Search results for: cognitive Evaluation Theory
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12283

Search results for: cognitive Evaluation Theory

403 Evaluation of Anti-inflammatory Activities of Extracts Obtained from Capparis Erythrocarpos In-Vivo

Authors: Benedict Ofori, Kwabena Sarpong, Stephen Antwi

Abstract:

Background: Medicinal plants are utilized all around the world and are becoming increasingly important economically. The WHO notes that ‘inappropriate use of traditional medicines or practices can have negative or dangerous effects and that future research is needed to ascertain the efficacy and safety of such practices and medicinal plants used by traditional medicine systems. The poor around the world have limited access to palliative care or pain relief. Pharmacologists have been focused on developing safe and effective anti-inflammatory drugs. Most of the issues related to their use have been linked to the fact that numerous traditional and herbal treatments are classified in different nations as meals or dietary supplements. As a result, there is no need for evidence of the quality, efficacy, or safety of these herbal formulations before they are marketed. The fact that access to drugs meant for pain relief is limited in low-income countries means advanced studies should be done on home drugs meant for inflammation to close the gap. Methods: The ethanolic extracts of the plant were screened for the presence of 10 phytochemicals. The Pierce BCA Protein Assay Kit was used for the determination of the protein concentration of the egg white. The rats were randomly selected and put in 6 groups. The egg white was sub-plantar injected into the right-hand paws of the rats to induce inflammation. The animals were treated with the three plant extracts obtained from the root bark, stem, and leaves of the plant. The control groups were treated with normal saline, while the standard groups were treated with standard drugs indomethacin and celecoxib. Plethysmometer was used to measure the change in paw volume of the animals over the course of the experiment. Results: The results of the phytochemical screening revealed the presence of reducing sugars and saponins. Alkaloids were present in only R.L.S (1:1:1), and phytosterols were found in R.L(1:1) and R.L.S (1:1:1). The estimated protein concentration was found to be 103.75 mg/ml. The control group had an observable increase in paw volume, which indicated that inflammation was induced during the 5 hours. The increase in paw volume for the control group peaked at the 1st hour and decreased gradually throughout the experiment, with minimal changes in the paw volumes. The 2nd and 3rd groups were treated with 20 mg/kg of indomethacin and celecoxib. The anti-inflammatory activities of indomethacin and celecoxib were calculated to be 21.4% and 4.28%, respectively. The remaining 3 groups were treated with 2 dose levels of 200mg/kg plant extracts. R.L.S, R.L, and S.R.L had anti-inflammatory activities of 22.3%, 8.2%, and 12.07%, respectively. Conclusions: Egg albumin-induced paw model in rats can be used to evaluate the anti-inflammatory activity of herbs that might have potential anti-inflammatory activity. Herbal medications have potential anti-inflammatory activities and can be used to manage various inflammatory conditions if their efficacy and side effects are well studied. The three extracts all possessed anti-inflammatory activity, with R.L.S having the highest anti-inflammatory activity.

Keywords: inflammation, capparis erythrocarpos, anti-inflammatory activity, herbal medicine, paw volume, egg albumin

Procedia PDF Downloads 89
402 Contribution to the Study of Automatic Epileptiform Pattern Recognition in Long Term EEG Signals

Authors: Christine F. Boos, Fernando M. Azevedo

Abstract:

Electroencephalogram (EEG) is a record of the electrical activity of the brain that has many applications, such as monitoring alertness, coma and brain death; locating damaged areas of the brain after head injury, stroke and tumor; monitoring anesthesia depth; researching physiology and sleep disorders; researching epilepsy and localizing the seizure focus. Epilepsy is a chronic condition, or a group of diseases of high prevalence, still poorly explained by science and whose diagnosis is still predominantly clinical. The EEG recording is considered an important test for epilepsy investigation and its visual analysis is very often applied for clinical confirmation of epilepsy diagnosis. Moreover, this EEG analysis can also be used to help define the types of epileptic syndrome, determine epileptiform zone, assist in the planning of drug treatment and provide additional information about the feasibility of surgical intervention. In the context of diagnosis confirmation the analysis is made using long term EEG recordings with at least 24 hours long and acquired by a minimum of 24 electrodes in which the neurophysiologists perform a thorough visual evaluation of EEG screens in search of specific electrographic patterns called epileptiform discharges. Considering that the EEG screens usually display 10 seconds of the recording, the neurophysiologist has to evaluate 360 screens per hour of EEG or a minimum of 8,640 screens per long term EEG recording. Analyzing thousands of EEG screens in search patterns that have a maximum duration of 200 ms is a very time consuming, complex and exhaustive task. Because of this, over the years several studies have proposed automated methodologies that could facilitate the neurophysiologists’ task of identifying epileptiform discharges and a large number of methodologies used neural networks for the pattern classification. One of the differences between all of these methodologies is the type of input stimuli presented to the networks, i.e., how the EEG signal is introduced in the network. Five types of input stimuli have been commonly found in literature: raw EEG signal, morphological descriptors (i.e. parameters related to the signal’s morphology), Fast Fourier Transform (FFT) spectrum, Short-Time Fourier Transform (STFT) spectrograms and Wavelet Transform features. This study evaluates the application of these five types of input stimuli and compares the classification results of neural networks that were implemented using each of these inputs. The performance of using raw signal varied between 43 and 84% efficiency. The results of FFT spectrum and STFT spectrograms were quite similar with average efficiency being 73 and 77%, respectively. The efficiency of Wavelet Transform features varied between 57 and 81% while the descriptors presented efficiency values between 62 and 93%. After simulations we could observe that the best results were achieved when either morphological descriptors or Wavelet features were used as input stimuli.

Keywords: Artificial neural network, electroencephalogram signal, pattern recognition, signal processing

Procedia PDF Downloads 528
401 Relationship between Thumb Length and Pointing Performance on Portable Terminal with Touch-Sensitive Screen

Authors: Takahiro Nishimura, Kouki Doi, Hiroshi Fujimoto

Abstract:

Touch-sensitive screens that serve as displays and input devices have been adopted in many portable terminals such as smartphones and personal media players, and the market of touch-sensitive screens has expanded greatly. One of the advantages of touch-sensitive screen is the flexibility in the graphical user interface (GUI) design, and it is imperative to design an appropriate GUI to realize an easy-to-use interface. Moreover, it is important to evaluate the relationship between pointing performance and GUI design. There is much knowledge regarding easy-to-use GUI designs for portable terminals with touch-sensitive screens, and most have focused on GUI design approaches for women or children with small hands. In contrast, GUI design approaches for users with large hands have not received sufficient attention. In this study, to obtain knowledge that contributes to the establishment of individualized easy-to-use GUI design guidelines, we conducted experiments to investigate the relationship between thumb length and pointing performance on portable terminals with touch-sensitive screens. In this study, fourteen college students who participated in the experiment were divided into two groups based on the length of their thumbs. Specifically, we categorized the participants into two groups, thumbs longer than 64.2 mm into L (Long) group, and thumbs longer than 57.4 mm but shorter than 64.2 mm into A (Average) group, based on Japanese anthropometric database. They took part in this study under the authorization of Waseda University’s ‘Ethics Review Committee on Research with Human Subjects’. We created an application for the experimental task and implemented it on the projected capacitive touch-sensitive screen portable terminal (iPod touch (4th generation)). The display size was 3.5 inch and 960 × 640 - pixel resolution at 326 ppi (pixels per inch). This terminal was selected as the experimental device, because of its wide use and market share. The operational procedure of the application is as follows. First, the participants placed their thumb on the start position. Then, one cross-shaped target in a 10 × 7 array of 70 positions appeared at random. The participants pointed the target with their thumb as accurately and as fast as possible. Then, they returned their thumb to the start position and waited. The operation ended when this procedure had been repeated until all 70 targets had each been pointed at once by the participants. We adopted the evaluation indices for absolute error, variable error, and pointing time to investigate pointing performance when using the portable terminal. The results showed that pointing performance varied with thumb length. In particular, on the lower right side of the screen, the performance of L group with long thumb was low. Further, we presented an approach for designing easy-to- use button GUI for users with long thumbs. The contributions of this study include revelation of the relationship between pointing performance and user’s thumb length when using a portable terminal in terms of accuracy, precision, and speed of pointing. We hope that these findings contribute to an easy-to-use GUI design for users with large hands.

