of the proposed methodology is that the road anomaly manifests in these signals, which can be detected by training a machine learning algorithm. The use of various machine learning techniques such as the support vector machine and Radom Forest method will be investigated. The proposed model will first be trained and tested with artificially simulated data, and the model architecture will be finalized by comparing the accuracies of various models. Once a model is fixed, the field study will be performed, and data will be collected. The field data will be used to validate the proposed model and to predict the future road’s health condition. The proposed will help to automate the road condition monitoring process, repair cost estimation, and maintenance planning process.

Keywords: SVM, data-driven, road health monitoring, pot-hole

Procedia PDF Downloads 86
80 Deep Learning and Accurate Performance Measure Processes for Cyber Attack Detection among Web Logs

Authors: Noureddine Mohtaram, Jeremy Patrix, Jerome Verny

Abstract:

As an enormous number of online services have been developed into web applications, security problems based on web applications are becoming more serious now. Most intrusion detection systems rely on each request to find the cyber-attack rather than on user behavior, and these systems can only protect web applications against known vulnerabilities rather than certain zero-day attacks. In order to detect new attacks, we analyze the HTTP protocols of web servers to divide them into two categories: normal attacks and malicious attacks. On the other hand, the quality of the results obtained by deep learning (DL) in various areas of big data has given an important motivation to apply it to cybersecurity. Deep learning for attack detection in cybersecurity has the potential to be a robust tool from small transformations to new attacks due to its capability to extract more high-level features. This research aims to take a new approach, deep learning to cybersecurity, to classify these two categories to eliminate attacks and protect web servers of the defense sector which encounters different web traffic compared to other sectors (such as e-commerce, web app, etc.). The result shows that by using a machine learning method, a higher accuracy rate, and a lower false alarm detection rate can be achieved.

Keywords: anomaly detection, HTTP protocol, logs, cyber attack, deep learning

Procedia PDF Downloads 211