Search results for: fine structure ratio
619 Severe Infestation of Laspeyresia Koenigana Fab. and Alternaria Leaf Spot on Azadirachta Indica (Neem)
Authors: Shiwani Bhatnagar, K. K. Srivastava, Sangeeta Singh, Ameen Ullah Khan, Bundesh Kumar, Lokendra Singh Rathore
Abstract:
From the instigation of the world medicinal plants are treated as part and parcel of human society to fight against diseases. Azadirachta indica (Neem) a herbal plant has been used as an Indian traditional medicine since ages and its products are acknowledged to solve agricultural, forestry and public health related problems, owing to its beneficial medicinal properties. Each part of the neem tree is known for its medicinal property. Bark & leaf extracts of neem have been used to control leprosy, respiratory disorders, constipation and also as blood purifier and a general health tonic. Neem is still regarded as ' rural community dispensary' in India or a tree for solving medical problems. Use of Neem as pesticides for the management of insect pest of agriculture crops and forestry has been seen as a shift in the use of synthetic pesticides to ecofriendly botanicals. Neem oil and seed extracts possess germicidal and anti-bacterial properties which when sprayed on the plant helps in protecting them from foliage pests. Azadirachtin, the main active ingredient found in neem tree, acts as an insect repellent and antifeedant. However the young plants are susceptible to many insect pest and foliar diseases. Recently, in the avenue plantation, planted by Arid Forest Research Institute, Jodhpur, around the premises of IIT Jodhpur, two years old neem plants were found to be severely infested with tip borer Laspeyresia koenigana (Family: Eucosmidae). The adult moth of L. koenigana lays eggs on the tender shoots and the young larvae tunnel into the shoot and feed inside. A small pinhole can be seen at the entrance point, from where the larva enters in to the stem. The severely attached apical shoots exhibit profuse gum exudation resulting in development of a callus structure. The internal feeding causes the stem to wilt and the leaves to dry up from the tips resulting in growth retardation. Alternaria Leaf spot and blight symptoms were also recorded on these neem plants. For the management of tip borer and Alternaria Leaf spot, foliar spray of monocrotophos @0.05% and Dithane M-45 @ 0.15% and powermin @ 2ml/lit were found efficient in managing the insect pest and foliar disease problem. No Further incidence of pest/diseases was noticed.Keywords: azadirachta indica, alternaria leaf spot, laspeyresia koenigana, management
Procedia PDF Downloads 476618 Seasonal Variability of M₂ Internal Tides Energetics in the Western Bay of Bengal
Authors: A. D. Rao, Sachiko Mohanty
Abstract:
The Internal Waves (IWs) are generated by the flow of barotropic tide over the rapidly varying and steep topographic features like continental shelf slope, subsurface ridges, and the seamounts, etc. The IWs of the tidal frequency are generally known as internal tides. These waves have a significant influence on the vertical density and hence causes mixing in the region. Such waves are also important in submarine acoustics, underwater navigation, offshore structures, ocean mixing and biogeochemical processes, etc. over the shelf-slope region. The seasonal variability of internal tides in the Bay of Bengal with special emphasis on its energetics is examined by using three-dimensional MITgcm model. The numerical simulations are performed for different periods covering August-September, 2013; November-December, 2013 and March-April, 2014 representing monsoon, post-monsoon and pre-monsoon seasons respectively during which high temporal resolution in-situ data sets are available. The model is initially validated through the spectral estimates of density and the baroclinic velocities. From the estimates, it is inferred that the internal tides associated with semi-diurnal frequency are more dominant in both observations and model simulations for November-December and March-April. However, in August, the estimate is found to be maximum near-inertial frequency at all the available depths. The observed vertical structure of the baroclinic velocities and its magnitude are found to be well captured by the model. EOF analysis is performed to decompose the zonal and meridional baroclinic tidal currents into different vertical modes. The analysis suggests that about 70-80% of the total variance comes from Mode-1 semi-diurnal internal tide in both observations as well as in the model simulations. The first three modes are sufficient to describe most of the variability for semidiurnal internal tides, as they represent 90-95% of the total variance for all the seasons. The phase speed, group speed, and wavelength are found to be maximum for post-monsoon season compared to other two seasons. The model simulation suggests that the internal tide is generated all along the shelf-slope regions and propagate away from the generation sites in all the months. The model simulated energy dissipation rate infers that its maximum occurs at the generation sites and hence the local mixing due to internal tide is maximum at these sites. The spatial distribution of available potential energy is found to be maximum in November (20kg/m²) in northern BoB and minimum in August (14kg/m²). The detailed energy budget calculation are made for all the seasons and results are analysed.Keywords: available potential energy, baroclinic energy flux, internal tides, Bay of Bengal
Procedia PDF Downloads 168617 Raman Spectroscopy Analysis of MnTiO₃-TiO₂ Eutectic
Authors: Adrian Niewiadomski, Barbara Surma, Katarzyna Kolodziejak, Dorota A. Pawlak
Abstract:
Oxide-oxide eutectic is attracting increasing interest of scientific community because of their unique properties and numerous potential applications. Some of the most interesting examples of applications are metamaterials, glucose sensors, photoactive materials, thermoelectric materials, and photocatalysts. Their unique properties result from the fact that composite materials consist of two or more phases. As a result, these materials have additive and product properties. Additive properties originate from particular phases while product properties originate from the interaction between phases. MnTiO3-TiO2 eutectic is one of such materials. TiO2 is a well-known semiconductor, and it is used as a photocatalyst. Moreover, it may be used to produce solar cells, in a gas sensing devices and in electrochemistry. MnTiO3 is a semiconductor and antiferromagnetic. Therefore it has potential application in integrated circuits devices, and as a gas and humidity sensor, in non-linear optics and as a visible-light activated photocatalyst. The above facts indicate that eutectic MnTiO3-TiO2 constitutes an extremely promising material that should be studied. Despite that Raman spectroscopy is a powerful method to characterize materials, to our knowledge Raman studies of eutectics are very limited, and there are no studies of the MnTiO3-TiO2 eutectic. While to our knowledge the papers regarding this material are scarce. The MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, were grown by the micro-pulling-down method at the Institute of Electronic Materials Technology in Warsaw, Poland. A nitrogen atmosphere was maintained during whole crystal growth process. The as-grown samples of MnTiO3-TiO2 eutectic, as well as TiO2 and MnTiO3 single crystals, are black and opaque. Samples were cut perpendicular to the growth direction. Cross sections were examined with scanning electron microscopy (SEM) and with Raman spectroscopy. The present studies showed that maintaining nitrogen atmosphere during crystal growth process may result in obtaining black TiO2 crystals. SEM and Raman experiments showed that studied eutectic consists of three distinct regions. Furthermore, two of these regions correspond with MnTiO3, while the third region corresponds with the TiO2-xNx phase. Raman studies pointed out that TiO2-xNx phase crystallizes in rutile structure. The studies show that Raman experiments may be successfully used to characterize eutectic materials. The MnTiO3-TiO2 eutectic was grown by the micro-pulling-down method. SEM and micro-Raman experiments were used to establish phase composition of studied eutectic. The studies revealed that the TiO2 phase had been doped with nitrogen. Therefore the TiO2 phase is, in fact, a solid solution with TiO2-xNx composition. The remaining two phases exhibit Raman lines of both rutile TiO2 and MnTiO3. This points out to some kind of coexistence of these phases in studied eutectic.Keywords: compound materials, eutectic growth and characterization, Raman spectroscopy, rutile TiO₂
Procedia PDF Downloads 193616 Trade in Value Added: The Case of the Central and Eastern European Countries
Authors: Łukasz Ambroziak
Abstract:
Although the impact of the production fragmentation on trade flows has been examined many times since the 1990s, the research was not comprehensive because of the limitations in traditional trade statistics. Early 2010s the complex databases containing world input-output tables (or indicators calculated on their basis) has made available. It increased the possibilities of examining the production sharing in the world. The trade statistic in value-added terms enables us better to estimate trade changes resulted from the internationalisation and globalisation as well as benefits of the countries from international trade. In the literature, there are many research studies on this topic. Unfortunately, trade in value added of the Central and Eastern European Countries (CEECs) has been so far insufficiently studied. Thus, the aim of the paper is to present changes in value added trade of the CEECs (Bulgaria, the Czech Republic, Estonia, Hungary, Latvia, Lithuania, Poland, Romania, Slovakia and Slovenia) in the period of 1995-2011. The concept 'trade in value added' or 'value added trade' is defined as the value added of a country which is directly and indirectly embodied in final consumption of another country. The typical question would be: 'How much value added is created in a country due to final consumption in the other countries?' The data will be downloaded from the World Input-Output Database (WIOD). The structure of this paper is as follows. First, theoretical and methodological aspects related to the application of the input-output tables in the trade analysis will be studied. Second, a brief survey of the empirical literature on this topic will be presented. Third, changes in exports and imports in value added of the CEECs will be analysed. A special attention will be paid to the differences in bilateral trade balances using traditional trade statistics (in gross terms) on one side, and value added statistics on the other. Next, in order to identify factors influencing value added exports and value added imports of the CEECs the generalised gravity model, based on panel data, will be used. The dependent variables will be value added exports and imports. The independent variables will be, among others, the level of GDP of trading partners, the level of GDP per capita of trading partners, the differences in GDP per capita, the level of the FDI inward stock, the geographical distance, the existence (or non-existence) of common border, the membership (or not) in preferential trade agreements or in the EU. For comparison, an estimation will also be made based on exports and imports in gross terms. The initial research results show that the gravity model better explained determinants of trade in value added than gross trade (R2 in the former is higher). The independent variables had the same direction of impact both on value added exports/imports and gross exports/imports. Only value of coefficients differs. The most difference concerned geographical distance. It had smaller impact on trade in value added than gross trade.Keywords: central and eastern European countries, gravity model, input-output tables, trade in value added