Keywords: pointing performance, portable terminal, thumb length, touch-sensitive screen

Procedia PDF Downloads 164
400 Methodology for Risk Assessment of Nitrosamine Drug Substance Related Impurities in Glipizide Antidiabetic Formulations

Authors: Ravisinh Solanki, Ravi Patel, Chhaganbhai Patel

Abstract:

Purpose: The purpose of this study is to develop a methodology for the risk assessment and evaluation of nitrosamine impurities in Glipizide antidiabetic formulations. Nitroso compounds, including nitrosamines, have emerged as significant concerns in drug products, as highlighted by the ICH M7 guidelines. This study aims to identify known and potential sources of nitrosamine impurities that may contaminate Glipizide formulations and assess their presence. By determining observed or predicted levels of these impurities and comparing them with regulatory guidance, this research will contribute to ensuring the safety and quality of combination antidiabetic drug products on the market. Factors contributing to the presence of genotoxic nitrosamine contaminants in glipizide medications, such as secondary and tertiary amines, and nitroso group-complex forming molecules, will be investigated. Additionally, conditions necessary for nitrosamine formation, including the presence of nitrosating agents, and acidic environments, will be examined to enhance understanding and mitigation strategies. Method: The methodology for the study involves the implementation of the N-Nitroso Acid Precursor (NAP) test, as recommended by the WHO in 1978 and detailed in the 1980 International Agency for Research on Cancer monograph. Individual glass vials containing equivalent to 10mM quantities of Glipizide is prepared. These compounds are dissolved in an acidic environment and supplemented with 40 mM NaNO2. The resulting solutions are maintained at a temperature of 37°C for a duration of 4 hours. For the analysis of the samples, an HPLC method is employed for fit-for-purpose separation. LC resolution is achieved using a step gradient on an Agilent Eclipse Plus C18 column (4.6 X 100 mm, 3.5µ). Mobile phases A and B consist of 0.1% v/v formic acid in water and acetonitrile, respectively, following a gradient mode program. The flow rate is set at 0.6 mL/min, and the column compartment temperature is maintained at 35°C. Detection is performed using a PDA detector within the wavelength range of 190-400 nm. To determine the exact mass of formed nitrosamine drug substance related impurities (NDSRIs), the HPLC method is transferred to LC-TQ-MS/MS with the same mobile phase composition and gradient program. The injection volume is set at 5 µL, and MS analysis is conducted in Electrospray Ionization (ESI) mode within the mass range of 100−1000 Daltons. Results: The samples of NAP test were prepared according to the protocol. The samples were analyzed using HPLC and LC-TQ-MS/MS identify possible NDSRIs generated in different formulations of glipizide. It was found that the NAP test generated a various NDSRIs. The new finding, which has not been reported yet, discovered contamination of Glipizide. These NDSRIs are categorised based on the predicted carcinogenic potency and recommended its acceptable intact in medicines. The analytical method was found specific and reproducible.

Keywords: NDSRI, nitrosamine impurities, antidiabetic, glipizide, LC-MS/MS

Procedia PDF Downloads 33
399 Artificial Neural Network and Satellite Derived Chlorophyll Indices for Estimation of Wheat Chlorophyll Content under Rainfed Condition

Authors: Muhammad Naveed Tahir, Wang Yingkuan, Huang Wenjiang, Raheel Osman

Abstract:

Numerous models used in prediction and decision-making process but most of them are linear in natural environment, and linear models reach their limitations with non-linearity in data. Therefore accurate estimation is difficult. Artificial Neural Networks (ANN) found extensive acceptance to address the modeling of the complex real world for the non-linear environment. ANN’s have more general and flexible functional forms than traditional statistical methods can effectively deal with. The link between information technology and agriculture will become more firm in the near future. Monitoring crop biophysical properties non-destructively can provide a rapid and accurate understanding of its response to various environmental influences. Crop chlorophyll content is an important indicator of crop health and therefore the estimation of crop yield. In recent years, remote sensing has been accepted as a robust tool for site-specific management by detecting crop parameters at both local and large scales. The present research combined the ANN model with satellite-derived chlorophyll indices from LANDSAT 8 imagery for predicting real-time wheat chlorophyll estimation. The cloud-free scenes of LANDSAT 8 were acquired (Feb-March 2016-17) at the same time when ground-truthing campaign was performed for chlorophyll estimation by using SPAD-502. Different vegetation indices were derived from LANDSAT 8 imagery using ERADAS Imagine (v.2014) software for chlorophyll determination. The vegetation indices were including Normalized Difference Vegetation Index (NDVI), Green Normalized Difference Vegetation Index (GNDVI), Chlorophyll Absorbed Ratio Index (CARI), Modified Chlorophyll Absorbed Ratio Index (MCARI) and Transformed Chlorophyll Absorbed Ratio index (TCARI). For ANN modeling, MATLAB and SPSS (ANN) tools were used. Multilayer Perceptron (MLP) in MATLAB provided very satisfactory results. For training purpose of MLP 61.7% of the data, for validation purpose 28.3% of data and rest 10% of data were used to evaluate and validate the ANN model results. For error evaluation, sum of squares error and relative error were used. ANN model summery showed that sum of squares error of 10.786, the average overall relative error was .099. The MCARI and NDVI were revealed to be more sensitive indices for assessing wheat chlorophyll content with the highest coefficient of determination R²=0.93 and 0.90 respectively. The results suggested that use of high spatial resolution satellite imagery for the retrieval of crop chlorophyll content by using ANN model provides accurate, reliable assessment of crop health status at a larger scale which can help in managing crop nutrition requirement in real time.

Keywords: ANN, chlorophyll content, chlorophyll indices, satellite images, wheat

Procedia PDF Downloads 146
398 Operation System for Aluminium-Air Cell: A Strategy to Harvest the Energy from Secondary Aluminium

Authors: Binbin Chen, Dennis Y. C. Leung

Abstract:

Aluminium (Al) -air cell holds a high volumetric capacity density of 8.05 Ah cm-3, benefit from the trivalence of Al ions. Additional benefits of Al-air cell are low price and environmental friendliness. Furthermore, the Al energy conversion process is characterized of 100% recyclability in theory. Along with a large base of raw material reserve, Al attracts considerable attentions as a promising material to be integrated within the global energy system. However, despite the early successful applications in military services, several problems exist that prevent the Al-air cells from widely civilian use. The most serious issue is the parasitic corrosion of Al when contacts with electrolyte. To overcome this problem, super-pure Al alloyed with various traces of metal elements are used to increase the corrosion resistance. Nevertheless, high-purity Al alloys are costly and require high energy consumption during production process. An alternative approach is to add inexpensive inhibitors directly into the electrolyte. However, such additives would increase the internal ohmic resistance and hamper the cell performance. So far these methods have not provided satisfactory solutions for the problem within Al-air cells. For the operation of alkaline Al-air cell, there are still other minor problems. One of them is the formation of aluminium hydroxide in the electrolyte. This process decreases ionic conductivity of electrolyte. Another one is the carbonation process within the gas diffusion layer of cathode, blocking the porosity of gas diffusion. Both these would hinder the performance of cells. The present work optimizes the above problems by building an Al-air cell operation system, consisting of four components. A top electrolyte tank containing fresh electrolyte is located at a high level, so that it can drive the electrolyte flow by gravity force. A mechanical rechargeable Al-air cell is fabricated with low-cost materials including low grade Al, carbon paper, and PMMA plates. An electrolyte waste tank with elaborate channel is designed to separate the hydrogen generated from the corrosion, which would be collected by gas collection device. In the first section of the research work, we investigated the performance of the mechanical rechargeable Al-air cell with a constant flow rate of electrolyte, to ensure the repeatability experiments. Then the whole system was assembled together and the feasibility of operating was demonstrated. During experiment, pure hydrogen is collected by collection device, which holds potential for various applications. By collecting this by-product, high utilization efficiency of aluminum is achieved. Considering both electricity and hydrogen generated, an overall utilization efficiency of around 90 % or even higher under different working voltages are achieved. Fluidic electrolyte could remove aluminum hydroxide precipitate and solve the electrolyte deterioration problem. This operation system provides a low-cost strategy for harvesting energy from the abundant secondary Al. The system could also be applied into other metal-air cells and is suitable for emergency power supply, power plant and other applications. The low cost feature implies great potential for commercialization. Further optimization, such as scaling up and optimization of fabrication, will help to refine the technology into practical market offerings.

Keywords: aluminium-air cell, high efficiency, hydrogen, mechanical recharge

Procedia PDF Downloads 283
397 The Effectiveness of the South African Government Theory of Expanded Public Works Program: Infrastructure

Authors: Siziwe Monica Zuma

Abstract:

The Expanded Public Works Program (EPWP) is an instrument that the South African Government uses to reduce unemployment and poverty and also stimulate economic growth. However, due to the limited budget and programs in the EPWP, the program has had challenges in reducing unemployment, poverty and stimulating economic growth. The EPWP Vuk’uphile program had positive outcomes in developing Black emerging contractors, in order for them to participate in the main stream economy far better than when the EPWP program was not introduced. The Skills component of the program particularly the EPWP Infrastructure, which is the most funded program under EPWP has had limited success in transferring appropriate skills to ensure labour participants can penetrate the labour market after participating in the EPWP. Education and skills are important attributes that can contribute to labour absorption, however, the EPWP particularly the infrastructure program needs to strengthen skills development over a longer period of time suggested a year with multi skills relevant to the labour market. Longer and more sustained employment provides a safety net and reduces poverty better that short term employment. The EPWP program can be expanded in the infrastructure sector, focusing on rural infrastructure, agricultural infrastructure, infrastructure related components like property, ownership, management, and other services. These can stimulate the Economic sector Infrastructure of EPWP, offer longer term and more sustained employment and rural enterprise development and further employment. The Expanded Public Works Program (EPWP) is an instrument that the South African Government uses to reduce unemployment and poverty and also stimulate economic growth. However, due to the limited budget and programs in the EPWP, the program has had challenges in reducing unemployment, poverty and stimulating economic growth. The EPWP Vuk’uphile program has had positive outcomes in developing Black emerging contractors, in order for them to participate in the main stream economy far better than when the EPWP program was not introduced. The Skills component of the program particularly the EPWP Infrastructure, which is the most funded program under EPWP has had limited success in transferring appropriate skills to ensure labour participants are able to penetrate the labour market after participating in the EPWP. Education and skills are important attributes that can contribute to labour absorption, however, the EPWP particularly the infrastructure program needs to strengthen skills development over a longer period of time suggested a year with multi skills relevant to the labour market. Longer and more sustained employment provides a safety net and reduces poverty better that short term employment. The EPWP program can be expanded in the infrastructure sector, focusing on rural infrastructure, agricultural infrastructure, infrastructure related components like property, ownership, management, and other services. These can stimulate the Economic sector Infrastructure of EPWP, offer longer term and more sustained employment and rural enterprise development and further employment.

