Search results for: network security techniques
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 12945

Search results for: network security techniques

1095 CuIn₃Se₅ Colloidal Nanocrystals and Its Ink-Coated Films for Photovoltaics

Authors: M. Ghali, M. Elnimr, G. F. Ali, A. M. Eissa, H. Talaat

Abstract:

CuIn₃Se₅ material is indexed as ordered vacancy compounds having excellent matching properties with CuInGaSe (CIGS) solar absorber layer. For example, the valence band offset of CuIn₃Se₅ with CIGS is nearly 0.3 eV, and the lattice mismatch is less than 1%, besides the absence of discontinuity in their conduction bands. Thus, CuIn₃Se₅ can work as a passivation layer for repelling holes from CIGS/CdS interface and hence to reduce the interface carriers recombination and consequently enhancing the efficiency of CIGS/CdS solar cells. Theoretically, it was reported earlier that an improvement in the efficiency of p-CIGS-based solar cell with a thin ~100 nm of n-CuIn₃Se₅ layer is expected. Recently, a reported experiment demonstrated significant improvement in the efficiency of Molecular Beam Epitaxy (MBE) grown CIGS solar cells from 13.4 to 14.5% via inserting a thin layer of MBE-grown Cu(In,Ga)₃Se₅ layer at the CdS/CIGS interface. It should be mentioned that CuIn₃Se₅ material in either bulk or thin film form, are usually fabricated by high vacuum physical vapor deposition techniques (e.g., three-source co-evaporation, RF sputtering, flash evaporation, and molecular beam epitaxy). In addition, achieving photosensitive films of n-CuIn₃Se₅ material is important for new hybrid organic/inorganic structures, where inorganic photo-absorber layer, with n-type conductivity, can form n–p junction with organic p-type material (e.g., conductive polymers). A detailed study of the physical properties of CuIn₃Se₅ is still necessary for better understanding of device operation and further improvement of solar cells performance. Here, we report on the low-cost synthesis of CuIn₃Se₅ material in nano-scale size, with an average diameter ~10nm, using simple solution-based colloidal chemistry. In contrast to traditionally grown bulk tetragonal CuIn₃Se₅ crystals using high Vacuum-based technology, our colloidal CuIn₃Se₅ nanocrystals show cubic crystal structure with a shape of nanoparticles and band gap ~1.33 eV. Ink-coated thin films prepared from these nanocrystals colloids; display n-type character, 1.26 eV band gap and strong photo-responsive behavior with incident white light. This suggests the potential use of colloidal CuIn₃Se₅ as an active layer in all-solution-processed thin film solar cells.

Keywords: nanocrystals, CuInSe, thin film, optical properties

Procedia PDF Downloads 153
1094 Public-Private Partnership for Better Protection of Trafficked Victims in Thailand: Case Study on Public Protection and Welfare Center in Cooperation with Jim Thompson Foundation in Occupational Development on Silk Sewing and Tailoring

Authors: Aungkana Kmonpetch

Abstract:

Protection of trafficked victims and partnership among stakeholders are established as core principles in 5P’ strategies in international and national anti-human trafficking policies. In this article, it is of interest to discuss how the role of public-private partnerships in promoting the occupation development for employment in wage will enhance the better protection for victims of trafficking who affirmatively decide they want a criminal justice intervention, using Thailand as a case. Most of the victims who have accepted to be witness in the criminal justice system have lost income during their absence from work. The analysis of Thailand case is based on two methodological approaches: 1) interview with victims of trafficking, protection authorities, service providers, trainers and teachers, social workers, NGOs, police, prosecutors, business owners and enterprises, ILO, UNDP etc.; 2) create collaborative effort through workshops/consultation meetings in participation of all stakeholders – governmental agencies, private organizations, UN and international agencies. The linking of protection and partnership is anchored in international conventions and human trafficking directives. While this is actually framed as a responsive advantage for 5P strategies of anti-human trafficking – prevention, protection, persecution, punishment, and partnership, in reality, there might have more practical requirements of care and support. The article addresses how the partnership between governmental agencies and private organizations provide opportunities for trafficked victims to engage in high-skilled occupational development such as Silk-Sewing and Tailoring. The discussion is also focused how this approach of capacity building of the trainer for trainee, be enable the trafficked victims to cultivate the practices of high-skilled training to engage them into the business of social enterprise with employment in wage. The partnership coordination draws specifically to two aspects: firstly, to formulate appropriate assistance for promotion and protection of human rights of the trafficked victims in response to the 5P’ strategies of anti-human trafficking policy; secondly, to empower them to settle some economic stability for livelihood opportunity in the country of origin on their return and reintegration. Therefore, they can define how they want to move forward to prevent them at risk of vulnerable situations where they might being trafficked again or going on to work in exploitative conditions. It strengthens proper access to protection and assistance, depending on how the incentive of protection for cooperation is perceived to be and how useful the capacity building in occupation development for employment in wage will be implemented practically both in the host country and in the country of origin. This also brings into question how the victim of trafficking are able to access to the trade of market and are supported the employment opportunity according to the concept of decent work as they are constituted as witnesses. We discuss these issues in the area of a broader literature on social protection, economic security, gender, law, and victimhood.

Keywords: employment opportunity, occupation development, protection for victim of trafficking, public-private partnership

Procedia PDF Downloads 225
1093 Molecular Epidemiology of Egyptian Biomphalaria Snail: The Identification of Species, Diagnostic of the Parasite in Snails and Host Parasite Relationship

Authors: Hanaa M. Abu El Einin, Ahmed T. Sharaf El- Din

Abstract:

Biomphalaria snails play an integral role in the transmission of Schistosoma mansoni, the causative agent for human schistosomiasis. Two species of Biomphalaria were reported from Egypt, Biomphalaria alexandrina and Biomphalaria glabrata, and later on a hybrid of B. alexandrina and B. glabrata was reported in streams at Nile Delta. All were known to be excellent hosts of S. mansoni. Host-parasite relationship can be viewed in terms of snail susceptibility and parasite infectivity. The objective of this study will highlight the progress that has been made in using molecular approaches to describe the correct identification of snail species that participating in transmission of schistosomiasis, rapid diagnose of infection in addition to susceptibility and resistance type. Snails were identified using of molecular methods involving Randomly Amplified Polymorphic DNA (RAPD), Polymerase Chain Reaction, Restriction Fragment Length Polymorphisms (PCR-RFLP) and Species - specific- PCR. Molecular approaches to diagnose parasite in snails from Egypt: Nested PCR assay and small subunit (SSU) rRNA gene. Also RAPD PCR for study susceptible and resistance phenotype. The results showed that RAPD- PCR, PCR-RFLP and species-specific-PCR techniques were confirmed that: no evidence for the presence of B. glabrata in Egypt, All Biomphalaria snails collected identified as B. alexandrina snail i-e B alexandrinia is a common and no evidence for hybridization with B. glabrata. The adopted specific nested PCR assay revealed much higher sensitivity which enables the detection of S. mansoni infected snails down to 3 days post infection. Nested PCR method for detection of infected snails using S. mansoni fructose -1,6- bisphosphate aldolase (SMALDO) primer, these primers are specific only for S. mansoni and not cross reactive with other schistosomes or molluscan aldolases Nested PCR for such gene is sensitive enough to detect one cercariae. Genetic variations between B. alexandrina strains that are susceptible and resistant to Schistosoma infec¬tion using a RAPD-PCR showed that 39.8% of the examined snails collected from the field were resistant, while 60.2% of these snails showed high infection rates. In conclusion the genetics of the intermediate host plays a more important role in the epidemiological control of schistosomiasis.

Keywords: biomphalaria, molecular differentiation, parasite detection, schistosomiasis

Procedia PDF Downloads 195
1092 Corrosion Analysis of Brazed Copper-Based Conducts in Particle Accelerator Water Cooling Circuits

Authors: A. T. Perez Fontenla, S. Sgobba, A. Bartkowska, Y. Askar, M. Dalemir Celuch, A. Newborough, M. Karppinen, H. Haalien, S. Deleval, S. Larcher, C. Charvet, L. Bruno, R. Trant

Abstract:

The present study investigates the corrosion behavior of copper (Cu) based conducts predominantly brazed with Sil-Fos (self-fluxing copper-based filler with silver and phosphorus) within various cooling circuits of demineralized water across different particle accelerator components at CERN. The study covers a range of sample service time, from a few months to fifty years, and includes various accelerator components such as quadrupoles, dipoles, and bending magnets. The investigation comprises the established sample extraction procedure, examination methodology including non-destructive testing, evaluation of the corrosion phenomena, and identification of commonalities across the studied components as well as analysis of the environmental influence. The systematic analysis included computed microtomography (CT) of the joints that revealed distributed defects across all brazing interfaces. Some defects appeared to result from areas not wetted by the filler during the brazing operation, displaying round shapes, while others exhibited irregular contours and radial alignment, indicative of a network or interconnection. The subsequent dry cutting performed facilitated access to the conduct's inner surface and the brazed joints for further inspection through light and electron microscopy (SEM) and chemical analysis via Energy Dispersive X-ray spectroscopy (EDS). Brazing analysis away from affected areas identified the expected phases for a Sil-Fos alloy. In contrast, the affected locations displayed micrometric cavities propagating into the material, along with selective corrosion of the bulk Cu initiated at the conductor-braze interface. Corrosion product analysis highlighted the consistent presence of sulfur (up to 6 % in weight), whose origin and role in the corrosion initiation and extension is being further investigated. The importance of this study is paramount as it plays a crucial role in comprehending the underlying factors contributing to recently identified water leaks and evaluating the extent of the issue. Its primary objective is to provide essential insights for the repair of impacted brazed joints when accessibility permits. Moreover, the study seeks to contribute to the improvement of design and manufacturing practices for future components, ultimately enhancing the overall reliability and performance of magnet systems within CERN accelerator facilities.

Keywords: accelerator facilities, brazed copper conducts, demineralized water, magnets

Procedia PDF Downloads 44
1091 A Randomised Controlled Study to Compare Efficacy and Safety of Bupivacaine plus Dexamethasone Versus Bupivacaine plus Fentanyl for Caudal Block in Children

Authors: Ashwini Patil

Abstract:

Caudal block is one of the most commonly used regional anesthetic techniques in children. Currently, fentanyl is used as an adjuvant to bupivacaine to prolong analgesia but fentanyl is a narcotic. Dexamethasone, a glucocorticoid with strong anti-inflammatory effects provides improvement in post-operative analgesia and post-operative side effects. However, its analgesic efficacy and safety in comparison with fentanyl has not been extensively studied. So the objective of this randomized controlled study is to compare dexamethasone with fentanyl as an adjuvant to bupivacaine for caudal block in children in relation to the duration of caudal analgesia, post-operative analgesic requirement and incidence of post-operative nausea and vomiting. This study included 100 children, aged 1–6 years, undergoing lower abdominal surgeries. Patients were randomized into two groups, 50 each to receive a combination of dexamethasone 0.2 mg/kg along with 1 ml/kg bupivacaine 0.25% (group A) or combination of fentanyl (1 ug/kg) along with 1ml/kg bupivacaine 0.25% (group B). In the post-operative period, pain was assessed using a Modified Objective Pain Scale (MOPS) until 12 hr after surgery and rescue analgesia is administered when MOPS score 4 or more is recorded. Residual motor block, number of analgesic doses required within 24 hr after surgery, sedation scores, intra-operative and post-operative hemodynamic variables, post-operative nausea and vomiting (PONV), and other adverse effects were recorded. Data is analysed using unpaired t test and Significance level of P< 0.05 is considered statistically significant. Group A showed a significantly longer time to first analgesic requirement than group B (p<0.05). The number of rescue analgesic doses required in the first 24 h was significantly less in group A (p<0.05). Group A showed significantly lower MOPS scores than group B(p<0.05). Intra-operative and post-operative hemodynamic variables, Modified Bromage Scale scores, and sedation scores were comparable in both the groups. Group A showed significantly fewer incidences of PONV compared with group B(p<0.05). This study reveals that adding dexamethasone to bupivacaine prolongs the duration of postoperative analgesia and decreases the incidence of PONV as compared to combination of fentanyl to bupivacaine after a caudal block in pediatric patients.