Procedia PDF Downloads 238615 The Influence of Operational Changes on Efficiency and Sustainability of Manufacturing Firms
Authors: Dimitrios Kafetzopoulos
Abstract:
Nowadays, companies are more concerned with adopting their own strategies for increased efficiency and sustainability. Dynamic environments are fertile fields for developing operational changes. For this purpose, organizations need to implement an advanced management philosophy that boosts changes to companies’ operation. Changes refer to new applications of knowledge, ideas, methods, and skills that can generate unique capabilities and leverage an organization’s competitiveness. So, in order to survive and compete in the global and niche markets, companies should incorporate the adoption of operational changes into their strategy with regard to their products and their processes. Creating the appropriate culture for changes in terms of products and processes helps companies to gain a sustainable competitive advantage in the market. Thus, the purpose of this study is to investigate the role of both incremental and radical changes into operations of a company, taking into consideration not only product changes but also process changes, and continues by measuring the impact of these two types of changes on business efficiency and sustainability of Greek manufacturing companies. The above discussion leads to the following hypotheses: H1: Radical operational changes have a positive impact on firm efficiency. H2: Incremental operational changes have a positive impact on firm efficiency. H3: Radical operational changes have a positive impact on firm sustainability. H4: Incremental operational changes have a positive impact on firm sustainability. In order to achieve the objectives of the present study, a research study was carried out in Greek manufacturing firms. A total of 380 valid questionnaires were received while a seven-point Likert scale was used to measure all the questionnaire items of the constructs (radical changes, incremental changes, efficiency and sustainability). The constructs of radical and incremental operational changes, each one as one variable, has been subdivided into product and process changes. Non-response bias, common method variance, multicollinearity, multivariate normal distribution and outliers have been checked. Moreover, the unidimensionality, reliability and validity of the latent factors were assessed. Exploratory Factor Analysis and Confirmatory Factor Analysis were applied to check the factorial structure of the constructs and the factor loadings of the items. In order to test the research hypotheses, the SEM technique was applied (maximum likelihood method). The goodness of fit of the basic structural model indicates an acceptable fit of the proposed model. According to the present study findings, radical operational changes and incremental operational changes significantly influence both efficiency and sustainability of Greek manufacturing firms. However, it is in the dimension of radical operational changes, meaning those in process and product, that the most significant contributors to firm efficiency are to be found, while its influence on sustainability is low albeit statistically significant. On the contrary, incremental operational changes influence sustainability more than firms’ efficiency. From the above, it is apparent that the embodiment of the concept of the changes into the products and processes operational practices of a firm has direct and positive consequences for what it achieves from efficiency and sustainability perspective.Keywords: incremental operational changes, radical operational changes, efficiency, sustainability
Procedia PDF Downloads 134614 Development of a Quick On-Site Pass/Fail Test for the Evaluation of Fresh Concrete Destined for Application as Exposed Concrete
Authors: Laura Kupers, Julie Piérard, Niki Cauberg
Abstract:
The use of exposed concrete (sometimes referred to as architectural concrete), keeps gaining popularity. Exposed concrete has the advantage to combine the structural properties of concrete with an aesthetic finish. However, for a successful aesthetic finish, much attention needs to be paid to the execution (formwork, release agent, curing, weather conditions…), the concrete composition (choice of the raw materials and mix proportions) as well as to its fresh properties. For the latter, a simple on-site pass/fail test could halt the casting of concrete not suitable for architectural concrete and thus avoid expensive repairs later. When architects opt for an exposed concrete, they usually want a smooth, uniform and nearly blemish-free surface. For this choice, a standard ‘construction’ concrete does not suffice. An aesthetic surface finishing requires the concrete to contain a minimum content of fines to minimize the risk of segregation and to allow complete filling of more complex shaped formworks. The concrete may neither be too viscous as this makes it more difficult to compact and it increases the risk of blow holes blemishing the surface. On the other hand, too much bleeding may cause color differences on the concrete surface. An easy pass/fail test, which can be performed on the site just before the casting, could avoid these problems. In case the fresh concrete fails the test, the concrete can be rejected. Only in case the fresh concrete passes the test, the concrete would be cast. The pass/fail tests are intended for a concrete with a consistency class S4. Five tests were selected as possible onsite pass/fail test. Two of these tests already exist: the K-slump test (ASTM C1362) and the Bauer Filter Press Test. The remaining three tests were developed by the BBRI in order to test the segregation resistance of fresh concrete on site: the ‘dynamic sieve stability test’, the ‘inverted cone test’ and an adapted ‘visual stability index’ (VSI) for the slump and flow test. These tests were inspired by existing tests for self-compacting concrete, for which the segregation resistance is of great importance. The suitability of the fresh concrete mixtures was also tested by means of a laboratory reference test (resistance to segregation) and by visual inspection (blow holes, structure…) of small test walls. More than fifteen concrete mixtures of different quality were tested. The results of the pass/fail tests were compared with the results of this laboratory reference test and the test walls. The preliminary laboratory results indicate that concrete mixtures ‘suitable’ for placing as exposed concrete (containing sufficient fines, a balanced grading curve etc.) can be distinguished from ‘inferior’ concrete mixtures. Additional laboratory tests, as well as tests on site, will be conducted to confirm these preliminary results and to set appropriate pass/fail values.Keywords: exposed concrete, testing fresh concrete, segregation resistance, bleeding, consistency
Procedia PDF Downloads 423613 Thermal Method Production of the Hydroxyapatite from Bone By-Products from Meat Industry
Authors: Agnieszka Sobczak-Kupiec, Dagmara Malina, Klaudia Pluta, Wioletta Florkiewicz, Bozena Tyliszczak
Abstract:
Introduction: Request for compound of phosphorus grows continuously, thus, it is searched for alternative sources of this element. One of these sources could be by-products from meat industry which contain prominent quantity of phosphorus compounds. Hydroxyapatite, which is natural component of animal and human bones, is leading material applied in bone surgery and also in stomatology. This is material, which is biocompatible, bioactive and osteoinductive. Methodology: Hydroxyapatite preparation: As a raw material was applied deproteinized and defatted bone pulp called bone sludge, which was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Hydroxyapatite was received in calcining process in chamber kiln with electric heating in air atmosphere in two stages. In the first stage, material was calcining in temperature 600°C within 3 hours. In the next stage unified material was calcining in three different temperatures (750°C, 850°C and 950°C) keeping material in maximum temperature within 3.0 hours. Bone sludge: Bone sludge was formed as waste in deproteinization process of bones, in which a protein hydrolysate was the main product. Pork bones coming from the partition of meat were used as a raw material for the production of the protein hydrolysate. After disintegration, a mixture of bone pulp and water with a small amount of lactic acid was boiled at temperature 130-135°C and under pressure4 bar. After 3-3.5 hours boiled-out bones were separated on a sieve, and the solution of protein-fat hydrolysate got into a decanter, where bone sludge was separated from it. Results of the study: The phase composition was analyzed by roentgenographic method. Hydroxyapatite was the only crystalline phase observed in all the calcining products. XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Conclusion: The researches were shown that phosphorus content is around 12%, whereas, calcium content amounts to 28% on average. The conducted researches on bone-waste calcining at the temperatures of 750-950°C confirmed that thermal utilization of deproteinized bone-waste was possible. X-ray investigations were confirmed that hydroxyapatite is the main component of calcining products, and also XRD investigation was shown that crystallization degree of hydroxyapatite was increased with calcining temperature. Contents of calcium and phosphorus were distinctly increased with calcining temperature, whereas contents of phosphorus soluble in acids were decreased. It could be connected with higher crystallization degree of material received in higher temperatures and its stable structure. Acknowledgements: “The authors would like to thank the The National Centre for Research and Development (Grant no: LIDER//037/481/L-5/13/NCBR/2014) for providing financial support to this project”.Keywords: bone by-products, bone sludge, calcination, hydroxyapatite
Procedia PDF Downloads 285612 Anti-Obesity Effects of Pteryxin in Peucedanum japonicum Thunb Leaves through Different Pathways of Adipogenesis In-Vitro
Authors: Ruwani N. Nugara, Masashi Inafuku, Kensaku Takara, Hironori Iwasaki, Hirosuke Oku
Abstract:
Pteryxin from the partially purified hexane phase (HP) of Peucedanum japonicum Thunb (PJT) was identified as the active compound related to anti-obesity. Thus, in this study we investigated the mechanisms related to anti-obesity activity in-vitro. The HP was fractionated, and effect on the triglyceride (TG) content was evaluated in 3T3-L1 and HepG2 cells. Comprehensive spectroscopic analyses were used to identify the structure of the active compound. The dose dependent effect of active constituent on the TG content, and the gene expressions related to adipogenesis, fatty acid catabolism, energy expenditure, lipolysis and lipogenesis (20 μg/mL) were examined in-vitro. Furthermore, higher dosage of pteryxin (50μg/mL) was tested against 20μg/mL in 3T3-L1 adipocytes. The mRNA were subjected to SOLiD next generation sequencer and the obtained data were analyzed by Ingenuity Pathway Analysis (IPA). The active constituent was identified as pteryxin, a known compound in PJT. However, its biological activities against obesity have not been reported previously. Pteryxin dose dependently suppressed TG content in both 3T3-L1 adipocytes and HepG2 hepatocytes (P < 0.05). Sterol regulatory element-binding protein-1 (SREBP1 c), Fatty acid synthase (FASN), and acetyl-CoA carboxylase-1 (ACC1) were downregulated in pteryxin-treated adipocytes (by 18.0, 36.1 and 38.2%; P < 0.05, respectively) and hepatocytes (by 72.3, 62.9 and 38.8%, respectively; P < 0.05) indicating its suppressive effects on fatty acid synthesis. The hormone-sensitive lipase (HSL), a lipid catabolising gene was upregulated (by 15.1%; P < 0.05) in pteryxin-treated adipocytes suggesting improved lipolysis. Concordantly, the adipocyte size marker gene, paternally expressed gene1/mesoderm specific transcript (MEST) was downregulated (by 42.8%; P < 0.05), further accelerating the lipolytic activity. The upregulated trend of uncoupling protein 2 (UCP2; by 77.5%; P < 0.05) reflected the improved energy expenditure due to pteryxin. The 50μg/mL dosage of pteryxin completely suppressed PPARγ, MEST, SREBP 1C, HSL, Adiponectin, Fatty Acid Binding Protein (FABP) 4, and UCP’s in 3T3-L1 adipocytes. The IPA suggested that pteryxin at 20μg/mL and 50μg/mL suppress obesity in two different pathways, whereas the WNT signaling pathway play a key role in the higher dose of pteryxin in preadipocyte stage. Pteryxin in PJT play the key role in regulating lipid metabolism related gene network and improving energy production in vitro. Thus, the results suggests pteryxin as a new natural compound to be used as an anti-obesity drug in pharmaceutical industry.Keywords: obesity, peucedanum japonicum thunb, pteryxin, food science
Procedia PDF Downloads 452611 Topological Language for Classifying Linear Chord Diagrams via Intersection Graphs
Authors: Michela Quadrini
Abstract:
Chord diagrams occur in mathematics, from the study of RNA to knot theory. They are widely used in theory of knots and links for studying the finite type invariants, whereas in molecular biology one important motivation to study chord diagrams is to deal with the problem of RNA structure prediction. An RNA molecule is a linear polymer, referred to as the backbone, that consists of four types of nucleotides. Each nucleotide is represented by a point, whereas each chord of the diagram stands for one interaction for Watson-Crick base pairs between two nonconsecutive nucleotides. A chord diagram is an oriented circle with a set of n pairs of distinct points, considered up to orientation preserving diffeomorphisms of the circle. A linear chord diagram (LCD) is a special kind of graph obtained cutting the oriented circle of a chord diagram. It consists of a line segment, called its backbone, to which are attached a number of chords with distinct endpoints. There is a natural fattening on any linear chord diagram; the backbone lies on the real axis, while all the chords are in the upper half-plane. Each linear chord diagram has a natural genus of its associated surface. To each chord diagram and linear chord diagram, it is possible to associate the intersection graph. It consists of a graph whose vertices correspond to the chords of the diagram, whereas the chord intersections are represented by a connection between the vertices. Such intersection graph carries a lot of information about the diagram. Our goal is to define an LCD equivalence class in terms of identity of intersection graphs, from which many chord diagram invariants depend. For studying these invariants, we introduce a new representation of Linear Chord Diagrams based on a set of appropriate topological operators that permits to model LCD in terms of the relations among chords. Such set is composed of: crossing, nesting, and concatenations. The crossing operator is able to generate the whole space of linear chord diagrams, and a multiple context free grammar able to uniquely generate each LDC starting from a linear chord diagram adding a chord for each production of the grammar is defined. In other words, it allows to associate a unique algebraic term to each linear chord diagram, while the remaining operators allow to rewrite the term throughout a set of appropriate rewriting rules. Such rules define an LCD equivalence class in terms of the identity of intersection graphs. Starting from a modelled RNA molecule and the linear chord, some authors proposed a topological classification and folding. Our LCD equivalence class could contribute to the RNA folding problem leading to the definition of an algorithm that calculates the free energy of the molecule more accurately respect to the existing ones. Such LCD equivalence class could be useful to obtain a more accurate estimate of link between the crossing number and the topological genus and to study the relation among other invariants.Keywords: chord diagrams, linear chord diagram, equivalence class, topological language
Procedia PDF Downloads 201610 Poly(Acrylamide-Co-Itaconic Acid) Nanocomposite Hydrogels and Its Use in the Removal of Lead in Aqueous Solution
Authors: Majid Farsadrouh Rashti, Alireza Mohammadinejad, Amir Shafiee Kisomi
Abstract:
Lead (Pb²⁺), a cation, is a prime constituent of the majority of the industrial effluents such as mining, smelting and coal combustion, Pb-based painting and Pb containing pipes in water supply systems, paper and pulp refineries, printing, paints and pigments, explosive manufacturing, storage batteries, alloy and steel industries. The maximum permissible limit of lead in the water used for drinking and domesticating purpose is 0.01 mg/L as advised by Bureau of Indian Standards, BIS. This becomes the acceptable 'safe' level of lead(II) ions in water beyond which, the water becomes unfit for human use and consumption, and is potential enough to lead health problems and epidemics leading to kidney failure, neuronal disorders, and reproductive infertility. Superabsorbent hydrogels are loosely crosslinked hydrophilic polymers that in contact with aqueous solution can easily water and swell to several times to their initial volume without dissolving in aqueous medium. Superabsorbents are kind of hydrogels capable to swell and absorb a large amount of water in their three-dimensional networks. While the shapes of hydrogels do not change extensively during swelling, because of tremendously swelling capacity of superabsorbent, their shape will broadly change.Because of their superb response to changing environmental conditions including temperature pH, and solvent composition, superabsorbents have been attracting in numerous industrial applications. For instance, water retention property and subsequently. Natural-based superabsorbent hydrogels have attracted much attention in medical pharmaceutical, baby diapers, agriculture, and horticulture because of their non-toxicity, biocompatibility, and biodegradability. Novel superabsorbent hydrogel nanocomposites were prepared by graft copolymerization of acrylamide and itaconic acid in the presence of nanoclay (laponite), using methylene bisacrylamide (MBA) and potassium persulfate, former as a crosslinking agent and the second as an initiator. The superabsorbent hydrogel nanocomposites structure was characterized by FTIR spectroscopy, SEM and TGA Spectroscopy adsorption of metal ions on poly (AAm-co-IA). The equilibrium swelling values of copolymer was determined by gravimetric method. During the adsorption of metal ions on polymer, residual metal ion concentration in the solution and the solution pH were measured. The effects of the clay content of the hydrogel on its metal ions uptake behavior were studied. The NC hydrogels may be considered as a good candidate for environmental applications to retain more water and to remove heavy metals.Keywords: adsorption, hydrogel, nanocomposite, super adsorbent
Procedia PDF Downloads 187609 Hydroxyapatite Based Porous Scaffold for Tooth Tissue Engineering
Authors: Pakize Neslihan Taslı, Alev Cumbul, Gul Merve Yalcın, Fikrettin Sahin
Abstract:
A key experimental trial in the regeneration of large oral and craniofacial defects is the neogenesis of osseous and ligamentous interfacial structures. Currently, oral regenerative medicine strategies are unpredictable for repair of tooth supporting tissues destroyed as a consequence of trauma, chronic infection or surgical resection. A different approach combining the gel-casting method with Hydroxy Apatite HA-based scaffold and different cell lineages as a hybrid system leads to successively mimic the early stage of tooth development, in vitro. HA is widely accepted as a bioactive material for guided bone and tooth regeneration. In this study, it was reported that, HA porous scaffold preparation, characterization and evaluation of structural and chemical properties. HA is the main factor that exists in tooth and it is in harmony with structural, biological, and mechanical characteristics. Here, this study shows mimicking immature tooth at the late bell stage design and construction of HA scaffolds for cell transplantation of human Adipose Stem Cells (hASCs), human Bone Marrow Stem Cells (hBMSCs) and Gingival Epitelial cells for the formation of human tooth dentin-pulp-enamel complexes in vitro. Scaffold characterization was demonstrated by SEM, FTIR and pore size and density measurements. The biological contraction of dental tissues against each other was demonstrated by mRNA gene expressions, histopatologic observations and protein release profile by ELISA tecnique. The tooth shaped constructs with a pore size ranging from 150 to 300 µm arranged by gathering right amounts of materials provide interconnected macro-porous structure. The newly formed tissue like structures that grow and integrate within the HA designed constructs forming tooth cementum like tissue, pulp and bone structures. These findings are important as they emphasize the potential biological effect of the hybrid scaffold system. In conclusion, this in vitro study clearly demonstrates that designed 3D scaffolds shaped as a immature tooth at the late bell stage were essential to form enamel-dentin-pulp interfaces with an appropriate cell and biodegradable material combination. The biomimetic architecture achieved here is providing a promising platform for dental tissue engineering.Keywords: tooth regeneration, tissue engineering, adipose stem cells, hydroxyapatite tooth engineering, porous scaffold
Procedia PDF Downloads 231608 Single-parent Families and the Criminal Ramifications on Children in the United Kingdom; A Systematic Review
Authors: Naveed Ali
Abstract:
Under the construct of the ‘traditional family’ set-up (male and female parent) in the United Kingdom, the absence of a male parental figure remains a critical factor associated with an elevated risk of criminal behavior among youths. Empirical evidence suggests that father absence significantly correlates with increased rates of juvenile delinquency and criminality. For instance, data reveals that approximately 63% of young offenders in the United Kingdom originate from single-parent households, predominantly those without a father. Moreover, research displays that boys from father-absent homes are three times more likely to exhibit antisocial behavior compared to their peers from two-parent families. This absence can negatively impact educational attainment, with children from fatherless homes being twice as likely to leave school prematurely, thereby increasing their vulnerability to peer influence and gang affiliation- key pathways into criminal activities. Both legal frameworks and social policies in the United Kingdom acknowledge the pivotal role of family stability in crime prevention. Initiatives including parenting support programs, community-based interventions, and targeted youth services seek to address the challenges faced by single-parent families and mitigate the criminogenic effects of father absence. Despite these efforts, persistent challenges remain, including the need to address the broader socioeconomic determinants of family instability and to refine legal strategies that effectively address the root causes of youth offending linked to the absence of a male parental figure. A nuanced understanding of these dynamics is essential for developing more effective legal and social interventions aimed at reducing juvenile delinquency and supporting at-risk populations within the United Kingdom. This paper will highlight the significant impact of the absence of a male parental figure on youth crime rates in the United Kingdom, underlining the need for enhanced legal and social responses. By examining the interplay between family structure and juvenile offending, the paper will underline the importance of developing more comprehensive interventions that address both familial factors and the wider socioeconomic context. The findings aim to guide policymakers and practitioners in creating more effective strategies to reduce youth crime, ultimately strengthening support systems for vulnerable families and mitigating the adverse effects of father absence on young individuals.Keywords: criminality, family law, legal framework, the united kingdom perspective
Procedia PDF Downloads 27607 Nanomechanical Characterization of Healthy and Tumor Lung Tissues at Cell and Extracellular Matrix Level
Authors: Valeria Panzetta, Ida Musella, Sabato Fusco, Paolo Antonio Netti
Abstract:
The study of the biophysics of living cells drew attention to the pivotal role of the cytoskeleton in many cell functions, such as mechanics, adhesion, proliferation, migration, differentiation and neoplastic transformation. In particular, during the complex process of malignant transformation and invasion cell cytoskeleton devolves from a rigid and organized structure to a more compliant state, which confers to the cancer cells a great ability to migrate and adapt to the extracellular environment. In order to better understand the malignant transformation process from a mechanical point of view, it is necessary to evaluate the direct crosstalk between the cells and their surrounding extracellular matrix (ECM) in a context which is close to in vivo conditions. In this study, human biopsy tissues of lung adenocarcinoma were analyzed in order to define their mechanical phenotype at cell and ECM level, by using particle tracking microrheology (PTM) technique. Polystyrene beads (500 nm) were introduced into the sample slice. The motion of beads was obtained by tracking their displacements across cell cytoskeleton and ECM structures and mean squared displacements (MSDs) were calculated from bead trajectories. It has been already demonstrated that the amplitude of MSD is inversely related to the mechanical properties of intracellular and extracellular microenvironment. For this reason, MSDs of particles introduced in cytoplasm and ECM of healthy and tumor tissues were compared. PTM analyses showed that cancerous transformation compromises mechanical integrity of cells and extracellular matrix. In particular, the MSD amplitudes in cells of adenocarcinoma were greater as compared to cells of normal tissues. The increased motion is probably associated to a less structured cytoskeleton and consequently to an increase of deformability of cells. Further, cancer transformation is also accompanied by extracellular matrix stiffening, as confirmed by the decrease of MSDs of matrix in tumor tissue, a process that promotes tumor proliferation and invasiveness, by activating typical oncogenic signaling pathways. In addition, a clear correlation between MSDs of cells and tumor grade was found. MSDs increase when tumor grade passes from 2 to 3, indicating that cells undergo to a trans-differentiation process during tumor progression. ECM stiffening is not dependent on tumor grade, but the tumor stage resulted to be strictly correlated with both cells and ECM mechanical properties. In fact, a greater stage is assigned to tumor spread to regional lymph nodes and characterized by an up-regulation of different ECM proteins, such as collagen I fibers. These results indicate that PTM can be used to get nanomechanical characterization at different scale levels in an interpretative and diagnostic context.Keywords: cytoskeleton, extracellular matrix, mechanical properties, particle tracking microrheology, tumor
Procedia PDF Downloads 278606 Uterine Torsion: A Rare Differential Diagnosis for Acute Abdominal Pain in Pregnancy
Authors: Tin Yee Ling, Kavita Maravar, Ruzica Ardalic
Abstract:
Background: Uterine torsion (UT) in pregnancy of more than 45-degree along the longitudinal axis is a rare occurrence, and the aetiology remains unclear. Case: A 34-year-old G2P1 woman with a history of one previous caesarean section presented at 36+2 weeks with sudden onset lower abdominal pain, syncopal episode, and tender abdomen on examination. She was otherwise haemodynamically stable. Cardiotocography showed a pathological trace with initial prolonged bradycardia followed by a subsequent tachycardia with reduced variability. An initial diagnosis of uterine dehiscence was made, given the history and clinical presentation. She underwent an emergency caesarean section which revealed a 180-degree UT along the longitudinal axis, with oedematous left round ligament lying transverse anterior to the uterus and a segment of large bowel inferior to the round ligament. Detorsion of uterus was performed prior to delivery of the foetus, and anterior uterine wall was intact with no signs of rupture. There were no anatomical uterine abnormalities found other than stretched left ovarian and round ligaments, which were repaired. Delivery was otherwise uneventful, and she was discharged on day 2 postpartum. Discussion: UT is rare as the number of reported cases is within the few hundreds worldwide. Generally, the uterus is supported in place by uterine ligaments, which limit the mobility of the structure. The causes of UT are unknown, but risk factors such as uterine abnormalities, increased uterine ligaments’ flexibility in pregnancy, and foetal malposition has been identified. UT causes occlusion of uterine vessels, which can lead to ischaemic injury of the placenta causing premature separation of the placenta, preterm labour, and foetal morbidity and mortality if delivery is delayed. Diagnosing UT clinically is difficult as most women present with symptoms similar to placenta abruption or uterine rupture (abdominal pain, vaginal bleeding, shock), and one-third are asymptomatic. The management of UT involves surgical detorsion of the uterus and delivery of foetus via caesarean section. Extra vigilance should be taken to identify the anatomy of the uterus experiencing torsion prior to hysterotomy. There have been a few cases reported with hysterotomy on posterior uterine wall for delivery of foetus as it may be difficult to identify and reverse a gravid UT when foetal well-being is at stake. Conclusion: UT should be considered a differential diagnosis of acute abdominal pain in pregnancy. It is crucial that the torsion is addressed immediately as it is associated with maternal and foetal morbidity and mortality.Keywords: uterine torsion, pregnancy complication, abdominal pain, torted uterus
Procedia PDF Downloads 160605 Response Surface Methodology for the Optimization of Radioactive Wastewater Treatment with Chitosan-Argan Nutshell Beads
Authors: Fatima Zahra Falah, Touria El. Ghailassi, Samia Yousfi, Ahmed Moussaif, Hasna Hamdane, Mouna Latifa Bouamrani
Abstract:
The management and treatment of radioactive wastewater pose significant challenges to environmental safety and public health. This study presents an innovative approach to optimizing radioactive wastewater treatment using a novel biosorbent: chitosan-argan nutshell beads. By employing Response Surface Methodology (RSM), we aimed to determine the optimal conditions for maximum removal efficiency of radioactive contaminants. Chitosan, a biodegradable and non-toxic biopolymer, was combined with argan nutshell powder to create composite beads. The argan nutshell, a waste product from argan oil production, provides additional adsorption sites and mechanical stability to the biosorbent. The beads were characterized using Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and X-ray Diffraction (XRD) to confirm their structure and composition. A three-factor, three-level Box-Behnken design was utilized to investigate the effects of pH (3-9), contact time (30-150 minutes), and adsorbent dosage (0.5-2.5 g/L) on the removal efficiency of radioactive isotopes, primarily focusing on cesium-137. Batch adsorption experiments were conducted using synthetic radioactive wastewater with known concentrations of these isotopes. The RSM analysis revealed that all three factors significantly influenced the adsorption process. A quadratic model was developed to describe the relationship between the factors and the removal efficiency. The model's adequacy was confirmed through analysis of variance (ANOVA) and various diagnostic plots. Optimal conditions for maximum removal efficiency were pH 6.8, a contact time of 120 minutes, and an adsorbent dosage of 0.8 g/L. Under these conditions, the experimental removal efficiency for cesium-137 was 94.7%, closely matching the model's predictions. Adsorption isotherms and kinetics were also investigated to elucidate the mechanism of the process. The Langmuir isotherm and pseudo-second-order kinetic model best described the adsorption behavior, indicating a monolayer adsorption process on a homogeneous surface. This study demonstrates the potential of chitosan-argan nutshell beads as an effective and sustainable biosorbent for radioactive wastewater treatment. The use of RSM allowed for the efficient optimization of the process parameters, potentially reducing the time and resources required for large-scale implementation. Future work will focus on testing the biosorbent's performance with real radioactive wastewater samples and investigating its regeneration and reusability for long-term applications.Keywords: adsorption, argan nutshell, beads, chitosan, mechanism, optimization, radioactive wastewater, response surface methodology
Procedia PDF Downloads 33604 Application of Multiwall Carbon Nanotubes with Anionic Surfactant to Cement Paste
Authors: Maciej Szelag
Abstract:
The discovery of the carbon nanotubes (CNT), has led to a breakthrough in the material engineering. The CNT is characterized by very large surface area, very high Young's modulus (about 2 TPa), unmatched durability, high tensile strength (about 50 GPa) and bending strength. Their diameter usually oscillates in the range from 1 to 100 nm, and the length from 10 nm to 10-2 m. The relatively new approach is the CNT’s application in the concrete technology. The biggest problem in the use of the CNT to cement composites is their uneven dispersion and low adhesion to the cement paste. Putting the nanotubes alone into the cement matrix does not produce any effect because they tend to agglomerate, due to their large surface area. Most often, the CNT is used as an aqueous suspension in the presence of a surfactant that has previously been sonicated. The paper presents the results of investigations of the basic physical properties (apparent density, shrinkage) and mechanical properties (compression and tensile strength) of cement paste with the addition of the multiwall carbon nanotubes (MWCNT). The studies were carried out on four series of specimens (made of two different Portland Cement). Within each series, samples were made with three w/c ratios – 0.4, 0.5, 0.6 (water/cement). Two series were an unmodified cement matrix. In the remaining two series, the MWCNT was added in amount of 0.1% by cement’s weight. The MWCNT was used as an aqueous dispersion in the presence of a surfactant – SDS – sodium dodecyl sulfate (C₁₂H₂₅OSO₂ONa). So prepared aqueous solution was sonicated for 30 minutes. Then the MWCNT aqueous dispersion and cement were mixed using a mechanical stirrer. The parameters were tested after 28 days of maturation. Additionally, the change of these parameters was determined after samples temperature loading at 250°C for 4 hours (thermal shock). Measurement of the apparent density indicated that cement paste with the MWCNT addition was about 30% lighter than conventional cement matrix. This is due to the fact that the use of the MWCNT water dispersion in the presence of surfactant in the form of SDS resulted in the formation of air pores, which were trapped in the volume of the material. SDS as an anionic surfactant exhibits characteristics specific to blowing agents – gaseous and foaming substances. Because of the increased porosity of the cement paste with the MWCNT, they have obtained lower compressive and tensile strengths compared to the cement paste without additive. It has been observed, however, that the smallest decreases in the compressive and tensile strength after exposure to the elevated temperature achieved samples with the MWCNT. The MWCNT (well dispersed in the cement matrix) can form bridges between hydrates in a nanoscale of the material’s structure. Thus, this may result in an increase in the coherent cohesion of the cement material subjected to a thermal shock. The obtained material could be used for the production of an aerated concrete or using lightweight aggregates for the production of a lightweight concrete.Keywords: cement paste, elevated temperature, mechanical parameters, multiwall carbon nanotubes, physical parameters, SDS
Procedia PDF Downloads 353603 A Compact Standing-Wave Thermoacoustic Refrigerator Driven by a Rotary Drive Mechanism
Authors: Kareem Abdelwahed, Ahmed Salama, Ahmed Rabie, Ahmed Hamdy, Waleed Abdelfattah, Ahmed Abd El-Rahman
Abstract:
Conventional vapor-compression refrigeration systems rely on typical refrigerants, such as CFC, HCFC and ammonia. Despite of their suitable thermodynamic properties and their stability in the atmosphere, their corresponding global warming potential and ozone depletion potential raise concerns about their usage. Thus, the need for new refrigeration systems, which are environment-friendly, inexpensive and simple in construction, has strongly motivated the development of thermoacoustic energy conversion systems. A thermoacoustic refrigerator (TAR) is a device that is mainly consisting of a resonator, a stack and two heat exchangers. Typically, the resonator is a long circular tube, made of copper or steel and filled with Helium as a the working gas, while the stack has short and relatively low thermal conductivity ceramic parallel plates aligned with the direction of the prevailing resonant wave. Typically, the resonator of a standing-wave refrigerator has one end closed and is bounded by the acoustic driver at the other end enabling the propagation of half-wavelength acoustic excitation. The hot and cold heat exchangers are made of copper to allow for efficient heat transfer between the working gas and the external heat source and sink respectively. TARs are interesting because they have no moving parts, unlike conventional refrigerators, and almost no environmental impact exists as they rely on the conversion of acoustic and heat energies. Their fabrication process is rather simpler and sizes span wide variety of length scales. The viscous and thermal interactions between the stack plates, heat exchangers' plates and the working gas significantly affect the flow field within the plates' channels, and the energy flux density at the plates' surfaces, respectively. Here, the design, the manufacture and the testing of a compact refrigeration system that is based on the thermoacoustic energy-conversion technology is reported. A 1-D linear acoustic model is carefully and specifically developed, which is followed by building the hardware and testing procedures. The system consists of two harmonically-oscillating pistons driven by a simple 1-HP rotary drive mechanism operating at a frequency of 42Hz -hereby, replacing typical expensive linear motors and loudspeakers-, and a thermoacoustic stack within which the energy conversion of sound into heat is taken place. Air at ambient conditions is used as the working gas while the amplitude of the driver's displacement reaches 19 mm. The 30-cm-long stack is a simple porous ceramic material having 100 square channels per square inch. During operation, both oscillating-gas pressure and solid-stack temperature are recorded for further analysis. Measurements show a maximum temperature difference of about 27 degrees between the stack hot and cold ends with a Carnot coefficient of performance of 11 and estimated cooling capacity of five Watts, when operating at ambient conditions. A dynamic pressure of 7-kPa-amplitude is recorded, yielding a drive ratio of 7% approximately, and found in a good agreement with theoretical prediction. The system behavior is clearly non-linear and significant non-linear loss mechanisms are evident. This work helps understanding the operation principles of thermoacoustic refrigerators and presents a keystone towards developing commercial thermoacoustic refrigerator units.Keywords: refrigeration system, rotary drive mechanism, standing-wave, thermoacoustic refrigerator
Procedia PDF Downloads 367602 Integrating Computational Modeling and Analysis with in Vivo Observations for Enhanced Hemodynamics Diagnostics and Prognosis
Authors: Shreyas S. Hegde, Anindya Deb, Suresh Nagesh
Abstract:
Computational bio-mechanics is developing rapidly as a non-invasive tool to assist the medical fraternity to help in both diagnosis and prognosis of human body related issues such as injuries, cardio-vascular dysfunction, atherosclerotic plaque etc. Any system that would help either properly diagnose such problems or assist prognosis would be a boon to the doctors and medical society in general. Recently a lot of work is being focused in this direction which includes but not limited to various finite element analysis related to dental implants, skull injuries, orthopedic problems involving bones and joints etc. Such numerical solutions are helping medical practitioners to come up with alternate solutions for such problems and in most cases have also reduced the trauma on the patients. Some work also has been done in the area related to the use of computational fluid mechanics to understand the flow of blood through the human body, an area of hemodynamics. Since cardio-vascular diseases are one of the main causes of loss of human life, understanding of the blood flow with and without constraints (such as blockages), providing alternate methods of prognosis and further solutions to take care of issues related to blood flow would help save valuable life of such patients. This project is an attempt to use computational fluid dynamics (CFD) to solve specific problems related to hemodynamics. The hemodynamics simulation is used to gain a better understanding of functional, diagnostic and theoretical aspects of the blood flow. Due to the fact that many fundamental issues of the blood flow, like phenomena associated with pressure and viscous forces fields, are still not fully understood or entirely described through mathematical formulations the characterization of blood flow is still a challenging task. The computational modeling of the blood flow and mechanical interactions that strongly affect the blood flow patterns, based on medical data and imaging represent the most accurate analysis of the blood flow complex behavior. In this project the mathematical modeling of the blood flow in the arteries in the presence of successive blockages has been analyzed using CFD technique. Different cases of blockages in terms of percentages have been modeled using commercial software CATIA V5R20 and simulated using commercial software ANSYS 15.0 to study the effect of varying wall shear stress (WSS) values and also other parameters like the effect of increase in Reynolds number. The concept of fluid structure interaction (FSI) has been used to solve such problems. The model simulation results were validated using in vivo measurement data from existing literatureKeywords: computational fluid dynamics, hemodynamics, blood flow, results validation, arteries
Procedia PDF Downloads 403601 Molecular Docking Analysis of Flavonoids Reveal Potential of Eriodictyol for Breast Cancer Treatment
Authors: Nicole C. Valdez, Vincent L. Borromeo, Conrad C. Chong, Ahmad F. Mazahery
Abstract:
Breast cancer is the most prevalent cancer worldwide, where the majority of cases are estrogen-receptor positive and involve 2 receptor proteins. The binding of estrogen to estrogen receptor alpha (ERα) promotes breast cancer growth, while it's binding to estrogen-receptor beta (ERβ) inhibits tumor growth. While natural products have been a promising source of chemotherapeutic agents, the challenge remains in finding a bioactive compound that specifically targets cancer cells, minimizing side effects on normal cells. Flavonoids are natural products that act as phytoestrogens and induce the same response as estrogen. They are able to compete with estrogen for binding to ERα; however, it has a higher binding affinity for ERβ. Their abundance in nature and low toxicity make them a potential candidate for breast cancer treatment. This study aimed to determine which particular flavonoids can specifically recognize ERβ and potentially be used for breast cancer treatment through molecular docking. A total of 206 flavonoids comprised of 97 isoflavones and 109 flavanones were collected from ZINC15, while the 3D structures of ERβ and ERα were obtained from Protein Data Bank. These flavonoid subclasses were chosen as they bind more strongly to ERs due to their chemical structure. The structures of the flavonoid ligands were converted using Open Babel, while the estrogen receptor protein structures were prepared using Autodock MGL Tools. The optimal binding site was found using BIOVIA Discovery Studio Visualizer before docking all flavonoids on both ERβ and ERα through Autodock Vina. Genistein is a flavonoid that exhibits anticancer effects by binding to ERβ, so its binding affinity was used as a baseline. Eriodictyol and 4”,6”-Di-O-Galloylprunin both exceeded genistein’s binding affinity for ERβ and was lower than its binding affinity for ERα. Of the two, eriodictyol was pursued due to its antitumor properties on a lung cancer cell line and on glioma cells. It is able to arrest the cell cycle at the G2/M phase by inhibiting the mTOR/PI3k/Akt cascade and is able to induce apoptosis via the PI3K/Akt/NF-kB pathway. Protein pathway and gene analysis were also conducted using ChEMBL and PANTHER and it was shown that eriodictyol might induce anticancer effects through the ROS1, CA7, KMO, and KDM1A genes which are involved in cell proliferation in breast cancer, non-small cell lung cancer, and other diseases. The high binding affinity of eriodictyol to ERβ, as well as its potential affected genes and antitumor effects, therefore, make it a candidate for the development of new breast cancer treatment. Verification through in vitro experiments such as checking the upregulation and downregulation of genes through qPCR and checking cell cycle arrest using a flow cytometry assay is recommended.Keywords: breast cancer, estrogen receptor, flavonoid, molecular docking