Keywords: Expanded Public Works Program (EPWP), VUKÚPHILE, youth, Public Works Programs (PWP), Infrastructure Sector of EPWP (EPWP Infrastructure)

Procedia PDF Downloads 218
396 Production of Functional Crackers Enriched with Olive (Olea europaea L.) Leaf Extract

Authors: Rosa Palmeri, Julieta I. Monteleone, Antonio C. Barbera, Carmelo Maucieri, Aldo Todaro, Virgilio Giannone, Giovanni Spagna

Abstract:

In recent years, considerable interest has been shown in the functional properties of foods, and a relevant role has been played by phenolic compounds, able to scavenge free radicals. A more sustainable agriculture has to emerge to guarantee food supply over the next years. Wheat, corn, and rice are the most common cereals cultivated, but also other cereal species, such as barley can be appreciated for their peculiarities. Barley (Hordeum vulgare L.) is a C3 winter cereal that shows high resistance at drought and salt stresses. There are growing interests in barley as ingredient for the production of functional foods due to its high content of phenolic compounds and Beta-glucans. In this respect, the possibility of separating specific functional fractions from food industry by-products looks very promising. Olive leaves represent a quantitatively significant by-product of olive grove farming, and are an interesting source of phenolic compounds. In particular, oleuropein, which provide important nutritional benefits, is the main phenolic compound in olive leaves and ranges from 17% to 23% depending upon the cultivar and growing season period. Together with oleuropein and its derivatives (e.g. dimethyloleuropein, oleuropein diglucoside), olive leaves further contain tyrosol, hydroxytyrosol, and a series of secondary metabolities structurally related to them: verbascoside, ligstroside, hydroxytyrosol glucoside, tyrosol glucoside, oleuroside, oleoside-11-methyl ester, and nuzhenide. Several flavonoids, flavonoid glycosides, and phenolic acids have also described in olive leaves. The aim of this work was the production of functional food with higher content of polyphenols and the evaluation of their shelf life. Organic durum wheat and barley grains contain higher levels of phenolic compounds were used for the production of crackers. Olive leaf extract (OLE) was obtained from cv. ‘Biancolilla’ by aqueous extraction method. Two baked goods trials were performed with both organic durum wheat and barley flours, adding olive leaf extract. Control crackers, made as comparison, were produced with the same formulation replacing OLE with water. Total phenolic compound, moisture content, activity water, and textural properties at different time of storage were determined to evaluate the shelf-life of the products. Our the preliminary results showed that the enriched crackers showed higher phenolic content and antioxidant activity than control. Alternative uses of olive leaf extracts for crackers production could represent a good candidate for the addition of functional ingredients because bakery items are daily consumed, and have long shelf-life.

Keywords: barley, functional foods, olive leaf, polyphenols, shelf life

Procedia PDF Downloads 302
395 Evaluation of the Performance Measures of Two-Lane Roundabout and Turbo Roundabout with Varying Truck Percentages

Authors: Evangelos Kaisar, Anika Tabassum, Taraneh Ardalan, Majed Al-Ghandour

Abstract:

The economy of any country is dependent on its ability to accommodate the movement and delivery of goods. The demand for goods movement and services increases truck traffic on highways and inside the cities. The livability of most cities is directly affected by the congestion and environmental impacts of trucks, which are the backbone of the urban freight system. Better operation of heavy vehicles on highways and arterials could lead to the network’s efficiency and reliability. In many cases, roundabouts can respond better than at-level intersections to enable traffic operations with increased safety for both cars and heavy vehicles. Recently emerged, the concept of turbo-roundabout is a viable alternative to the two-lane roundabout aiming to improve traffic efficiency. The primary objective of this study is to evaluate the operation and performance level of an at-grade intersection, a conventional two-lane roundabout, and a basic turbo roundabout for freight movements. To analyze and evaluate the performances of the signalized intersections and the roundabouts, micro simulation models were developed PTV VISSIM. The networks chosen for this analysis in this study are to experiment and evaluate changes in the performance of the movement of vehicles with different geometric and flow scenarios. There are several scenarios that were examined when attempting to assess the impacts of various geometric designs on vehicle movements. The overall traffic efficiency depends on the geometric layout of the intersections, which consists of traffic congestion rate, hourly volume, frequency of heavy vehicles, type of road, and the ratio of major-street versus side-street traffic. The traffic performance was determined by evaluating the delay time, number of stops, and queue length of each intersection for varying truck percentages. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. More specifically, it is clear that two-lane roundabouts are seen to have shorter queue lengths compared to signalized intersections and turbo-roundabouts. For instance, considering the scenario where the volume is highest, and the truck movement and left turn movement are maximum, the signalized intersection has 3 times, and the turbo-roundabout has 5 times longer queue length than a two-lane roundabout in major roads. Similarly, on minor roads, signalized intersections and turbo-roundabouts have 11 times longer queue lengths than two-lane roundabouts for the same scenario. As explained from all the developed scenarios, while the traffic demand lowers, the queue lengths of turbo-roundabouts shorten. This proves that turbo roundabouts perform well for low and medium traffic demand. The results indicate that turbo-roundabouts can replace signalized intersections and two-lane roundabouts only when the traffic demand is low, even with high truck volume. Finally, this study provides recommendations on the conditions under which different intersections perform better than each other.

Keywords: At-grade intersection, simulation, turbo-roundabout, two-lane roundabout

Procedia PDF Downloads 150
394 Escaping Domestic Violence in Time of Conflict: The Ways Female Refugees Decide to Flee

Authors: Zofia Wlodarczyk

Abstract:

I study the experiences of domestic violence survivors who flee their countries of origin in times of political conflict using insight and evidence from forty-five biographical interviews with female Chechen refugees and twelve refugee resettlement professionals in Poland. Both refugees and women are often described as having less agency—that is, they lack the power to decide to migrate – refugees less than economic migrants and women less than men. In this paper, I focus on how female refugees who have been victims of domestic violence make decisions about leaving their countries of origin during times of political conflict. I use several existing migration theories to trace how the migration experience of these women is shaped by dynamics at different levels of society: the macro level, the meso level and the micro level. At the macro level of analysis, I find that political conflict can be both a source of and an escape from domestic violence. Ongoing conflict can strengthen the patriarchal cultural norms, increase violence and constrain women’s choices when it comes to marriage. However, political conflict can also destabilize families and make pathways for women to escape. At the meso level I demonstrate that other political migrants and institutions that emerge due to politically triggered migration can guide those fleeing domestic violence. Finally, at the micro level, I show that family dynamics often force domestic abuse survivors to make their decision to escape alone or with the support of only the most trusted female relatives. Taken together, my analyses show that we cannot look solely at one level of society when describing decision-making processes of women fleeing domestic violence. Conflict-related micro, meso and macro forces interact with and influence each other: on the one hand, strengthening an abusive trap, and on the other hand, opening a door to escape. This study builds upon several theoretical and empirical debates. First, it expands theories of migration by incorporating both refugee and gender perspectives. Few social scientists have used the migration theory framework to discuss the unique circumstances of refugee flows. Those who have mainly focus on “political” migrants, a designation that frequently fails to account for gender, does not incorporate individuals fleeing gender-based violence, including domestic-violence victims. The study also enriches migration scholarship, typically focused on the US and Western-European context, with research from Eastern Europe and Caucasus. Moreover, it contributes to the literature on the changing roles of gender in the context of migration. I argue that understanding how gender roles and hierarchies influence the pre-migration stage of female refugees is crucial, as it may have implications for policy-making efforts in host countries that recognize the asylum claims of those fleeing domestic violence. This study also engages in debates about asylum and refugee law. Domestic violence is normatively and often legally considered an individual-level problem whereas political persecution is recognized as a structural or societal level issue. My study challenges these notions by showing how the migration triggered by domestic violence is closely intertwined with politically motivated refuge.

Keywords: AGENCY, DOMESTIC VIOLENCE, FEMALE REFUGEES, POLITICAL REFUGE, SOCIAL NETWORKS

Procedia PDF Downloads 169
393 Structural Characterization and Hot Deformation Behaviour of Al3Ni2/Al3Ni in-situ Core-shell intermetallic in Al-4Cu-Ni Composite

Authors: Ganesh V., Asit Kumar Khanra

Abstract:

An in-situ powder metallurgy technique was employed to create Ni-Al3Ni/Al3Ni2 core-shell-shaped aluminum-based intermetallic reinforced composites. The impact of Ni addition on the phase composition, microstructure, and mechanical characteristics of the Al-4Cu-xNi (x = 0, 2, 4, 6, 8, 10 wt.%) in relation to various sintering temperatures was investigated. Microstructure evolution was extensively examined using X-ray diffraction (XRD), scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscopy (TEM) techniques. Initially, under sintering conditions, the formation of "Single Core-Shell" structures was observed, consisting of Ni as the core with Al3Ni2 intermetallic, whereas samples sintered at 620°C exhibited both "Single Core-Shell" and "Double Core-Shell" structures containing Al3Ni2 and Al3Ni intermetallics formed between the Al matrix and Ni reinforcements. The composite achieved a high compressive yield strength of 198.13 MPa and ultimate strength of 410.68 MPa, with 24% total elongation for the sample containing 10 wt.% Ni. Additionally, there was a substantial increase in hardness, reaching 124.21 HV, which is 2.4 times higher than that of the base aluminum. Nanoindentation studies showed hardness values of 1.54, 4.65, 21.01, 13.16, 5.52, 6.27, and 8.39GPa corresponding to α-Al matrix, Ni, Al3Ni2, Ni and Al3Ni2 interface, Al3Ni, and their respective interfaces. Even at 200°C, it retained 54% of its room temperature strength (90.51 MPa). To investigate the deformation behavior of the composite material, experiments were conducted at deformation temperatures ranging from 300°C to 500°C, with strain rates varying from 0.0001s-1 to 0.1s-1. A sine-hyperbolic constitutive equation was developed to characterize the flow stress of the composite, which exhibited a significantly higher hot deformation activation energy of 231.44 kJ/mol compared to the self-diffusion of pure aluminum. The formation of Al2Cu intermetallics at grain boundaries and Al3Ni2/Al3Ni within the matrix hindered dislocation movement, leading to an increase in activation energy, which might have an adverse effect on high-temperature applications. Two models, the Strain-compensated Arrhenius model and the Artificial Neural Network (ANN) model, were developed to predict the composite's flow behavior. The ANN model outperformed the Strain-compensated Arrhenius model with a lower average absolute relative error of 2.266%, a smaller root means square error of 1.2488 MPa, and a higher correlation coefficient of 0.9997. Processing maps revealed that the optimal hot working conditions for the composite were in the temperature range of 420-500°C and strain rates between 0.0001s-1 and 0.001s-1. The changes in the composite microstructure were successfully correlated with the theory of processing maps, considering temperature and strain rate conditions. The uneven distribution in the shape and size of Core-shell/Al3Ni intermetallic compounds influenced the flow stress curves, leading to Dynamic Recrystallization (DRX), followed by partial Dynamic Recovery (DRV), and ultimately strain hardening. This composite material shows promise for applications in the automobile and aerospace industries.