Keywords: bupivacaine, caudal analgesia, dexamethasone, pediatric

Procedia PDF Downloads 202
1090 Bioinformatics High Performance Computation and Big Data

Authors: Javed Mohammed

Abstract:

Right now, bio-medical infrastructure lags well behind the curve. Our healthcare system is dispersed and disjointed; medical records are a bit of a mess; and we do not yet have the capacity to store and process the crazy amounts of data coming our way from widespread whole-genome sequencing. And then there are privacy issues. Despite these infrastructure challenges, some researchers are plunging into bio medical Big Data now, in hopes of extracting new and actionable knowledge. They are doing delving into molecular-level data to discover bio markers that help classify patients based on their response to existing treatments; and pushing their results out to physicians in novel and creative ways. Computer scientists and bio medical researchers are able to transform data into models and simulations that will enable scientists for the first time to gain a profound under-standing of the deepest biological functions. Solving biological problems may require High-Performance Computing HPC due either to the massive parallel computation required to solve a particular problem or to algorithmic complexity that may range from difficult to intractable. Many problems involve seemingly well-behaved polynomial time algorithms (such as all-to-all comparisons) but have massive computational requirements due to the large data sets that must be analyzed. High-throughput techniques for DNA sequencing and analysis of gene expression have led to exponential growth in the amount of publicly available genomic data. With the increased availability of genomic data traditional database approaches are no longer sufficient for rapidly performing life science queries involving the fusion of data types. Computing systems are now so powerful it is possible for researchers to consider modeling the folding of a protein or even the simulation of an entire human body. This research paper emphasizes the computational biology's growing need for high-performance computing and Big Data. It illustrates this article’s indispensability in meeting the scientific and engineering challenges of the twenty-first century, and how Protein Folding (the structure and function of proteins) and Phylogeny Reconstruction (evolutionary history of a group of genes) can use HPC that provides sufficient capability for evaluating or solving more limited but meaningful instances. This article also indicates solutions to optimization problems, and benefits Big Data and Computational Biology. The article illustrates the Current State-of-the-Art and Future-Generation Biology of HPC Computing with Big Data.

Keywords: high performance, big data, parallel computation, molecular data, computational biology

Procedia PDF Downloads 360
1089 The Higher Education Accreditation Foreign Experience for Ukraine

Authors: Dmytro Symak

Abstract:

The experience in other countries shows that, the role of accreditation of higher education as one of the types of quality assurance process for providing educational services increases. This was the experience of highly developed countries such as USA, Canada, France, Germany, because without proper quality assurance process is impossible to achieve a successful future of the nation and the state. In most countries, the function of Higher Education Accreditation performs public authorities, in particular, such as the Ministry of Education. In the US, however, the quality assurance process is independent on the government and implemented by private non-governmental organization - the Council of Higher Education Accreditation. In France, the main body that carries out accreditation of higher education is the Ministry of National Education. As part of the Bologna process is the mutual recognition and accreditation of degrees. While higher education institutions issue diplomas, but the ministry could award the title. This is the main level of accreditation awarded automatically by state universities. In total, there are in France next major level of accreditation of higher education: - accreditation for a visa: Accreditation second level; - recognition of accreditation: accreditation of third level. In some areas of education to accreditation ministry should adopt formal recommendations on specific organs. But there are also some exceptions. Thus, the French educational institutions, mainly large Business School, looking for non-French accreditation. These include, for example, the Association to Advance Collegiate Schools of Business, the Association of MBAs, the European Foundation for Management Development, the European Quality Improvement System, a prestigious EFMD Programme accreditation system. Noteworthy also German accreditation system of education. The primary here is a Conference of Ministers of Education and Culture of land in the Federal Republic of Germany (Kultusministerkonferenz or CCM) was established in 1948 by agreement between the States of the Federal Republic of Germany. Among its main responsibilities is to ensure quality and continuity of development in higher education. In Germany, the program of bachelors and masters must be accredited in accordance with Resolution Kultusministerkonerenz. In Ukraine Higher Education Accreditation carried out the Ministry of Education, Youth and Sports of Ukraine under four main levels. Ukraine's legislation on higher education based on the Constitution Ukraine consists of the laws of Ukraine ‘On osvititu’ ‘On scientific and technical activity’, ‘On Higher osvititu’ and other legal acts and is entirely within the competence of the state. This leads to considerable centralization and bureaucratization of the process. Thus, analysis of expertise shined can conclude that reforming the system of accreditation and quality of higher education in Ukraine to its integration into the global space requires solving a number of problems in the following areas: improving the system of state certification and licensing; optimizing the network of higher education institutions; creating both governmental and non-governmental organizations to monitor the process of higher education in Ukraine and so on.

Keywords: higher education, accreditation, decentralization, education institutions

Procedia PDF Downloads 335
1088 Causal Inference Engine between Continuous Emission Monitoring System Combined with Air Pollution Forecast Modeling

Authors: Yu-Wen Chen, Szu-Wei Huang, Chung-Hsiang Mu, Kelvin Cheng

Abstract:

This paper developed a data-driven based model to deal with the causality between the Continuous Emission Monitoring System (CEMS, by Environmental Protection Administration, Taiwan) in industrial factories, and the air quality around environment. Compared to the heavy burden of traditional numerical models of regional weather and air pollution simulation, the lightweight burden of the proposed model can provide forecasting hourly with current observations of weather, air pollution and emissions from factories. The observation data are included wind speed, wind direction, relative humidity, temperature and others. The observations can be collected real time from Open APIs of civil IoT Taiwan, which are sourced from 439 weather stations, 10,193 qualitative air stations, 77 national quantitative stations and 140 CEMS quantitative industrial factories. This study completed a causal inference engine and gave an air pollution forecasting for the next 12 hours related to local industrial factories. The outcomes of the pollution forecasting are produced hourly with a grid resolution of 1km*1km on IIoTC (Industrial Internet of Things Cloud) and saved in netCDF4 format. The elaborated procedures to generate forecasts comprise data recalibrating, outlier elimination, Kriging Interpolation and particle tracking and random walk techniques for the mechanisms of diffusion and advection. The solution of these equations reveals the causality between factories emission and the associated air pollution. Further, with the aid of installed real-time flue emission (Total Suspension Emission, TSP) sensors and the mentioned forecasted air pollution map, this study also disclosed the converting mechanism between the TSP and PM2.5/PM10 for different region and industrial characteristics, according to the long-term data observation and calibration. These different time-series qualitative and quantitative data which successfully achieved a causal inference engine in cloud for factory management control in practicable. Once the forecasted air quality for a region is marked as harmful, the correlated factories are notified and asked to suppress its operation and reduces emission in advance.