Procedia PDF Downloads 87600 A Hybrid LES-RANS Approach to Analyse Coupled Heat Transfer and Vortex Structures in Separated and Reattached Turbulent Flows
Authors: C. D. Ellis, H. Xia, X. Chen
Abstract:
Experimental and computational studies investigating heat transfer in separated flows have been of increasing importance over the last 60 years, as efforts are being made to understand and improve the efficiency of components such as combustors, turbines, heat exchangers, nuclear reactors and cooling channels. Understanding of not only the time-mean heat transfer properties but also the unsteady properties is vital for design of these components. As computational power increases, more sophisticated methods of modelling these flows become available for use. The hybrid LES-RANS approach has been applied to a blunt leading edge flat plate, utilising a structured grid at a moderate Reynolds number of 20300 based on the plate thickness. In the region close to the wall, the RANS method is implemented for two turbulence models; the one equation Spalart-Allmaras model and Menter’s two equation SST k-ω model. The LES region occupies the flow away from the wall and is formulated without any explicit subgrid scale LES modelling. Hybridisation is achieved between the two methods by the blending of the nearest wall distance. Validation of the flow was obtained by assessing the mean velocity profiles in comparison to similar studies. Identifying the vortex structures of the flow was obtained by utilising the λ2 criterion to identify vortex cores. The qualitative structure of the flow compared with experiments of similar Reynolds number. This identified the 2D roll up of the shear layer, breaking down via the Kelvin-Helmholtz instability. Through this instability the flow progressed into hairpin like structures, elongating as they advanced downstream. Proper Orthogonal Decomposition (POD) analysis has been performed on the full flow field and upon the surface temperature of the plate. As expected, the breakdown of POD modes for the full field revealed a relatively slow decay compared to the surface temperature field. Both POD fields identified the most energetic fluctuations occurred in the separated and recirculation region of the flow. Latter modes of the surface temperature identified these levels of fluctuations to dominate the time-mean region of maximum heat transfer and flow reattachment. In addition to the current research, work will be conducted in tracking the movement of the vortex cores and the location and magnitude of temperature hot spots upon the plate. This information will support the POD and statistical analysis performed to further identify qualitative relationships between the vortex dynamics and the response of the surface heat transfer.Keywords: heat transfer, hybrid LES-RANS, separated and reattached flow, vortex dynamics
Procedia PDF Downloads 230599 Cross-Sectoral Energy Demand Prediction for Germany with a 100% Renewable Energy Production in 2050
Authors: Ali Hashemifarzad, Jens Zum Hingst
Abstract:
The structure of the world’s energy systems has changed significantly over the past years. One of the most important challenges in the 21st century in Germany (and also worldwide) is the energy transition. This transition aims to comply with the recent international climate agreements from the United Nations Climate Change Conference (COP21) to ensure sustainable energy supply with minimal use of fossil fuels. Germany aims for complete decarbonization of the energy sector by 2050 according to the federal climate protection plan. One of the stipulations of the Renewable Energy Sources Act 2017 for the expansion of energy production from renewable sources in Germany is that they cover at least 80% of the electricity requirement in 2050; The Gross end energy consumption is targeted for at least 60%. This means that by 2050, the energy supply system would have to be almost completely converted to renewable energy. An essential basis for the development of such a sustainable energy supply from 100% renewable energies is to predict the energy requirement by 2050. This study presents two scenarios for the final energy demand in Germany in 2050. In the first scenario, the targets for energy efficiency increase and demand reduction are set very ambitiously. To build a comparison basis, the second scenario provides results with less ambitious assumptions. For this purpose, first, the relevant framework conditions (following CUTEC 2016) were examined, such as the predicted population development and economic growth, which were in the past a significant driver for the increase in energy demand. Also, the potential for energy demand reduction and efficiency increase (on the demand side) was investigated. In particular, current and future technological developments in energy consumption sectors and possible options for energy substitution (namely the electrification rate in the transport sector and the building renovation rate) were included. Here, in addition to the traditional electricity sector, the areas of heat, and fuel-based consumptions in different sectors such as households, commercial, industrial and transport are taken into account, supporting the idea that for a 100% supply from renewable energies, the areas currently based on (fossil) fuels must be almost completely be electricity-based by 2050. The results show that in the very ambitious scenario a final energy demand of 1,362 TWh/a is required, which is composed of 818 TWh/a electricity, 229 TWh/a ambient heat for electric heat pumps and approx. 315 TWh/a non-electric energy (raw materials for non-electrifiable processes). In the less ambitious scenario, in which the targets are not fully achieved by 2050, the final energy demand will need a higher electricity part of almost 1,138 TWh/a (from the total: 1,682 TWh/a). It has also been estimated that 50% of the electricity revenue must be saved to compensate for fluctuations in the daily and annual flows. Due to conversion and storage losses (about 50%), this would mean that the electricity requirement for the very ambitious scenario would increase to 1,227 TWh / a.Keywords: energy demand, energy transition, German Energiewende, 100% renewable energy production
Procedia PDF Downloads 133598 Analyzing Strategic Alliances of Museums: The Case of Girona (Spain)
Authors: Raquel Camprubí
Abstract:
Cultural tourism has been postulated as relevant motivation for tourist over the world during the last decades. In this context, museums are the main attraction for cultural tourists who are seeking to connect with the history and culture of the visited place. From the point of view of an urban destination, museums and other cultural resources are essential to have a strong tourist supply at the destination, in order to be capable of catching attention and interest of cultural tourists. In particular, museums’ challenge is to be prepared to offer the best experience to their visitors without to forget their mission-based mainly on protection of its collection and other social goals. Thus, museums individually want to be competitive and have good positioning to achieve their strategic goals. The life cycle of the destination and the level of maturity of its tourism product influence the need of tourism agents to cooperate and collaborate among them, in order to rejuvenate their product and become more competitive as a destination. Additionally, prior studies have considered an approach of different models of a public and private partnership, and collaborative and cooperative relations developed among the agents of a tourism destination. However, there are no studies that pay special attention to museums and the strategic alliances developed to obtain mutual benefits. Considering this background, the purpose of this study is to analyze in what extent museums of a given urban destination have established strategic links and relations among them, in order to improve their competitive position at both individual and destination level. In order to achieve the aim of this study, the city of Girona (Spain) and the museums located in this city are taken as a case study. Data collection was conducted using in-depth interviews, in order to collect all the qualitative data related to nature, strengthen and purpose of the relational ties established among the museums of the city or other relevant tourism agents of the city. To conduct data analysis, a Social Network Analysis (SNA) approach was taken using UCINET software. Position of the agents in the network and structure of the network was analyzed, and qualitative data from interviews were used to interpret SNA results. Finding reveals the existence of strong ties among some of the museums of the city, particularly to create and promote joint products. Nevertheless, there were detected outsiders who have an individual strategy, without collaboration and cooperation with other museums or agents of the city. Results also show that some relational ties have an institutional origin, while others are the result of a long process of cooperation with common projects. Conclusions put in evidence that collaboration and cooperation of museums had been positive to increase the attractiveness of the museum and the city as a cultural destination. Future research and managerial implications are also mentioned.Keywords: cultural tourism, competitiveness, museums, Social Network analysis
Procedia PDF Downloads 116597 Occurrence and Habitat Status of Osmoderma barnabita in Lithuania
Authors: D. Augutis, M. Balalaikins, D. Bastyte, R. Ferenca, A. Gintaras, R. Karpuska, G. Svitra, U. Valainis
Abstract:
Osmoderma species complex (consisting of Osmoderma eremita, O. barnabita, O. lassallei and O. cristinae) is a scarab beetle serving as indicator species in nature conservation. Osmoderma inhabits cavities containing sufficient volume of wood mould usually caused by brown rot in veteran deciduous trees. As the species, having high demands for the habitat quality, they indicate the suitability of the habitat for a number of other specialized saproxylic species. Since typical habitat needed for Osmoderma and other species associated with hollow veteran trees is rapidly declining, the species complex is protected under various legislation, such as Bern Convention, EU Habitats Directive and the Red Lists of many European states. Natura 2000 sites are the main tool for conservation of O. barnabita in Lithuania, currently 17 Natura 2000 sites are designated for the species, where monitoring is implemented once in 3 years according to the approved methodologies. Despite these monitoring efforts in species reports, provided to EU according to the Article 17 of the Habitats Directive, it is defined on the national level, that overall assessment of O. barnabita is inadequate and future prospects are poor. Therefore, research on the distribution and habitat status of O. barnabita was launched on the national level in 2016, which was complemented by preparatory actions of LIFE OSMODERMA project. The research was implemented in the areas equally distributed in the whole area of Lithuania, where O. barnabita was previously not observed, or not observed in the last 10 years. 90 areas, such as Habitats of European importance (9070 Fennoscandian wooded pastures, 9180 Tilio-Acerion forests of slopes, screes, and ravines), Woodland key habitats (B1 broad-leaved forest, K1 single giant tree) and old manor parks, were chosen for the research after review of habitat data from the existing national databases. The first part of field inventory of the habitats was carried out in 2016 and 2017 autumn and winter seasons, when relative abundance of O. barnabita was estimated according to larval faecal pellets in the tree cavities or around the trees. The state of habitats was evaluated according to the density of suitable and potential trees, percentage of not overshadowed trees and amount of undergrowth. The second part of the field inventory was carried out in the summer with pheromone traps baited with (R)-(+)-γ –decalactone. Results of the research show not only occurrence and habitat status of O. barnabita, but also help to clarify O. barnabita habitat requirements in Lithuania, define habitat size, its structure and distribution. Also, it compares habitat needs between the regions in Lithuania and inside and outside Natura 2000 areas designated for the species.Keywords: habitat status, insect conservation, Osmoderma barnabita, veteran trees
Procedia PDF Downloads 136596 Enhancing Institutional Roles and Managerial Instruments for Irrigation Modernization in Sudan: The Case of Gezira Scheme
Authors: Mohamed Ahmed Abdelmawla
Abstract:
Calling to achieve Millennium Development Goals (MDGs) engaged with agriculture, i.e. poverty alleviation targets, human resources involved in agricultural sectors with special emphasis on irrigation must receive wealth of practical experience and training. Increased food production, including staple food, is needed to overcome the present and future threats to food security. This should happen within a framework of sustainable management of natural resources, elimination of unsustainable methods of production and poverty reduction (i.e. axes of modernization). A didactic tool to confirm the task of wise and maximum utility is the best management and accurate measurement, as major requisites for modernization process. The key component to modernization as a warranted goal is adhering great attention to management and measurement issues via capacity building. As such, this paper stressed the issues of discharge management and measurement by Field Outlet Pipes (FOP) for selected ones within the Gezira Scheme, where randomly nine FOPs were selected as representative locations. These FOPs extended along the Gezira Main Canal at Kilo 57 areas in the South up to Kilo 194 in the North. The following steps were followed during the field data collection and measurements: For each selected FOP, a 90 v- notch thin plate weir was placed in such away that the water was directed to pass only through the notch. An optical survey level was used to measure the water head of the notch and FOP. Both calculated discharge rates as measured by the v – notch, denoted as [Qc], and the adopted discharges given by (MOIWR), denoted as [Qa], are tackled for the average of three replicated readings undertaken at each location. The study revealed that the FOP overestimates and sometimes underestimates the discharges. This is attributed to the fact that the original design specifications were not fulfilled or met at present conditions where water is allowed to flow day and night with high head fluctuation, knowing that the FOP is non modular structure, i.e. the flow depends on both levels upstream and downstream and confirmed by the results of this study. It is convenient and formative to quantify the discharge in FOP with weirs or Parshall flumes. Cropping calendar should be clearly determined and agreed upon before the beginning of the season in accordance and consistency with the Sudan Gezira Board (SGB) and Ministry of Irrigation and Water Resources. As such, the water indenting should be based on actual Crop Water Requirements (CWRs), not on rules of thumb (420 m3/feddan, irrespective of crop or time of season).Keywords: management, measurement, MDGs, modernization
Procedia PDF Downloads 250595 Framing the Dynamics and Functioning of Different Variants of Terrorist Organizations: A Business Model Perspective
Authors: Eisa Younes Alblooshi
Abstract:
Counterterrorism strategies, to be effective and efficient, require a sound understanding of the dynamics, the interlinked organizational elements of the terrorist outfits being combated, with a view to having cognizance of their strong points to be guarded against, as well as the vulnerable zones that can be targeted for optimal results in a timely fashion by counterterrorism agencies. A unique model regarding the organizational imperatives was evolved in this research through likening the terrorist organizations with the traditional commercial ones, with a view to understanding in detail the dynamics of interconnectivity and dependencies, and the related compulsions facing the leaderships of such outfits that provide counterterrorism agencies with opportunities for forging better strategies. It involved assessing the evolving organizational dynamics and imperatives of different types of terrorist organizations, to enable the researcher to construct a prototype model that defines the progression and linkages of the related organizational elements of such organizations. It required detailed analysis of how the various elements are connected, with sequencing identified, as any outfit positions itself with respect to its external environment and internal dynamics. A case study focusing on a transnational radical religious state-sponsored terrorist organization was conducted to validate the research findings and to further strengthen the specific counterterrorism strategies. Six different variants of the business model of terrorist organizations were identified, categorized based on their outreach, mission, and status of any state sponsorship. The variants represent vast majority of the range of terrorist organizations acting locally or globally. The model shows the progression and dynamics of these organizations through various dimensions including mission, leadership, outreach, state sponsorship status, resulting in the organizational structure, state of autonomy, preference divergence in its fold, recruitment core, propagation avenues, down to their capacity to adapt, resulting critically in their own life cycles. A major advantage of the model is the utility of mapping terrorist organizations according to their fits to the sundry identified variants, allowing for flexibility and differences within, enabling the researchers and counterterrorism agencies to observe a neat blueprint of the organization’s footprint, along with highlighting the areas to be evaluated for focused target zone selection and timing of counterterrorism interventions. Special consideration is given to the dimension of financing, keeping in context the latest developments regarding cryptocurrencies, hawala, and global anti-money laundering initiatives. Specific counterterrorism strategies and intervention points have been identified for each of the respective model variants, with a view to efficient and effective deployment of resources.Keywords: terrorism, counterterrorism, model, strategy
Procedia PDF Downloads 157594 Developing Confidence of Visual Literacy through Using MIRO during Online Learning
Authors: Rachel S. E. Lim, Winnie L. C. Tan
Abstract:
Visual literacy is about making meaning through the interaction of images, words, and sounds. Graphic communication students typically develop visual literacy through critique and production of studio-based projects for their portfolios. However, the abrupt switch to online learning during the COVID-19 pandemic has made it necessary to consider new strategies of visualization and planning to scaffold teaching and learning. This study, therefore, investigated how MIRO, a cloud-based visual collaboration platform, could be used to develop the visual literacy confidence of 30 diploma in graphic communication students attending a graphic design course at a Singapore arts institution. Due to COVID-19, the course was taught fully online throughout a 16-week semester. Guided by Kolb’s Experiential Learning Cycle, the two lecturers developed students’ engagement with visual literacy concepts through different activities that facilitated concrete experiences, reflective observation, abstract conceptualization, and active experimentation. Throughout the semester, students create, collaborate, and centralize communication in MIRO with infinite canvas, smart frameworks, a robust set of widgets (i.e., sticky notes, freeform pen, shapes, arrows, smart drawing, emoticons, etc.), and powerful platform capabilities that enable asynchronous and synchronous feedback and interaction. Students then drew upon these multimodal experiences to brainstorm, research, and develop their motion design project. A survey was used to examine students’ perceptions of engagement (E), confidence (C), learning strategies (LS). Using multiple regression, it¬ was found that the use of MIRO helped students develop confidence (C) with visual literacy, which predicted performance score (PS) that was measured against their application of visual literacy to the creation of their motion design project. While students’ learning strategies (LS) with MIRO did not directly predict confidence (C) or performance score (PS), it fostered positive perceptions of engagement (E) which in turn predicted confidence (C). Content analysis of students’ open-ended survey responses about their learning strategies (LS) showed that MIRO provides organization and structure in documenting learning progress, in tandem with establishing standards and expectations as a preparatory ground for generating feedback. With the clarity and sequence of the mentioned conditions set in place, these prerequisites then lead to the next level of personal action for self-reflection, self-directed learning, and time management. The study results show that the affordances of MIRO can develop visual literacy and make up for the potential pitfalls of student isolation, communication, and engagement during online learning. The context of how MIRO could be used by lecturers to orientate students for learning in visual literacy and studio-based projects for future development are discussed.Keywords: design education, graphic communication, online learning, visual literacy
Procedia PDF Downloads 111593 Nascent Federalism in Nepal: An Observational Review in its Evolution
Authors: C. Shekhar Parajulee
Abstract:
Nepal practiced a centralized unitary governing system for a long and has gone through the federal system after the promulgation of the new constitution on 20 September 2015. There is a big paradigm shift in terms of governance after it. Now, there are three levels of governments, one federal government in the center, seven provincial governments and 753 local governments. Federalism refers to a political governing system with multiple tiers of government working together with coordination. It is preferred for self and shared rule. Though it has opened the door for rights of the people, political stability, state restructuring, and sustainable peace and development, there are many prospects and challenges for its proper implementation. This research analyzes the discourses of federalism implementation in Nepal with special reference to one of seven provinces, Gandaki. Federalism is a new phenomenon in Nepali politics and informed debates on it are required for its right evolution. This research will add value in this regard. Moreover, tracking its evolution and the exploration of the attitudes and behaviors of key actors and stakeholders in a new experiment of a new governing system is also important. The administrative and political system of Gandaki province in terms of service delivery and development will critically be examined. Besides demonstrating the performances of the provincial government and assembly, it will analyze the inter-governmental relation of Gandaki with the other two tiers of government. For this research, people from provincial and local governments (elected representatives and government employees), provincial assembly members, academicians, civil society leaders and journalists are being interviewed. The interview findings will be analyzed by supplementing with published documents. Just going into the federal structure is not the solution. As in the case of other provincial governments, Gandaki had also to start from scratch. It gradually took a shape of government and has been functioning sluggishly. The provincial government has many challenges ahead, which has badly hindered its plans and actions. Additionally, fundamental laws, infrastructures and human resources are found to be insufficient at the sub-national level. Lack of clarity in the jurisdiction is another main challenge. The Nepali Constitution assumes cooperation, coexistence and coordination as the fundamental principles of federalism which, unfortunately, appear to be lacking among the three tiers of government despite their efforts. Though the devolution of power to sub-national governments is essential for the successful implementation of federalism, it has apparently been delayed due to the centralized mentality of bureaucracy as well as a political leader. This research will highlight the reasons for the delay in the implementation of federalism. There might be multiple underlying reasons for the slow pace of implementation of federalism and identifying them is very tough. Moreover, the federal spirit is found to be absent in the main players of today's political system, which is a big irony. So, there are some doubts about whether the federal system in Nepal is just a keepsake or a substantive.Keywords: federalism, inter-governmental relations, Nepal, provincial government
Procedia PDF Downloads 188592 Preparedness Level of Disaster Management Institutions in Context of Floods in Delhi
Authors: Aditi Madan, Jayant Kumar Routray
Abstract:
Purpose: Over the years flood related risks have compounded due to increasing vulnerability caused by rapid urbanisation and growing population. This increase is an indication of the need for enhancing the preparedness of institutions to respond to floods. The study describes disaster management structure and its linkages with institutions involved in managing disasters. It addresses issues and challenges associated with readiness of disaster management institutions to respond to floods. It suggests policy options for enhancing the current state of readiness of institutions to respond by considering factors like institutional, manpower, financial, technical, leadership & networking, training and awareness programs, monitoring and evaluation. Methodology: The study is based on qualitative data with statements and outputs from primary and secondary sources to understand the institutional framework for disaster management in India. Primary data included field visits, interviews with officials from institutions managing disasters and the affected community to identify the challenges faced in engaging national, state, district and local level institutions in managing disasters. For focus group discussions, meetings were held with district project officers and coordinators, local officials, community based organisation, civil defence volunteers and community heads. These discussions were held to identify the challenges associated with preparedness to respond of institutions to floods. Findings: Results show that disasters are handled by district authority and the role of local institutions is limited to a reactive role during disaster. Data also indicates that although the existing institutional setup is well coordinated at the district level but needs improvement at the local level. Wide variations exist in awareness and perception among the officials engaged in managing disasters. Additionally, their roles and responsibilities need to be clearly defined with adequate budget and dedicated permanent staff for managing disasters. Institutions need to utilise the existing manpower through proper delegation of work. Originality: The study suggests that disaster risk reduction needs to focus more towards inclusivity of the local urban bodies. Wide variations exist in awareness and perception among the officials engaged in managing disasters. In order to ensure community participation, it is important to address their social and economic problems since such issues can overshadow attempts made for reducing risks. Thus, this paper suggests development of direct linkages among institutions and community for enhancing preparedness to respond to floods.Keywords: preparedness, response, disaster, flood, community, institution
Procedia PDF Downloads 234591 Addressing Rural Health Challenges: A Flexible Modular Approach for Resilient Healthcare Services
Authors: Pariya Sheykhmaleki, Debajyoti Pati
Abstract:
Rural areas in the United States face numerous challenges in providing quality and assessable primary healthcare services, especially during emergencies such as natural disasters or pandemics. This study showcases a cutting-edge flexible module that aims to overcome these challenges by offering adaptable healthcare facilities capable of providing comprehensive health services in remote and disaster-prone regions. According to the Health Resources and Services Administration (HRSA), approximately 62 million Americans, or 1 in 5 individuals, live in areas designated as Health Professional Shortage Areas (HPSAs) for primary care. These areas are characterized by limited access to healthcare facilities, shortage of healthcare professionals, transportation barriers, inadequate healthcare infrastructure, higher rates of chronic diseases, mental health disparities, and limited availability of specialized care, including urgent circumstances like pandemics that can exacerbate this issue. To address these challenges, the literature study began by examining primary health solutions in very remote areas, e.g., spaceships, to identify the state-of-the-art technologies and the methods used to facilitate primary care needs. The literature study on flexibility in architecture and interior design was also adapted to develop a conceptual design for rural areas. The designed flexible module provides an innovative solution. This module can be prefabricated as all parts are standardized. The flexibility of the module allows the structure to be modified based on local and geographical requirements as well as the ability to expand as required. It has been designed to stand either by itself or work in tandem with public buildings. By utilizing sustainable approaches and flexible spatial configurations, the module optimizes the utilization of limited resources while ensuring efficient and effective healthcare delivery. Furthermore, the poster highlights the key features of this flexible module, including its ability to support telemedicine and telehealth services for all five levels of urgent care conditions, i.e., from facilitating fast tracks to supporting emergency room services, in two divided zones. The module's versatility enables its deployment in rural areas located far from urban centers and disaster-stricken regions, ensuring access to critical healthcare services in times of need. This module is also capable of responding in urban areas when the need for primary health becomes vastly urgent, e.g., during a pandemic. It emphasizes the module's potential to bridge the healthcare gap between rural and urban areas and mitigate the impact of rural health challenges.Keywords: rural health, healthcare challenges, flexible modular design, telemedicine, telehealth
Procedia PDF Downloads 76590 Current Status of Scaled-Up Synthesis/Purification and Characterization of a Potentially Translatable Tantalum Oxide Nanoparticle Intravenous CT Contrast Agent
Authors: John T. Leman, James Gibson, Peter J. Bonitatibus
Abstract:
There have been no potential clinically translatable developments of intravenous CT contrast materials over decades, and iodinated contrast agents (ICA) remain the only FDA-approved media for CT. Small molecule ICA used to highlight vascular anatomy have weak CT signals in large-to-obese patients due to their rapid redistribution from plasma into interstitial fluid, thereby diluting their intravascular concentration, and because of a mismatch of iodine’s K-edge and the high kVp settings needed to image this patient population. The use of ICA is also contraindicated in a growing population of renally impaired patients who are hypersensitive to these contrast agents; a transformative intravenous contrast agent with improved capabilities is urgently needed. Tantalum oxide nanoparticles (TaO NPs) with zwitterionic siloxane polymer coatings have high potential as clinically translatable general-purpose CT contrast agents because of (1) substantially improved imaging efficacy compared to ICA in swine/phantoms emulating medium-sized and larger adult abdomens and superior thoracic vascular contrast enhancement of thoracic arteries and veins in rabbit, (2) promising biological safety profiles showing near-complete renal clearance and low tissue retention at 3x anticipated clinical dose (ACD), and (3) clinically acceptable physiochemical parameters as concentrated bulk solutions(250-300 mgTa/mL). Here, we review requirements for general-purpose intravenous CT contrast agents in terms of patient safety, X-ray attenuating properties and contrast-producing capabilities, and physicochemical and pharmacokinetic properties. We report the current status of a TaO NP-based contrast agent, including chemical process technology developments and results of newly defined scaled-up processes for NP synthesis and purification, yielding reproducible formulations with appropriate size and concentration specifications. We discuss recent results of recent pre-clinical in vitro immunology, non-GLP high dose tolerability in rats (10x ACD), non-GLP long-term biodistribution in rats at 3x ACD, and non-GLP repeat dose in rats at ACD. We also include a discussion of NP characterization, in particular size-stability testing results under accelerated conditions (37C), and insights into TaO NP purity, surface structure, and bonding of the zwitterionic siloxane polymer coating by multinuclear (1H, 13C, 29Si) and multidimensional (2D) solution NMR spectroscopy.Keywords: nanoparticle, imaging, diagnostic, process technology, nanoparticle characterization
Procedia PDF Downloads 34