Keywords: core-shell structure, hot deformation, intermetallic compounds, powder metallurgy

Procedia PDF Downloads 20
392 Thinking Lean in ICU: A Time Motion Study Quantifying ICU Nurses’ Multitasking Time Allocation

Authors: Fatma Refaat Ahmed, Sally Mohamed Farghaly

Abstract:

Context: Intensive care unit (ICU) nurses often face pressure and constraints in their work, leading to the rationing of care when demands exceed available time and resources. Observations suggest that ICU nurses are frequently distracted from their core nursing roles by non-core tasks. This study aims to provide evidence on ICU nurses' multitasking activities and explore the association between nurses' personal and clinical characteristics and their time allocation. Research Aim: The aim of this study is to quantify the time spent by ICU nurses on multitasking activities and investigate the relationship between their personal and clinical characteristics and time allocation. Methodology: A self-observation form utilizing the "Diary" recording method was used to record the number of tasks performed by ICU nurses and the time allocated to each task category. Nurses also reported on the distractions encountered during their nursing activities. A convenience sample of 60 ICU nurses participated in the study, with each nurse observed for one nursing shift (6 hours), amounting to a total of 360 hours. The study was conducted in two ICUs within a university teaching hospital in Alexandria, Egypt. Findings: The results showed that ICU nurses completed 2,730 direct patient-related tasks and 1,037 indirect tasks during the 360-hour observation period. Nurses spent an average of 33.65 minutes on ventilator care-related tasks, 14.88 minutes on tube care-related tasks, and 10.77 minutes on inpatient care-related tasks. Additionally, nurses spent an average of 17.70 minutes on indirect care tasks per hour. The study identified correlations between nursing time and nurses' personal and clinical characteristics. Theoretical Importance: This study contributes to the existing research on ICU nurses' multitasking activities and their relationship with personal and clinical characteristics. The findings shed light on the significant time spent by ICU nurses on direct care for mechanically ventilated patients and the distractions that require attention from ICU managers. Data Collection: Data were collected using self-observation forms completed by participating ICU nurses. The forms recorded the number of tasks performed, the time allocated to each task category, and any distractions encountered during nursing activities. Analysis Procedures: The collected data were analyzed to quantify the time spent on different tasks by ICU nurses. Correlations were also examined between nursing time and nurses' personal and clinical characteristics. Question Addressed: This study addressed the question of how ICU nurses allocate their time across multitasking activities and whether there is an association between nurses' personal and clinical characteristics and time allocation. Conclusion: The findings of this study emphasize the need for a lean evaluation of ICU nurses' activities to identify and address potential gaps in patient care and distractions. Implementing lean techniques can improve efficiency, safety, clinical outcomes, and satisfaction for both patients and nurses, ultimately enhancing the quality of care and organizational performance in the ICU setting.

Keywords: motion study, ICU nurse, lean, nursing time, multitasking activities

Procedia PDF Downloads 68
391 A Resilience-Based Approach for Assessing Social Vulnerability in New Zealand's Coastal Areas

Authors: Javad Jozaei, Rob G. Bell, Paula Blackett, Scott A. Stephens

Abstract:

In the last few decades, Social Vulnerability Assessment (SVA) has been a favoured means in evaluating the susceptibility of social systems to drivers of change, including climate change and natural disasters. However, the application of SVA to inform responsive and practical strategies to deal with uncertain climate change impacts has always been challenging, and typically agencies resort back to conventional risk/vulnerability assessment. These challenges include complex nature of social vulnerability concepts which influence its applicability, complications in identifying and measuring social vulnerability determinants, the transitory social dynamics in a changing environment, and unpredictability of the scenarios of change that impacts the regime of vulnerability (including contention of when these impacts might emerge). Research suggests that the conventional quantitative approaches in SVA could not appropriately address these problems; hence, the outcomes could potentially be misleading and not fit for addressing the ongoing uncertain rise in risk. The second phase of New Zealand’s Resilience to Nature’s Challenges (RNC2) is developing a forward-looking vulnerability assessment framework and methodology that informs the decision-making and policy development in dealing with the changing coastal systems and accounts for complex dynamics of New Zealand’s coastal systems (including socio-economic, environmental and cultural). Also, RNC2 requires the new methodology to consider plausible drivers of incremental and unknowable changes, create mechanisms to enhance social and community resilience; and fits the New Zealand’s multi-layer governance system. This paper aims to analyse the conventional approaches and methodologies in SVA and offer recommendations for more responsive approaches that inform adaptive decision-making and policy development in practice. The research adopts a qualitative research design to examine different aspects of the conventional SVA processes, and the methods to achieve the research objectives include a systematic review of the literature and case study methods. We found that the conventional quantitative, reductionist and deterministic mindset in the SVA processes -with a focus the impacts of rapid stressors (i.e. tsunamis, floods)- show some deficiencies to account for complex dynamics of social-ecological systems (SES), and the uncertain, long-term impacts of incremental drivers. The paper will focus on addressing the links between resilience and vulnerability; and suggests how resilience theory and its underpinning notions such as the adaptive cycle, panarchy, and system transformability could address these issues, therefore, influence the perception of vulnerability regime and its assessment processes. In this regard, it will be argued that how a shift of paradigm from ‘specific resilience’, which focuses on adaptive capacity associated with the notion of ‘bouncing back’, to ‘general resilience’, which accounts for system transformability, regime shift, ‘bouncing forward’, can deliver more effective strategies in an era characterised by ongoing change and deep uncertainty.

Keywords: complexity, social vulnerability, resilience, transformation, uncertain risks

Procedia PDF Downloads 101
390 Comparative Chromatographic Profiling of Wild and Cultivated Macrocybe Gigantea (Massee) Pegler & Lodge

Authors: Gagan Brar, Munruchi Kaur

Abstract:

Macrocybe gigantea was collected from the wild, growing as pure white, fleshy, robust fruit bodies in caespitose clusters. Initially, the few ladies collecting these fruiting bodies for cooking revealed their edibility status, which was later confirmed through classical and molecular taxonomy. The culture of this potential wild edible taxa was raised with an aim of domesticating it. Various solid and liquid media were evaluated for their vegetative growth, in which Malt Extract Agar was found to be the best solid medium and Glucose Peptone medium as the best liquid medium. The effect of different temperatures as well as pH was also evaluated for the vegetative growth of M. gigantea, and it was found that it shows maximum vegetative growth at 30° and pH 5. For spawn preparation, various grains viz. Wheat grains, Jowar grains, Bajra grains and Maize grains were evaluated, and it was found that wheat grains boiled for 30 minutes gave the maximum mycelial growth. Mother spawn was thus prepared on wheat grains boiled for 30 minutes. For raising the fruiting bodies, different locally available agro-wastes were tried, and it was found that paddy straw gives the best growth. Both wilds as well as cultivated M. gigantea were compared through HPLC to evaluate the different nutritional and nutraceutical values. For the evaluation of different sugars in wild and cultivated M. gigantea, 15 sugars were taken for analysis. Among these Melezitose, Trehalose, Glucose, Xylose and Mannitol were found in the wild collection of M. gigantea; in the cultivated sample, Melezitose, Trehalose, Xylose and Dulcitol were detected. Among the 20 different amino acids, 18 amino acids were found, except Asparagine and Glutamine in both wild as well as cultivated samples. Among the 37 tested fatty acids, only 6 fatty acids, namely Palmitic acid, Stearic acid, Cis-9 Oleic acid, Linoleic acid, Gamma-Linolenic acid and Tricosanoic acid, were found in both wild and cultivated samples, although the concentration of these fatty acids was more in the cultivated sample. From the various vitamins tested, Vitamin C, D and E were present in both wild and cultivated samples. Both wild as well as cultivated samples were evaluated for the presence of phenols; for this purpose, eleven phenols were taken as standards in HPLC analysis, and it was found that Gallic acid, Resorcinol, Ferulic acid and Pyrogallol were present in the wild mushroom sample whereas in the cultivated sample Ferulic acid, Caffeic Acid, Vanillic acid and Vanillin are present. The flavonoid analysis revealed the presence of Rutin, Naringin and Quercetin in wild M. gigantea, while 5 Naringin, Catechol, Myrecetin, Gossypin and Quercetin were found in cultivated one. From the comparative chromatographic profiling of both wild as well as cultivated M. gigantea, it is concluded that no nutrient loss was found during its cultivation. An increase in percentage of secondary metabolites (i.e., phenols and flavonoids) was found in cultivated one as compared to wild M. gigantea. Thus, from future perspective cultivated species of M. gigantea can be recommended for the commercial purpose as a good food supplement.