Keywords: continuous emission monitoring system, total suspension particulates, causal inference, air pollution forecast, IoT

Procedia PDF Downloads 80
1087 Intersection of Racial and Gender Microaggressions: Social Support as a Coping Strategy among Indigenous LGBTQ People in Taiwan

Authors: Ciwang Teyra, A. H. Y. Lai

Abstract:

Introduction: Indigenous LGBTQ individuals face with significant life stress such as racial and gender discrimination and microaggressions, which may lead to negative impacts of their mental health. Although studies relevant to Taiwanese indigenous LGBTQpeople gradually increase, most of them are primarily conceptual or qualitative in nature. This research aims to fulfill the gap by offering empirical quantitative evidence, especially investigating the impact of racial and gender microaggressions on mental health among Taiwanese indigenous LGBTQindividuals with an intersectional perspective, as well as examine whether social support can help them to cope with microaggressions. Methods: Participants were (n=200; mean age=29.51; Female=31%, Male=61%, Others=8%). A cross-sectional quantitative design was implemented using data collected in the year 2020. Standardised measurements was used, including Racial Microaggression Scale (10 items), Gender Microaggression Scale (9 items), Social Support Questionnaire-SF(6 items); Patient Health Questionnaire(9-item); and Generalised Anxiety Disorder(7-item). Covariates were age, gender, and perceived economic hardships. Structural equation modelling (SEM) was employed using Mplus 8.0 with the latent variables of depression and anxiety as outcomes. A main effect SEM model was first established (Model1).To test the moderation effects of perceived social support, an interaction effect model (Model 2) was created with interaction terms entered into Model1. Numerical integration was used with maximum likelihood estimation to estimate the interaction model. Results: Model fit statistics of the Model 1:X2(df)=1308.1 (795), p<.05; CFI/TLI=0.92/0.91; RMSEA=0.06; SRMR=0.06. For Model, the AIC and BIC values of Model 2 improved slightly compared to Model 1(AIC =15631 (Model1) vs. 15629 (Model2); BIC=16098 (Model1) vs. 16103 (Model2)). Model 2 was adopted as the final model. In main effect model 1, racialmicroaggressionand perceived social support were associated with depression and anxiety, but not sexual orientation microaggression(Indigenous microaggression: b = 0.27 for depression; b=0.38 for anxiety; Social support: b=-0.37 for depression; b=-0.34 for anxiety). Thus, an interaction term between social support and indigenous microaggression was added in Model 2. In the final Model 2, indigenous microaggression and perceived social support continues to be statistically significant predictors of both depression and anxiety. Social support moderated the effect of indigenous microaggression of depression (b=-0.22), but not anxiety. All covariates were not statistically significant. Implications: Results indicated that racial microaggressions have a significant impact on indigenous LGBTQ people’s mental health. Social support plays as a crucial role to buffer the negative impact of racial microaggression. To promote indigenous LGBTQ people’s wellbeing, it is important to consider how to support them to develop social support network systems.

Keywords: microaggressions, intersectionality, indigenous population, mental health, social support

Procedia PDF Downloads 142
1086 Design and Evaluation of a Prototype for Non-Invasive Screening of Diabetes – Skin Impedance Technique

Authors: Pavana Basavakumar, Devadas Bhat

Abstract:

Diabetes is a disease which often goes undiagnosed until its secondary effects are noticed. Early detection of the disease is necessary to avoid serious consequences which could lead to the death of the patient. Conventional invasive tests for screening of diabetes are mostly painful, time consuming and expensive. There’s also a risk of infection involved, therefore it is very essential to develop non-invasive methods to screen and estimate the level of blood glucose. Extensive research is going on with this perspective, involving various techniques that explore optical, electrical, chemical and thermal properties of the human body that directly or indirectly depend on the blood glucose concentration. Thus, non-invasive blood glucose monitoring has grown into a vast field of research. In this project, an attempt was made to device a prototype for screening of diabetes by measuring electrical impedance of the skin and building a model to predict a patient’s condition based on the measured impedance. The prototype developed, passes a negligible amount of constant current (0.5mA) across a subject’s index finger through tetra polar silver electrodes and measures output voltage across a wide range of frequencies (10 KHz – 4 MHz). The measured voltage is proportional to the impedance of the skin. The impedance was acquired in real-time for further analysis. Study was conducted on over 75 subjects with permission from the institutional ethics committee, along with impedance, subject’s blood glucose values were also noted, using conventional method. Nonlinear regression analysis was performed on the features extracted from the impedance data to obtain a model that predicts blood glucose values for a given set of features. When the predicted data was depicted on Clarke’s Error Grid, only 58% of the values predicted were clinically acceptable. Since the objective of the project was to screen diabetes and not actual estimation of blood glucose, the data was classified into three classes ‘NORMAL FASTING’,’NORMAL POSTPRANDIAL’ and ‘HIGH’ using linear Support Vector Machine (SVM). Classification accuracy obtained was 91.4%. The developed prototype was economical, fast and pain free. Thus, it can be used for mass screening of diabetes.

Keywords: Clarke’s error grid, electrical impedance of skin, linear SVM, nonlinear regression, non-invasive blood glucose monitoring, screening device for diabetes

Procedia PDF Downloads 321
1085 Mesocarbon Microbeads Modification of Stainless-Steel Current Collector to Stabilize Lithium Deposition and Improve the Electrochemical Performance of Anode Solid-State Lithium Hybrid Battery

Authors: Abebe Taye

Abstract:

The interest in enhancing the performance of all-solid-state batteries featuring lithium metal anodes as a potential alternative to traditional lithium-ion batteries has prompted exploration into new avenues. A promising strategy involves transforming lithium-ion batteries into hybrid configurations by integrating lithium-ion and lithium-metal solid-state components. This study is focused on achieving stable lithium deposition and advancing the electrochemical capabilities of solid-state lithium hybrid batteries with anodes by incorporating mesocarbon microbeads (MCMBs) blended with silver nanoparticles. To achieve this, mesocarbon microbeads (MCMBs) blended with silver nanoparticles are coated on stainless-steel current collectors. These samples undergo a battery of analyses employing diverse techniques. Surface morphology is studied through scanning electron microscopy (SEM). The electrochemical behavior of the coated samples is evaluated in both half-cell and full-cell setups utilizing an argyrodite-type sulfide electrolyte. The stability of MCMBs in the electrolyte is assessed using electrochemical impedance spectroscopy (EIS). Additional insights into the composition are gleaned through X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and energy-dispersive X-ray spectroscopy (EDS). At an ultra-low N/P ratio of 0.26, stability is upheld for over 100 charge/discharge cycles in half-cells. When applied in a full-cell configuration, the hybrid anode preserves 60.1% of its capacity after 80 cycles at 0.3 C under a low N/P ratio of 0.45. In sharp contrast, the capacity retention of the cell using untreated MCMBs declines to 20.2% after a mere 60 cycles. The introduction of mesocarbon microbeads (MCMBs) combined with silver nanoparticles into the hybrid anode of solid-state lithium batteries substantially elevates their stability and electrochemical performance. This approach ensures consistent lithium deposition and removal, mitigating dendrite growth and the accumulation of inactive lithium. The findings from this investigation hold significant value in elevating the reversibility and energy density of lithium-ion batteries, thereby making noteworthy contributions to the advancement of more efficient energy storage systems.