Keywords: culture, edible, fruit bodies, wild

Procedia PDF Downloads 72
389 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 71
388 Molecular Migration in Polyvinyl Acetate Matrix: Impact of Compatibility, Number of Migrants and Stress on Surface and Internal Microstructure

Authors: O. Squillace, R. L. Thompson

Abstract:

Migration of small molecules to, and across the surface of polymer matrices is a little-studied problem with important industrial applications. Tackifiers in adhesives, flavors in foods and binding agents in paints all present situations where the function of a product depends on the ability of small molecules to migrate through a polymer matrix to achieve the desired properties such as softness, dispersion of fillers, and to deliver an effect that is felt (or tasted) on a surface. It’s been shown that the chemical and molecular structure, surface free energies, phase behavior, close environment and compatibility of the system, influence the migrants’ motion. When differences in behavior, such as occurrence of segregation to the surface or not, are observed it is then of crucial importance to identify and get a better understanding of the driving forces involved in the process of molecular migration. In this aim, experience is meant to be allied with theory in order to deliver a validated theoretical and computational toolkit to describe and predict these phenomena. The systems that have been chosen for this study aim to address the effect of polarity mismatch between the migrants and the polymer matrix and that of a second migrant over the first one. As a non-polar resin polymer, polyvinyl acetate is used as the material to which more or less polar migrants (sorbitol, carvone, octanoic acid (OA), triacetin) are to be added. Through contact angle measurement a surface excess is seen for sorbitol (polar) mixed with PVAc as the surface energy is lowered compare to the one of pure PVAc. This effect is increased upon the addition of carvon or triacetin (non-polars). Surface micro-structures are also evidenced by atomic force microscopy (AFM). Ion beam analysis (Nuclear Reaction Analysis), supplemented by neutron reflectometry can accurately characterize the self-organization of surfactants, oligomers, aromatic molecules in polymer films in order to relate the macroscopic behavior to the length scales that are amenable to simulation. The nuclear reaction analysis (NRA) data for deuterated OA 20% shows the evidence of a surface excess which is enhanced after annealing. The addition of 10% triacetin, as a second migrant, results in the formation of an underlying layer enriched in triacetin below the surface excess of OA. The results show that molecules in polarity mismatch with the matrix tend to segregate to the surface, and this is favored by the addition of a second migrant of the same polarity than the matrix. As studies have been restricted to materials that are model supported films under static conditions in a first step, it is also wished to address the more challenging conditions of materials under controlled stress or strain. To achieve this, a simple rig and PDMS cell have been designed to stretch the material to a defined strain and to probe these mechanical effects by ion beam analysis and atomic force microscopy. This will make a significant step towards exploring the influence of extensional strain on surface segregation, flavor release in cross-linked rubbers.

Keywords: polymers, surface segregation, thin films, molecular migration

Procedia PDF Downloads 132
387 Simulation Research of Innovative Ignition System of ASz62IR Radial Aircraft Engine

Authors: Miroslaw Wendeker, Piotr Kacejko, Mariusz Duk, Pawel Karpinski

Abstract:

The research in the field of aircraft internal combustion engines is currently driven by the needs of decreasing fuel consumption and CO2 emissions, while fulfilling the level of safety. Currently, reciprocating aircraft engines are found in sports, emergency, agricultural and recreation aviation. Technically, they are most at a pre-war knowledge of the theory of operation, design and manufacturing technology, especially if compared to that high level of development of automotive engines. Typically, these engines are driven by carburetors of a quite primitive construction. At present, due to environmental requirements and dealing with a climate change, it is beneficial to develop aircraft piston engines and adopt the achievements of automotive engineering such as computer-controlled low-pressure injection, electronic ignition control and biofuels. The paper describes simulation research of the innovative power and control systems for the aircraft radial engine of high power. Installing an electronic ignition system in the radial aircraft engine is a fundamental innovative idea of this solution. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. In this framework, this research work focuses on describing a methodology for optimizing the electronically controlled ignition system. This attempt can reduce emissions of toxic compounds as a result of lowered fuel consumption, optimized combustion and engine capability of efficient combustion of ecological fuels. New, redundant elements of the control system can improve the safety of aircraft. Consequently, the required level of safety and better functionality as compared to the today’s plug system can be guaranteed. The simulation research aimed to determine the vulnerability of the values measured (they were planned as the quantities measured by the measurement systems) to determining the optimal ignition angle (the angle of maximum torque at a given operating point). The described results covered: a) research in steady states; b) velocity ranging from 1500 to 2200 rpm (every 100 rpm); c) loading ranging from propeller power to maximum power; d) altitude ranging according to the International Standard Atmosphere from 0 to 8000 m (every 1000 m); e) fuel: automotive gasoline ES95. The three models of different types of ignition coil (different energy discharge) were studied. The analysis aimed at the optimization of the design of the innovative ignition system for an aircraft engine. The optimization involved: a) the optimization of the measurement systems; b) the optimization of actuator systems. The studies enabled the research on the vulnerability of the signals to the control of the ignition timing. Accordingly, the number and type of sensors were determined for the ignition system to achieve its optimal performance. The results confirmed the limited benefits, in terms of fuel consumption. Thus, including spark management in the optimization is mandatory to significantly decrease the fuel consumption. This work has been financed by the Polish National Centre for Research and Development, INNOLOT, under Grant Agreement No. INNOLOT/I/1/NCBR/2013.

Keywords: piston engine, radial engine, ignition system, CFD model, engine optimization

Procedia PDF Downloads 386
386 Is Liking for Sampled Energy-Dense Foods Mediated by Taste Phenotypes?

Authors: Gary J. Pickering, Sarah Lucas, Catherine E. Klodnicki, Nicole J. Gaudette

Abstract:

Two taste pheno types that are of interest in the study of habitual diet-related risk factors and disease are 6-n-propylthiouracil (PROP) responsiveness and thermal tasting. Individuals differ considerable in how intensely they experience the bitterness of PROP, which is partially explained by three major single nucleotide polymorphisms associated with the TAS2R38 gene. Importantly, this variable responsiveness is a useful proxy for general taste responsiveness, and links to diet-related disease risk, including body mass index, in some studies. Thermal tasting - a newly discovered taste phenotype independent of PROP responsiveness - refers to the capacity of many individuals to perceive phantom tastes in response to lingual thermal stimulation, and is linked with TRPM5 channels. Thermal tasters (TTs) also experience oral sensations more intensely than thermal non-tasters (TnTs), and this was shown to associate with differences in self-reported food preferences in a previous survey from our lab. Here we report on two related studies, where we sought to determine whether PROP responsiveness and thermal tasting would associate with perceptual differences in the oral sensations elicited by sampled energy-dense foods, and whether in turn this would influence liking. We hypothesized that hyper-tasters (thermal tasters and individuals who experience PROP intensely) would (a) rate sweet and high-fat foods more intensely than hypo-tasters, and (b) would differ from hypo-tasters in liking scores. (Liking has been proposed recently as a more accurate measure of actual food consumption). In Study 1, a range of energy-dense foods and beverages, including table cream and chocolate, was assessed by 25 TTs and 19 TnTs. Ratings of oral sensation intensity and overall liking were obtained using gVAS and gDOL scales, respectively. TTs and TnTs did not differ significantly in intensity ratings for most stimuli (ANOVA). In a 2nd study, 44 female participants sampled 22 foods and beverages, assessing them for intensity of oral sensations (gVAS) and overall liking (9-point hedonic scale). TTs (n=23) rated their overall liking of creaminess and milk products lower than did TnTs (n=21), and liked milk chocolate less. PROP responsiveness was negatively correlated with liking of food and beverages belonging to the sweet or sensory food grouping. No other differences in intensity or liking scores between hyper- and hypo-tasters were found. Taken overall, our results are somewhat unexpected, lending only modest support to the hypothesis that these taste phenotypes associate with energy-dense food liking and consumption through differences in the oral sensations they elicit. Reasons for this lack of concordance with expectations and some prior literature are discussed, and suggestions for future research are advanced.

Keywords: taste phenotypes, sensory evaluation, PROP, thermal tasting, diet-related health risk

Procedia PDF Downloads 457
385 Geovisualisation for Defense Based on a Deep Learning Monocular Depth Reconstruction Approach

Authors: Daniel R. dos Santos, Mateus S. Maldonado, Estevão J. R. Batista

Abstract:

The military commanders increasingly dependent on spatial awareness, as knowing where enemy are, understanding how war battle scenarios change over time, and visualizing these trends in ways that offer insights for decision-making. Thanks to advancements in geospatial technologies and artificial intelligence algorithms, the commanders are now able to modernize military operations on a universal scale. Thus, geovisualisation has become an essential asset in the defense sector. It has become indispensable for better decisionmaking in dynamic/temporal scenarios, operation planning and management for the war field, situational awareness, effective planning, monitoring, and others. For example, a 3D visualization of war field data contributes to intelligence analysis, evaluation of postmission outcomes, and creation of predictive models to enhance decision-making and strategic planning capabilities. However, old-school visualization methods are slow, expensive, and unscalable. Despite modern technologies in generating 3D point clouds, such as LIDAR and stereo sensors, monocular depth values based on deep learning can offer a faster and more detailed view of the environment, transforming single images into visual information for valuable insights. We propose a dedicated monocular depth reconstruction approach via deep learning techniques for 3D geovisualisation of satellite images. It introduces scalability in terrain reconstruction and data visualization. First, a dataset with more than 7,000 satellite images and associated digital elevation model (DEM) is created. It is based on high resolution optical and radar imageries collected from Planet and Copernicus, on which we fuse highresolution topographic data obtained using technologies such as LiDAR and the associated geographic coordinates. Second, we developed an imagery-DEM fusion strategy that combine feature maps from two encoder-decoder networks. One network is trained with radar and optical bands, while the other is trained with DEM features to compute dense 3D depth. Finally, we constructed a benchmark with sparse depth annotations to facilitate future research. To demonstrate the proposed method's versatility, we evaluated its performance on no annotated satellite images and implemented an enclosed environment useful for Geovisualisation applications. The algorithms were developed in Python 3.0, employing open-source computing libraries, i.e., Open3D, TensorFlow, and Pythorch3D. The proposed method provides fast and accurate decision-making with GIS for localization of troops, position of the enemy, terrain and climate conditions. This analysis enhances situational consciousness, enabling commanders to fine-tune the strategies and distribute the resources proficiently.