Keywords: MCMB, lithium metal, hybrid anode, silver nanoparticle, cycling stability

Procedia PDF Downloads 66
1084 Optimization of Temperature Coefficients for MEMS Based Piezoresistive Pressure Sensor

Authors: Vijay Kumar, Jaspreet Singh, Manoj Wadhwa

Abstract:

Piezo-resistive pressure sensors were one of the first developed micromechanical system (MEMS) devices and still display a significant growth prompted by the advancements in micromachining techniques and material technology. In MEMS based piezo-resistive pressure sensors, temperature can be considered as the main environmental condition which affects the system performance. The study of the thermal behavior of these sensors is essential to define the parameters that cause the output characteristics to drift. In this work, a study on the effects of temperature and doping concentration in a boron implanted piezoresistor for a silicon-based pressure sensor is discussed. We have optimized the temperature coefficient of resistance (TCR) and temperature coefficient of sensitivity (TCS) values to determine the effect of temperature drift on the sensor performance. To be more precise, in order to reduce the temperature drift, a high doping concentration is needed. And it is well known that the Wheatstone bridge in a pressure sensor is supplied with a constant voltage or a constant current input supply. With a constant voltage supply, the thermal drift can be compensated along with an external compensation circuit, whereas the thermal drift in the constant current supply can be directly compensated by the bridge itself. But it would be beneficial to also compensate the temperature coefficient of piezoresistors so as to further reduce the temperature drift. So, with a current supply, the TCS is dependent on both the TCπ and TCR. As TCπ is a negative quantity and TCR is a positive quantity, it is possible to choose an appropriate doping concentration at which both of them cancel each other. An exact cancellation of TCR and TCπ values is not readily attainable; therefore, an adjustable approach is generally used in practical applications. Thus, one goal of this work has been to better understand the origin of temperature drift in pressure sensor devices so that the temperature effects can be minimized or eliminated. This paper describes the optimum doping levels for the piezoresistors where the TCS of the pressure transducers will be zero due to the cancellation of TCR and TCπ values. Also, the fabrication and characterization of the pressure sensor are carried out. The optimized TCR value obtained for the fabricated die is 2300 ± 100ppm/ᵒC, for which the piezoresistors are implanted at a doping concentration of 5E13 ions/cm³ and the TCS value of -2100ppm/ᵒC is achieved. Therefore, the desired TCR and TCS value is achieved, which are approximately equal to each other, so the thermal effects are considerably reduced. Finally, we have calculated the effect of temperature and doping concentration on the output characteristics of the sensor. This study allows us to predict the sensor behavior against temperature and to minimize this effect by optimizing the doping concentration.

Keywords: piezo-resistive, pressure sensor, doping concentration, TCR, TCS

Procedia PDF Downloads 176
1083 Most Recent Lifespan Estimate for the Itaipu Hydroelectric Power Plant Computed by Using Borland and Miller Method and Mass Balance in Brazil, Paraguay

Authors: Anderson Braga Mendes

Abstract:

Itaipu Hydroelectric Power Plant is settled on the Paraná River, which is a natural boundary between Brazil and Paraguay; thus, the facility is shared by both countries. Itaipu Power Plant is the biggest hydroelectric generator in the world, and provides clean and renewable electrical energy supply for 17% and 76% of Brazil and Paraguay, respectively. The plant started its generation in 1984. It counts on 20 Francis turbines and has installed capacity of 14,000 MWh. Its historic generation record occurred in 2016 (103,098,366 MWh), and since the beginning of its operation until the last day of 2016 the plant has achieved the sum of 2,415,789,823 MWh. The distinct sedimentologic aspects of the drainage area of Itaipu Power Plant, from its stretch upstream (Porto Primavera and Rosana dams) to downstream (Itaipu dam itself), were taken into account in order to best estimate the increase/decrease in the sediment yield by using data from 2001 to 2016. Such data are collected through a network of 14 automatic sedimentometric stations managed by the company itself and operating in an hourly basis, covering an area of around 136,000 km² (92% of the incremental drainage area of the undertaking). Since 1972, a series of lifespan studies for the Itaipu Power Plant have been made, being first assessed by Sir Hans Albert Einstein, at the time of the feasibility studies for the enterprise. From that date onwards, eight further studies were made through the last 44 years aiming to confer more precision upon the estimates based on more updated data sets. From the analysis of each monitoring station, it was clearly noticed strong increase tendencies in the sediment yield through the last 14 years, mainly in the Iguatemi, Ivaí, São Francisco Falso and Carapá Rivers, the latter situated in Paraguay, whereas the others are utterly in Brazilian territory. Five lifespan scenarios considering different sediment yield tendencies were simulated with the aid of the softwares SEDIMENT and DPOSIT, both developed by the author of the present work. Such softwares thoroughly follow the Borland & Miller methodology (empirical method of area-reduction). The soundest scenario out of the five ones under analysis indicated a lifespan foresight of 168 years, being the reservoir only 1.8% silted by the end of 2016, after 32 years of operation. Besides, the mass balance in the reservoir (water inflows minus outflows) between 1986 and 2016 shows that 2% of the whole Itaipu lake is silted nowadays. Owing to the convergence of both results, which were acquired by using different methodologies and independent input data, it is worth concluding that the mathematical modeling is satisfactory and calibrated, thus assigning credibility to this most recent lifespan estimate.