Keywords: depth, deep learning, geovisualisation, satellite images

Procedia PDF Downloads 10
384 Preliminary Study of Water-Oil Separation Process in Three-Phase Separators Using Factorial Experimental Designs and Simulation

Authors: Caroline M. B. De Araujo, Helenise A. Do Nascimento, Claudia J. Da S. Cavalcanti, Mauricio A. Da Motta Sobrinho, Maria F. Pimentel

Abstract:

Oil production is often followed by the joint production of water and gas. During the journey up to the surface, due to severe conditions of temperature and pressure, the mixing between these three components normally occurs. Thus, the three phases separation process must be one of the first steps to be performed after crude oil extraction, where the water-oil separation is the most complex and important step, since the presence of water into the process line can increase corrosion and hydrates formation. A wide range of methods can be applied in order to proceed with oil-water separation, being more commonly used: flotation, hydrocyclones, as well as the three phase separator vessels. Facing what has been presented so far, it is the aim of this paper to study a system consisting of a three-phase separator, evaluating the influence of three variables: temperature, working pressure and separator type, for two types of oil (light and heavy), by performing two factorial design plans 23, in order to find the best operating condition. In this case, the purpose is to obtain the greatest oil flow rate in the product stream (m3/h) as well as the lowest percentage of water in the oil stream. The simulation of the three-phase separator was performed using Aspen Hysys®2006 simulation software in stationary mode, and the evaluation of the factorial experimental designs was performed using the software Statistica®. From the general analysis of the four normal probability plots of effects obtained, it was observed that interaction effects of two and three factors did not show statistical significance at 95% confidence, since all the values were very close to zero. Similarly, the main effect "separator type" did not show significant statistical influence in any situation. As in this case, it has been assumed that the volumetric flow of water, oil and gas were equal in the inlet stream, the effect separator type, in fact, may not be significant for the proposed system. Nevertheless, the main effect “temperature” was significant for both responses (oil flow rate and mass fraction of water in the oil stream), considering both light and heavy oil, so that the best operation condition occurs with the temperature at its lowest level (30oC), since the higher the temperature, the liquid oil components pass into the vapor phase, going to the gas stream. Furthermore, the higher the temperature, the higher the formation water vapor, so that ends up going into the lighter stream (oil stream), making the separation process more difficult. Regarding the “working pressure”, this effect showed to be significant only for the oil flow rate, so that the best operation condition occurs with the pressure at its highest level (9bar), since a higher operating pressure, in this case, indicated a lower pressure drop inside the vessel, generating lower level of turbulence inside the separator. In conclusion, the best-operating condition obtained for the proposed system, at the studied range, occurs for temperature is at its lowest level and the working pressure is at its highest level.

Keywords: factorial experimental design, oil production, simulation, three-phase separator

Procedia PDF Downloads 289
383 Numerical Investigation of the Influence on Buckling Behaviour Due to Different Launching Bearings

Authors: Nadine Maier, Martin Mensinger, Enea Tallushi

Abstract:

In general, today, two types of launching bearings are used in the construction of large steel and steel concrete composite bridges. These are sliding rockers and systems with hydraulic bearings. The advantages and disadvantages of the respective systems are under discussion. During incremental launching, the center of the webs of the superstructure is not perfectly in line with the center of the launching bearings due to unavoidable tolerances, which may have an influence on the buckling behavior of the web plates. These imperfections are not considered in the current design against plate buckling, according to DIN EN 1993-1-5. It is therefore investigated whether the design rules have to take into account any eccentricities which occur during incremental launching and also if this depends on the respective launching bearing. Therefore, at the Technical University Munich, large-scale buckling tests were carried out on longitudinally stiffened plates under biaxial stresses with the two different types of launching bearings and eccentric load introduction. Based on the experimental results, a numerical model was validated. Currently, we are evaluating different parameters for both types of launching bearings, such as load introduction length, load eccentricity, the distance between longitudinal stiffeners, the position of the rotation point of the spherical bearing, which are used within the hydraulic bearings, web, and flange thickness and imperfections. The imperfection depends on the geometry of the buckling field and whether local or global buckling occurs. This and also the size of the meshing is taken into account in the numerical calculations of the parametric study. As a geometric imperfection, the scaled first buckling mode is applied. A bilinear material curve is used so that a GMNIA analysis is performed to determine the load capacity. Stresses and displacements are evaluated in different directions, and specific stress ratios are determined at the critical points of the plate at the time of the converging load step. To evaluate the load introduction of the transverse load, the transverse stress concentration is plotted on a defined longitudinal section on the web. In the same way, the rotation of the flange is evaluated in order to show the influence of the different degrees of freedom of the launching bearings under eccentric load introduction and to be able to make an assessment for the case, which is relevant in practice. The input and the output are automatized and depend on the given parameters. Thus we are able to adapt our model to different geometric dimensions and load conditions. The programming is done with the help of APDL and a Python code. This allows us to evaluate and compare more parameters faster. Input and output errors are also avoided. It is, therefore, possible to evaluate a large spectrum of parameters in a short time, which allows a practical evaluation of different parameters for buckling behavior. This paper presents the results of the tests as well as the validation and parameterization of the numerical model and shows the first influences on the buckling behavior under eccentric and multi-axial load introduction.

Keywords: buckling behavior, eccentric load introduction, incremental launching, large scale buckling tests, multi axial stress states, parametric numerical modelling

Procedia PDF Downloads 107
382 A Critical Analysis of How the Role of the Imam Can Best Meet the Changing Social, Cultural, and Faith-Based Needs of Muslim Families in 21st Century Britain

Authors: Christine Hough, Eddie Abbott-Halpin, Tariq Mahmood, Jessica Giles

Abstract:

This paper draws together the findings from two research studies, each undertaken with cohorts of South Asian Muslim respondents located in the North of England between 2017 and 2019. The first study, entitled Faith Family and Crime (FFC), investigated the extent to which a Muslim family’s social and health well-being is affected by a family member’s involvement in the Criminal Justice System (CJS). This study captured a range of data through a detailed questionnaire and structured interviews. The data from the interview transcripts were analysed using open coding and an application of aspects of the grounded theory approach. The findings provide clear evidence that the respondents were neither well-informed nor supported throughout the processes of the CJS, from arrest to post-sentencing. These experiences gave rise to mental and physical stress, potentially unfair sentencing, and a significant breakdown in communication within the respondents’ families. They serve to highlight a particular aspect of complexity in the current needs of those South Asian Muslim families who find themselves involved in the CJS and is closely connected to family structure, culture, and faith. The second study, referred to throughout this paper as #ImamsBritain (that provides the majority of content for this paper), explores how Imams, in their role as community faith leaders, can best address the complex – and changing - needs of South Asian Muslims families, such as those that emerged in the findings from FFC. The changing socio-economic and political climates of the last thirty or so years have brought about significant changes to the lives of Muslim families, and these have created more complex levels of social, cultural, and faith-based needs for families and individuals. As a consequence, Imams now have much greater demands made of them, and so their role has undergone far-reaching changes in response to this. The #ImamsBritain respondents identified a pressing need to develop a wider range of pastoral and counseling skills, which they saw as extending far beyond the traditional role of the Imam as a religious teacher and spiritual guide. The #ImamsBritain project was conducted with a cohort of British Imams in the North of England. Data was collected firstly through a questionnaire that related to the respondents’ training and development needs and then analysed in depth using the Delphi approach. Through Delphi, the data were scrutinized in depth using interpretative content analysis. The findings from this project reflect the respondents’ individual perceptions of the kind of training and development they need to fulfill their role in 21st Century Britain. They also provide a unique framework for constructing a professional guide for Imams in Great Britain. The discussions and critical analyses in this paper draw on the discourses of professionalization and pastoral care and relevant reports and reviews on Imam training in Europe and Canada.