Keywords: Borland and Miller method, hydroelectricity, Itaipu Power Plant, lifespan, mass balance

Procedia PDF Downloads 273
1082 Knowledge Transfer to Builders in Improving Housing Resilience

Authors: Saima Shaikh, Andre Brown, Wallace Enegbuma

Abstract:

Earthquakes strike both developed and developing countries, causing tremendous damage and the loss of lives of millions of people, mainly due to the collapsing of buildings, particularly in poorer countries. Despite the socio-economic and technological restrictions, the poorer countries have adopted proven and established housing-strengthening techniques from affluent countries. Rural communities are aware of the earthquake-strengthening mechanisms for improving housing resilience, but owing to socio-economic and technological constraints, the seismic guidelines are rarely implemented, resulting in informal construction practice. Unregistered skilled laborers make substantial contributions to the informal construction sector, particularly in rural areas where knowledge is scarce. Laborers employ their local expertise in house construction; however, owing to a lack of seismic expertise in safe building procedures, the authorities' regulated seismic norms are not applied. From the perspective of seismic knowledge transformation in safe buildings practices, the study focuses on the feasibility of seismic guidelines implementation. The study firstly employs a literature review of massive-scale reconstruction after the 2005 earthquake in rural Pakistan. The 2005-earthquake damaged over 400,000 homes, killed 70,000 people and displaced 2.8 million people. The research subsequently corroborated the pragmatic approach using questionnaire field survey among the rural people in 2005-earthquake affected areas. Using the literature and the questionnaire survey, the research analyzing people's perspectives on technical acceptability, financial restrictions, and socioeconomic viability and examines the effectiveness of seismic knowledge transfer in safe buildings practices. The findings support the creation of a knowledge transfer framework in disaster mitigation and recovery planning, assisting rural communities and builders in minimising losses and improving response and recovery, as well as improving housing resilience and lowering vulnerabilities. Finally, certain conclusions are obtained in order to continue the resilience research. The research can be further applied in rural areas of developing countries having similar construction practices.

Keywords: earthquakes, knowledge transfer, resilience, informal construction practices

Procedia PDF Downloads 170
1081 Modeling Atmospheric Correction for Global Navigation Satellite System Signal to Improve Urban Cadastre 3D Positional Accuracy Case of: TANA and ADIS IGS Stations

Authors: Asmamaw Yehun

Abstract:

The name “TANA” is one of International Geodetic Service (IGS) Global Positioning System (GPS) station which is found in Bahir Dar University in Institute of Land Administration. The station name taken from one of big Lakes in Africa ,Lake Tana. The Institute of Land Administration (ILA) is part of Bahir Dar University, located in the capital of the Amhara National Regional State, Bahir Dar. The institute is the first of its kind in East Africa. The station is installed by cooperation of ILA and Sweden International Development Agency (SIDA) fund support. The Continues Operating Reference Station (CORS) is a network of stations that provide global satellite system navigation data to help three dimensional positioning, meteorology, space, weather, and geophysical applications throughout the globe. TANA station was as CORS since 2013 and sites are independently owned and operated by governments, research and education facilities and others. The data collected by the reference station is downloadable through Internet for post processing purpose by interested parties who carry out GNSS measurements and want to achieve a higher accuracy. We made a first observation on TANA, monitor stations on May 29th 2013. We used Leica 1200 receivers and AX1202GG antennas and made observations from 11:30 until 15:20 for about 3h 50minutes. Processing of data was done in an automatic post processing service CSRS-PPP by Natural Resources Canada (NRCan) . Post processing was done June 27th 2013 so precise ephemeris was used 30 days after observation. We found Latitude (ITRF08): 11 34 08.6573 (dms) / 0.008 (m), Longitude (ITRF08): 37 19 44.7811 (dms) / 0.018 (m) and Ellipsoidal Height (ITRF08): 1850.958 (m) / 0.037 (m). We were compared this result with GAMIT/GLOBK processed data and it was very closed and accurate. TANA station is one of the second IGS station for Ethiopia since 2015 up to now. It provides data for any civilian users, researchers, governmental and nongovernmental users. TANA station is installed with very advanced choke ring antenna and GR25 Leica receiver and also the site is very good for satellite accessibility. In order to test hydrostatic and wet zenith delay for positional data quality, we used GAMIT/GLOBK and we found that TANA station is the most accurate IGS station in East Africa. Due to lower tropospheric zenith and ionospheric delay, TANA and ADIS IGS stations has 2 and 1.9 meters 3D positional accuracy respectively.

Keywords: atmosphere, GNSS, neutral atmosphere, precipitable water vapour

Procedia PDF Downloads 66
1080 Vulnerability Assessment of Groundwater Quality Deterioration Using PMWIN Model

Authors: A. Shakoor, M. Arshad

Abstract:

The utilization of groundwater resources in irrigation has significantly increased during the last two decades due to constrained canal water supplies. More than 70% of the farmers in the Punjab, Pakistan, depend directly or indirectly on groundwater to meet their crop water demands and hence, an unchecked paradigm shift has resulted in aquifer depletion and deterioration. Therefore, a comprehensive research was carried at central Punjab-Pakistan, regarding spatiotemporal variation in groundwater level and quality. Processing MODFLOW for window (PMWIN) and MT3D (solute transport model) models were used for existing and future prediction of groundwater level and quality till 2030. The comprehensive data set of aquifer lithology, canal network, groundwater level, groundwater salinity, evapotranspiration, groundwater abstraction, recharge etc. were used in PMWIN model development. The model was thus, successfully calibrated and validated with respect to groundwater level for the periods of 2003 to 2007 and 2008 to 2012, respectively. The coefficient of determination (R2) and model efficiency (MEF) for calibration and validation period were calculated as 0.89 and 0.98, respectively, which argued a high level of correlation between the calculated and measured data. For solute transport model (MT3D), the values of advection and dispersion parameters were used. The model used for future scenario up to 2030, by assuming that there would be no uncertain change in climate and groundwater abstraction rate would increase gradually. The model predicted results revealed that the groundwater would decline from 0.0131 to 1.68m/year during 2013 to 2030 and the maximum decline would be on the lower side of the study area, where infrastructure of canal system is very less. This lowering of groundwater level might cause an increase in the tubewell installation and pumping cost. Similarly, the predicted total dissolved solids (TDS) of the groundwater would increase from 6.88 to 69.88mg/L/year during 2013 to 2030 and the maximum increase would be on lower side. It was found that in 2030, the good quality would reduce by 21.4%, while marginal and hazardous quality water increased by 19.28 and 2%, respectively. It was found from the simulated results that the salinity of the study area had increased due to the intrusion of salts. The deterioration of groundwater quality would cause soil salinity and ultimately the reduction in crop productivity. It was concluded from the predicted results of groundwater model that the groundwater deteriorated with the depth of water table i.e. TDS increased with declining groundwater level. It is recommended that agronomic and engineering practices i.e. land leveling, rainwater harvesting, skimming well, ASR (Aquifer Storage and Recovery Wells) etc. should be integrated to meliorate management of groundwater for higher crop production in salt affected soils.

Keywords: groundwater quality, groundwater management, PMWIN, MT3D model

Procedia PDF Downloads 374
1079 Hydrogen Sulfide Releasing Ibuprofen Derivative Can Protect Heart After Ischemia-Reperfusion

Authors: Virag Vass, Ilona Bereczki, Erzsebet Szabo, Nora Debreczeni, Aniko Borbas, Pal Herczegh, Arpad Tosaki

Abstract:

Hydrogen sulfide (H₂S) is a toxic gas, but it is produced by certain tissues in a small quantity. According to earlier studies, ibuprofen and H₂S has a protective effect against damaging heart tissue caused by ischemia-reperfusion. Recently, we have been investigating the effect of a new water-soluble H₂S releasing ibuprofen molecule administered after artificially generated ischemia-reperfusion on isolated rat hearts. The H₂S releasing property of the new ibuprofen derivative was investigated in vitro in medium derived from heart endothelial cell isolation at two concentrations. The ex vivo examinations were carried out on rat hearts. Rats were anesthetized with an intraperitoneal injection of ketamine, xylazine, and heparin. After thoracotomy, hearts were excised and placed into ice-cold perfusion buffer. Perfusion of hearts was conducted in Langendorff mode via the cannulated aorta. In our experiments, we studied the dose-effect of the H₂S releasing molecule in Langendorff-perfused hearts with the application of gradually increasing concentration of the compound (0- 20 µM). The H₂S releasing ibuprofen derivative was applied before the ischemia for 10 minutes. H₂S concentration was measured with an H₂S detecting electrochemical sensor from the coronary effluent solution. The 10 µM concentration was chosen for further experiments when the treatment with this solution was occurred after the ischemia. The release of H₂S is occurred by the hydrolyzing enzymes that are present in the heart endothelial cells. The protective effect of the new H₂S releasing ibuprofen molecule can be confirmed by the infarct sizes of hearts using the Triphenyl-tetrazolium chloride (TTC) staining method. Furthermore, we aimed to define the effect of the H₂S releasing ibuprofen derivative on autophagic and apoptotic processes in damaged hearts after investigating the molecular markers of these events by western blotting and immunohistochemistry techniques. Our further studies will include the examination of LC3I/II, p62, Beclin1, caspase-3, and other apoptotic molecules. We hope that confirming the protective effect of new H₂S releasing ibuprofen molecule will open a new possibility for the development of more effective cardioprotective agents with exerting fewer side effects. Acknowledgment: This study was supported by the grants of NKFIH- K-124719 and the European Union and the State of Hungary co- financed by the European Social Fund in the framework of GINOP- 2.3.2-15-2016-00043.

Keywords: autophagy, hydrogen sulfide, ibuprofen, ischemia, reperfusion

Procedia PDF Downloads 138
1078 Effect of Upper Face Sheet Material on Flexural Strength of Polyurethane Foam Hybrid Sandwich Material

Authors: M. Atef Gabr, M. H. Abdel Latif, Ramadan El Gamsy

Abstract:

Sandwich panels comprise a thick, light-weight plastic foam such as polyurethane (PU) sandwiched between two relatively thin faces. One or both faces may be flat, lightly profiled or fully profiled. Until recently sandwich panel construction in Egypt has been widely used in cold-storage buildings, cold trucks, prefabricated buildings and insulation in construction. Recently new techniques are used in mass production of Sandwich Materials such as Reaction Injection Molding (RIM) and Vacuum bagging technique. However, in recent times their use has increased significantly due to their widespread structural applications in building systems. Structural sandwich panels generally used in Egypt comprise polyurethane foam core and thinner (0.42 mm) and high strength about 550 MPa (yield strength) flat steel faces bonded together using separate adhesives and By RIM technique. In this paper, we will use a new technique in sandwich panel preparation by using different face sheet materials in combination with polyurethane foam to form sandwich panel structures. Previously, PU Foam core with same thin 2 faces material was used, but in this work, we use different face materials and thicknesses for the upper face sheet such as Galvanized steel sheets (G.S),Aluminum sheets (Al),Fiberglass sheets (F.G) and Aluminum-Rubber composite sheets (Al/R) with polyurethane foam core 10 mm thickness and 45 Kg/m3 Density and Galvanized steel as lower face sheet. Using Aluminum-Rubber composite sheets as face sheet is considered a hybrid composite sandwich panel which is built by Hand-Layup technique by using PU glue as adhesive. This modification increases the benefits of the face sheet that will withstand different working environments with relatively small increase in its weight and will be useful in several applications. In this work, a 3-point bending test is used assistant professor to measure the most important factor in sandwich materials that is strength to weight ratio(STW) for different combinations of sandwich structures and make a comparison to study the effect of changing the face sheet material on the mechanical behavior of PU sandwich material. Also, the density of the different prepared sandwich materials will be measured to obtain the specific bending strength.