Keywords: criminal justice system, faith and culture, Imams, Muslim community leadership, professionalization, South Asian family structure

Procedia PDF Downloads 138
381 Rheolaser: Light Scattering Characterization of Viscoelastic Properties of Hair Cosmetics That Are Related to Performance and Stability of the Respective Colloidal Soft Materials

Authors: Heitor Oliveira, Gabriele De-Waal, Juergen Schmenger, Lynsey Godfrey, Tibor Kovacs

Abstract:

Rheolaser MASTER™ makes use of multiple scattering of light, caused by scattering objects in a continuous medium (such as droplets and particles in colloids), to characterize the viscoelasticity of soft materials. It offers an alternative to conventional rheometers to characterize viscoelasticity of products such as hair cosmetics. Up to six simultaneous measurements at controlled temperature can be carried out simultaneously (10-15 min), and the method requires only minor sample preparation work. Conversely to conventional rheometer based methods, no mechanical stress is applied to the material during the measurements. Therefore, the properties of the exact same sample can be monitored over time, like in aging and stability studies. We determined the elastic index (EI) of water/emulsion mixtures (1 ≤ fat alcohols (FA) ≤ 5 wt%) and emulsion/gel-network mixtures (8 ≤ FA ≤ 17 wt%) and compared with the elastic/sorage mudulus (G’) for the respective samples using a TA conventional rheometer with flat plates geometry. As expected, it was found that log(EI) vs log(G’) presents a linear behavior. Moreover, log(EI) increased in a linear fashion with solids level in the entire range of compositions (1 ≤ FA ≤ 17 wt%), while rheometer measurements were limited to samples down to 4 wt% solids level. Alternatively, a concentric cilinder geometry would be required for more diluted samples (FA > 4 wt%) and rheometer results from different sample holder geometries are not comparable. The plot of the rheolaser output parameters solid-liquid balance (SLB) vs EI were suitable to monitor product aging processes. These data could quantitatively describe some observations such as formation of lumps over aging time. Moreover, this method allowed to identify that the different specifications of a key raw material (RM < 0.4 wt%) in the respective gel-network (GN) product has minor impact on product viscoelastic properties and it is not consumer perceivable after a short aging time. Broadening of a RM spec range typically has a positive impact on cost savings. Last but not least, the photon path length (λ*)—proportional to droplet size and inversely proportional to volume fraction of scattering objects, accordingly to the Mie theory—and the EI were suitable to characterize product destabilization processes (e.g., coalescence and creaming) and to predict product stability about eight times faster than our standard methods. Using these parameters we could successfully identify formulation and process parameters that resulted in unstable products. In conclusion, Rheolaser allows quick and reliable characterization of viscoelastic properties of hair cosmetics that are related to their performance and stability. It operates in a broad range of product compositions and has applications spanning from the formulation of our hair cosmetics to fast release criteria in our production sites. Last but not least, this powerful tool has positive impact on R&D development time—faster delivery of new products to the market—and consequently on cost savings.

Keywords: colloids, hair cosmetics, light scattering, performance and stability, soft materials, viscoelastic properties

Procedia PDF Downloads 172
380 Evaluation of the Role of Advocacy and the Quality of Care in Reducing Health Inequalities for People with Autism, Intellectual and Developmental Disabilities at Sheffield Teaching Hospitals

Authors: Jonathan Sahu, Jill Aylott

Abstract:

Individuals with Autism, Intellectual and Developmental disabilities (AIDD) are one of the most vulnerable groups in society, hampered not only by their own limitations to understand and interact with the wider society, but also societal limitations in perception and understanding. Communication to express their needs and wishes is fundamental to enable such individuals to live and prosper in society. This research project was designed as an organisational case study, in a large secondary health care hospital within the National Health Service (NHS), to assess the quality of care provided to people with AIDD and to review the role of advocacy to reduce health inequalities in these individuals. Methods: The research methodology adopted was as an “insider researcher”. Data collection included both quantitative and qualitative data i.e. a mixed method approach. A semi-structured interview schedule was designed and used to obtain qualitative and quantitative primary data from a wide range of interdisciplinary frontline health care workers to assess their understanding and awareness of systems, processes and evidence based practice to offer a quality service to people with AIDD. Secondary data were obtained from sources within the organisation, in keeping with “Case Study” as a primary method, and organisational performance data were then compared against national benchmarking standards. Further data sources were accessed to help evaluate the effectiveness of different types of advocacy that were present in the organisation. This was gauged by measures of user and carer experience in the form of retrospective survey analysis, incidents and complaints. Results: Secondary data demonstrate near compliance of the Organisation with the current national benchmarking standard (Monitor Compliance Framework). However, primary data demonstrate poor knowledge of the Mental Capacity Act 2005, poor knowledge of organisational systems, processes and evidence based practice applied for people with AIDD. In addition there was poor knowledge and awareness of frontline health care workers of advocacy and advocacy schemes for this group. Conclusions: A significant amount of work needs to be undertaken to improve the quality of care delivered to individuals with AIDD. An operational strategy promoting the widespread dissemination of information may not be the best approach to deliver quality care and optimal patient experience and patient advocacy. In addition, a more robust set of standards, with appropriate metrics, needs to be developed to assess organisational performance which will stand the test of professional and public scrutiny.

Keywords: advocacy, autism, health inequalities, intellectual developmental disabilities, quality of care

Procedia PDF Downloads 217
379 Closing the Loop between Building Sustainability and Stakeholder Engagement: Case Study of an Australian University

Authors: Karishma Kashyap, Subha D. Parida

Abstract:

Rapid population growth and urbanization is creating pressure throughout the world. This has a dramatic effect on a lot of elements which include water, food, transportation, energy, infrastructure etc. as few of the key services. Built environment sector is growing concurrently to meet the needs of urbanization. Due to such large scale development of buildings, there is a need for them to be monitored and managed efficiently. Along with appropriate management, climate adaptation is highly crucial as well because buildings are one of the major sources of greenhouse gas emission in their operation phase. Buildings to be adaptive need to provide a triple bottom approach to sustainability i.e., being socially, environmentally and economically sustainable. Hence, in order to deliver these sustainability outcomes, there is a growing understanding and thrive towards switching to green buildings or renovating new ones as per green standards wherever possible. Academic institutions in particular have been following this trend globally. This is highly significant as universities usually have high occupancy rates because they manage a large building portfolio. Also, as universities accommodate the future generation of architects, policy makers etc., they have the potential of setting themselves as a best industry practice model for research and innovation for the rest to follow. Hence their climate adaptation, sustainable growth and performance management becomes highly crucial in order to provide the best services to users. With the objective of evaluating appropriate management mechanisms within academic institutions, a feasibility study was carried out in a recent 5-Star Green Star rated university building (housing the School of Construction) in Victoria (south-eastern state of Australia). The key aim was to understand the behavioral and social aspect of the building users, management and the impact of their relationship on overall building sustainability. A survey was used to understand the building occupant’s response and reactions in terms of their work environment and management. A report was generated based on the survey results complemented with utility and performance data which were then used to evaluate the management structure of the university. Followed by the report, interviews were scheduled with the facility and asset managers in order to understand the approach they use to manage the different buildings in their university campuses (old, new, refurbished), respective building and parameters incorporated in maintaining the Green Star performance. The results aimed at closing the communication and feedback loop within the respective institutions and assist the facility managers to deliver appropriate stakeholder engagement. For the wider design community, analysis of the data highlights the applicability and significance of prioritizing key stakeholders, integrating desired engagement policies within an institution’s management structures and frameworks and their effect on building performance

Keywords: building optimization, green building, post occupancy evaluation, stakeholder engagement

Procedia PDF Downloads 357
378 Better Together: Diverging Trajectories of Local Social Work Practice and Nationally-Regulated Social Work Education in the UK

Authors: Noel Smith

Abstract:

To achieve professional registration, UK social workers need to complete a programme of education and training which meets standards set down by central government. When it comes to practice, social work in local authorities must fulfil requirements of national legislation but there is considerable local variation in the organisation and delivery of services. This presentation discusses the on-going reform of social work education by central government in the context of research of social work services in a local authority. In doing so it highlights that the ‘direction of travel’ of the national reform of social work education seems at odds with the trajectory of development of local social work services. In terms of education reform, the presentation cites key government initiatives including the knowledge and skills requirements which have been published separately for, respectively, child and family social work and adult social work. Also relevant is the Government’s new ‘teaching partnership’ pilot which focuses exclusively on social work in local government, in isolation from social work in NGOs. In terms of research, the presentation discusses two studies undertaken by Professor Smith in Suffolk County Council, a local authority in the east of England. The first is an equality impact analysis of the introduction of a new model for the delivery of adult and community services in Suffolk. This is based on qualitative research with local government representatives and NGOs involved in social work with older people and people with disabilities. The second study is an on-going, mixed method evaluation of the introduction of a new model of social care for children and young people in Suffolk. This new model is based on the international ‘Signs of Safety’ approach, which is applied in this model to a wide range of services from early intervention to child protection. While both studies are localised, the service models they examine are good illustrations of the way services are developing nationally. Analysis of these studies suggest that, if services continue to develop as they currently are, then social workers will require particular skills which are not be adequately addressed in the Government’s plans for social work education. Two issues arise. First, education reform concentrates on social work within local government while increasingly local authorities are outsourcing service provision to NGOs, expecting greater community involvement in providing care, and integrating social care with health care services. Second, education reform focuses on the different skills required for working with older and disabled adults and working with children and families, to the point where potentially the profession would be fragmented into two different classes of social worker. In contrast, the development of adult and children’s services in local authorities re-asserts the importance of common social work skills relating to personalisation, prevention and community development. The presentation highlights the importance for social work education in the UK to be forward looking, in terms of the changing design of service delivery, and outward looking, in terms of lessons to be drawn from international social work.

Keywords: adult social work, children and families social work, European social work, social work education

Procedia PDF Downloads 300
377 Material Handling Equipment Selection Using Fuzzy AHP Approach

Authors: Priyanka Verma, Vijaya Dixit, Rishabh Bajpai

Abstract:

This research paper is aimed at selecting appropriate material handling equipment among the given choices so that the automation level in material handling can be enhanced. This work is a practical case scenario of material handling systems in consumer electronic appliances manufacturing organization. The choices of material handling equipment among which the decision has to be made are Automated Guided Vehicle’s (AGV), Autonomous Mobile Robots (AMR), Overhead Conveyer’s (OC) and Battery Operated Trucks/Vehicle’s (BOT). There is a need of attaining a certain level of automation in order to reduce human interventions in the organization. This requirement of achieving certain degree of automation can be attained by material handling equipment’s mentioned above. The main motive for selecting above equipment’s for study was solely based on corporate financial strategy of investment and return obtained through that investment made in stipulated time framework. Since the low cost automation with respect to material handling devices has to be achieved hence these equipment’s were selected. Investment to be done on each unit of this equipment is less than 20 lakh rupees (INR) and the recovery period is less than that of five years. Fuzzy analytic hierarchic process (FAHP) is applied here for selecting equipment where the four choices are evaluated on basis of four major criteria’s and 13 sub criteria’s, and are prioritized on the basis of weight obtained. The FAHP used here make use of triangular fuzzy numbers (TFN). The inability of the traditional AHP in order to deal with the subjectiveness and impreciseness in the pair-wise comparison process has been improved in the FAHP. The range of values for general rating purposes for all decision making parameters is kept between 0 and 1 on the basis of expert opinions captured on shop floor. These experts were familiar with operating environment and shop floor activity control. Instead of generating exact value the FAHP generates the ranges of values to accommodate the uncertainty in decision-making process. The four major criteria’s selected for the evaluation of choices of material handling equipment’s available are materials, technical capabilities, cost and other features. The thirteen sub criteria’s listed under these following four major criteria’s are weighing capacity, load per hour, material compatibility, capital cost, operating cost and maintenance cost, speed, distance moved, space required, frequency of trips, control required, safety and reliability issues. The key finding shows that among the four major criteria selected, cost is emerged as the most important criteria and is one of the key decision making aspect on the basis of which material equipment selection is based on. While further evaluating the choices of equipment available for each sub criteria it is found that AGV scores the highest weight in most of the sub-criteria’s. On carrying out complete analysis the research shows that AGV is the best material handling equipment suiting all decision criteria’s selected in FAHP and therefore it is beneficial for the organization to carry out automated material handling in the facility using AGV’s.

Keywords: fuzzy analytic hierarchy process (FAHP), material handling equipment, subjectiveness, triangular fuzzy number (TFN)

Procedia PDF Downloads 434
376 Improving Online Learning Engagement through a Kid-Teach-Kid Approach for High School Students during the Pandemic

Authors: Alexander Huang

Abstract:

Online learning sessions have become an indispensable complement to in-classroom-learning sessions in the past two years due to the emergence of Covid-19. Due to social distance requirements, many courses and interaction-intensive sessions, ranging from music classes to debate camps, are online. However, online learning imposes a significant challenge for engaging students effectively during the learning sessions. To resolve this problem, Project PWR, a non-profit organization formed by high school students, developed an online kid-teach-kid learning environment to boost students' learning interests and further improve students’ engagement during online learning. Fundamentally, the kid-teach-kid learning model creates an affinity space to form learning groups, where like-minded peers can learn and teach their interests. The role of the teacher can also help a kid identify the instructional task and set the rules and procedures for the activities. The approach also structures initial discussions to reveal a range of ideas, similar experiences, thinking processes, language use, and lower student-to-teacher ratio, which become enriched online learning experiences for upcoming lessons. In such a manner, a kid can practice both the teacher role and the student role to accumulate experiences on how to convey ideas and questions over the online session more efficiently and effectively. In this research work, we conducted two case studies involving a 3D-Design course and a Speech and Debate course taught by high-school kids. Through Project PWR, a kid first needs to design the course syllabus based on a provided template to become a student-teacher. Then, the Project PWR academic committee evaluates the syllabus and offers comments and suggestions for changes. Upon the approval of a syllabus, an experienced and voluntarily adult mentor is assigned to interview the student-teacher and monitor the lectures' progress. Student-teachers construct a comprehensive final evaluation for their students, which they grade at the end of the course. Moreover, each course requires conducting midterm and final evaluations through a set of surveyed replies provided by students to assess the student-teacher’s performance. The uniqueness of Project PWR lies in its established kid-teach-kids affinity space. Our research results showed that Project PWR could create a closed-loop system where a student can help a teacher improve and vice versa, thus improving the overall students’ engagement. As a result, Project PWR’s approach can train teachers and students to become better online learners and give them a solid understanding of what to prepare for and what to expect from future online classes. The kid-teach-kid learning model can significantly improve students' engagement in the online courses through the Project PWR to effectively supplement the traditional teacher-centric model that the Covid-19 pandemic has impacted substantially. Project PWR enables kids to share their interests and bond with one another, making the online learning environment effective and promoting positive and effective personal online one-on-one interactions.

Keywords: kid-teach-kid, affinity space, online learning, engagement, student-teacher

Procedia PDF Downloads 142
375 Impact Analysis of a School-Based Oral Health Program in Brazil

Authors: Fabio L. Vieira, Micaelle F. C. Lemos, Luciano C. Lemos, Rafaela S. Oliveira, Ian A. Cunha

Abstract:

Brazil has some challenges ahead related to population oral health, most of them associated with the need of expanding into the local level its promotion and prevention activities, offer equal access to services and promote changes in the lifestyle of the population. The program implemented an oral health initiative in public schools in the city of Salvador, Bahia. The mission was to improve oral health among students on primary and secondary education, from 2 to 15 years old, using the school as a pathway to increase access to healthcare. The main actions consisted of a team's visit to the schools with educational sessions for dental cavity prevention and individual assessment. The program incorporated a clinical surveillance component through a dental evaluation of every student searching for dental disease and caries, standardization of the dentists’ team to reach uniform classification on the assessments, and the use of an online platform to register data directly from the schools. Sequentially, the students with caries were referred for free clinical treatment on the program’s Health Centre. The primary purpose of this study was to analyze the effects and outcomes of this school-based oral health program. The study sample was composed by data of a period of 3 years - 2015 to 2017 - from 13 public schools on the suburb of the city of Salvador with a total number of assessments of 9,278 on this period. From the data collected the prevalence of children with decay on permanent teeth was chosen as the most reliable indicator. The prevalence was calculated for each one of the 13 schools using the number of children with 1 or more dental caries on permanent teeth divided by the total number of students assessed for school each year. Then the percentage change per year was calculated for each school. Some schools presented a higher variation on the total number of assessments in one of the three years, so for these, the percentage change calculation was done using the two years with less variation. The results show that 10 of the 13 schools presented significative improvements for the indicator of caries in permanent teeth. The mean for the number of students with caries percentage reduction on the 13 schools was 26.8%, and the median was 32.2% caries in permanent teeth institution. The highest percentage of improvement reached a decrease of 65.6% on the indicator. Three schools presented a rise in caries prevalence (8.9, 18.9 and 37.2% increase) that, on an initial analysis, seems to be explained with the students’ cohort rotation among other schools, as well as absenteeism on the treatment. In conclusion, the program shows a relevant impact on the reduction of caries in permanent teeth among students and the need for the continuity and expansion of this integrated healthcare approach. It has also been evident the significative of the articulation between health and educational systems representing a fundamental approach to improve healthcare access for children especially in scenarios such as presented in Brazil.

Keywords: primary care, public health, oral health, school-based oral health, data management

Procedia PDF Downloads 134
374 Thermosensitive Hydrogel Development for Its Possible Application in Cardiac Cell Therapy

Authors: Lina Paola Orozco Marin, Yuliet Montoya Osorio, John Bustamante Osorno

Abstract:

Ischemic events can culminate in acute myocardial infarction by irreversible cardiac lesions that cannot be restored due to the limited regenerative capacity of the heart. Cell therapy seeks to replace these injured or necrotic cells by transplanting healthy and functional cells. The therapeutic alternatives proposed by tissue engineering and cardiovascular regenerative medicine are the use of biomaterials to mimic the native extracellular medium, which is full of proteins, proteoglycans, and glycoproteins. The selected biomaterials must provide structural support to the encapsulated cells to avoid their migration and death in the host tissue. In this context, the present research work focused on developing a natural thermosensitive hydrogel, its physical and chemical characterization, and the determination of its biocompatibility in vitro. The hydrogel was developed by mixing hydrolyzed bovine and porcine collagen at 2% w/v, chitosan at 2.5% w/v, and beta-glycerolphosphate at 8.5% w/w and 10.5% w/w in magnetic stirring at 4°C. Once obtained, the thermosensitivity and gelation time were determined, incubating the samples at 37°C and evaluating them through the inverted tube method. The morphological characterization of the hydrogels was carried out through scanning electron microscopy. Chemical characterization was carried out employing infrared spectroscopy. The biocompatibility was determined using the MTT cytotoxicity test according to the ISO 10993-5 standard for the hydrogel’s precursors using the fetal human ventricular cardiomyocytes cell line RL-14. The RL-14 cells were also seeded on the top of the hydrogels, and the supernatants were subculture at different periods to their observation under a bright field microscope. Four types of thermosensitive hydrogels were obtained, which differ in their composition and concentration, called A1 (chitosan/bovine collagen/beta-glycerolphosphate 8.5%w/w), A2 (chitosan/porcine collagen/beta-glycerolphosphate 8.5%), B1 (chitosan/bovine collagen/beta-glycerolphosphate 10.5%) and B2 (chitosan/porcine collagen/beta-glycerolphosphate 10.5%). A1 and A2 had a gelation time of 40 minutes, and B1 and B2 had a gelation time of 30 minutes at 37°C. Electron micrographs revealed a three-dimensional internal structure with interconnected pores for the four types of hydrogels. This facilitates the exchange of nutrients, oxygen, and the exit of metabolites, allowing to preserve a microenvironment suitable for cell proliferation. In the infrared spectra, it was possible to observe the interaction that occurs between the amides of polymeric compounds with the phosphate groups of beta-glycerolphosphate. Finally, the biocompatibility tests indicated that cells in contact with the hydrogel or with each of its precursors are not affected in their proliferation capacity for a period of 16 days. These results show the potential of the hydrogel to increase the cell survival rate in the cardiac cell therapies under investigation. Moreover, the results lay the foundations for its characterization and biological evaluation in both in vitro and in vivo models.

Keywords: cardiac cell therapy, cardiac ischemia, natural polymers, thermosensitive hydrogel

Procedia PDF Downloads 191