Keywords: hybrid sandwich panel, mechanical behavior, PU foam, sandwich panel, 3-point bending, flexural strength

Procedia PDF Downloads 311
1077 Nanomaterials for Archaeological Stone Conservation: Re-Assembly of Archaeological Heavy Stones Using Epoxy Resin Modified with Clay Nanoparticles

Authors: Sayed Mansour, Mohammad Aldoasri, Nagib Elmarzugi, Nadia A. Al-Mouallimi

Abstract:

The archaeological large stone used in construction of ancient Pharaonic tombs, temples, obelisks and other sculptures, always subject to physicomechanical deterioration and destructive forces, leading to their partial or total broken. The task of reassembling this type of artifact represent a big challenge for the conservators. Recently, the researchers are turning to new technologies to improve the properties of traditional adhesive materials and techniques used in re-assembly of broken large stone. The epoxy resins are used extensively in stone conservation and re-assembly of broken stone because of their outstanding mechanical properties. The introduction of nanoparticles to polymeric adhesives at low percentages may lead to substantial improvements of their mechanical performances in structural joints and large objects. The aim of this study is to evaluate the effectiveness of clay nanoparticles in enhancing the performances of epoxy adhesives used in re-assembly of archaeological massive stone by adding proper amounts of those nanoparticles. The nanoparticles reinforced epoxy nanocomposite was prepared by direct melt mixing with a nanoparticles content of 3% (w/v), and then mould forming in the form of rectangular samples, and used as adhesive for experimental stone samples. Scanning electron microscopy (SEM) was employed to investigate the morphology of the prepared nanocomposites, and the distribution of nanoparticles inside the composites. The stability and efficiency of the prepared epoxy-nanocomposites and stone block assemblies with new formulated adhesives were tested by aging artificially the samples under different environmental conditions. The effect of incorporating clay nanoparticles on the mechanical properties of epoxy adhesives was evaluated comparatively before and after aging by measuring the tensile, compressive, and Elongation strength tests. The morphological studies revealed that the mixture process between epoxy and nanoparticles has succeeded with a relatively homogeneous morphology and good dispersion in low nano-particles loadings in epoxy matrix was obtained. The results show that the epoxy-clay nanocomposites exhibited superior tensile, compressive, and Elongation strength. Moreover, a marked improvement of the mechanical properties of stone joints increased in all states by adding nano-clay to epoxy in comparison with pure epoxy resin.

Keywords: epoxy resins, nanocomposites, clay nanoparticles, re-assembly, archaeological massive stones, mechanical properties

Procedia PDF Downloads 111
1076 Design and Test a Robust Bearing-Only Target Motion Analysis Algorithm Based on Modified Gain Extended Kalman Filter

Authors: Mohammad Tarek Al Muallim, Ozhan Duzenli, Ceyhun Ilguy

Abstract:

Passive sonar is a method for detecting acoustic signals in the ocean. It detects the acoustic signals emanating from external sources. With passive sonar, we can determine the bearing of the target only, no information about the range of the target. Target Motion Analysis (TMA) is a process to estimate the position and speed of a target using passive sonar information. Since bearing is the only available information, the TMA technique called Bearing-only TMA. Many TMA techniques have been developed. However, until now, there is not a very effective method that could be used to always track an unknown target and extract its moving trace. In this work, a design of effective Bearing-only TMA Algorithm is done. The measured bearing angles are very noisy. Moreover, for multi-beam sonar, the measurements is quantized due to the sonar beam width. To deal with this, modified gain extended Kalman filter algorithm is used. The algorithm is fine-tuned, and many modules are added to improve the performance. A special validation gate module is used to insure stability of the algorithm. Many indicators of the performance and confidence level measurement are designed and tested. A new method to detect if the target is maneuvering is proposed. Moreover, a reactive optimal observer maneuver based on bearing measurements is proposed, which insure converging to the right solution all of the times. To test the performance of the proposed TMA algorithm a simulation is done with a MATLAB program. The simulator program tries to model a discrete scenario for an observer and a target. The simulator takes into consideration all the practical aspects of the problem such as a smooth transition in the speed, a circular turn of the ship, noisy measurements, and a quantized bearing measurement come for multi-beam sonar. The tests are done for a lot of given test scenarios. For all the tests, full tracking is achieved within 10 minutes with very little error. The range estimation error was less than 5%, speed error less than 5% and heading error less than 2 degree. For the online performance estimator, it is mostly aligned with the real performance. The range estimation confidence level gives a value equal to 90% when the range error less than 10%. The experiments show that the proposed TMA algorithm is very robust and has low estimation error. However, the converging time of the algorithm is needed to be improved.

Keywords: target motion analysis, Kalman filter, passive sonar, bearing-only tracking

Procedia PDF Downloads 393
1075 Nanorods Based Dielectrophoresis for Protein Concentration and Immunoassay

Authors: Zhen Cao, Yu Zhu, Junxue Fu

Abstract:

Immunoassay, i.e., antigen-antibody reaction, is crucial for disease diagnostics. To achieve the adequate signal of the antigen protein detection, a large amount of sample and long incubation time is needed. However, the amount of protein is usually small at the early stage, which makes it difficult to detect. Unlike cells and DNAs, no valid chemical method exists for protein amplification. Thus, an alternative way to improve the signal is through particle manipulation techniques to concentrate proteins, among which dielectrophoresis (DEP) is an effective one. DEP is a technique that concentrates particles to the designated region through a force created by the gradient in a non-uniform electric field. Since DEP force is proportional to the cube of particle size and square of electric field gradient, it is relatively easy to capture larger particles such as cells. For smaller ones like proteins, a super high gradient is then required. In this work, three-dimensional Ag/SiO2 nanorods arrays, fabricated by an easy physical vapor deposition technique called as oblique angle deposition, have been integrated with a DEP device and created the field gradient as high as of 2.6×10²⁴ V²/m³. The nanorods based DEP device is able to enrich bovine serum albumin (BSA) protein by 1800-fold and the rate has reached 180-fold/s when only applying 5 V electric potential. Based on the above nanorods integrated DEP platform, an immunoassay of mouse immunoglobulin G (IgG) proteins has been performed. Briefly, specific antibodies are immobilized onto nanorods, then IgG proteins are concentrated and captured, and finally, the signal from fluorescence-labelled antibodies are detected. The limit of detection (LoD) is measured as 275.3 fg/mL (~1.8 fM), which is a 20,000-fold enhancement compared with identical assays performed on blank glass plates. Further, prostate-specific antigen (PSA), which is a cancer biomarker for diagnosis of prostate cancer after radical prostatectomy, is also quantified with a LoD as low as 2.6 pg/mL. The time to signal saturation has been significantly reduced to one minute. In summary, together with an easy nanorod fabrication and integration method, this nanorods based DEP platform has demonstrated highly sensitive immunoassay performance and thus poses great potentials in applications for early point-of-care diagnostics.

Keywords: dielectrophoresis, immunoassay, oblique angle deposition, protein concentration

Procedia PDF Downloads 102
1074 Agrowastes to Edible Hydrogels through Bio Nanotechnology Interventions: Bioactive from Mandarin Peels

Authors: Niharika Kaushal, Minni Singh

Abstract:

Citrus fruits contain an abundance of phytochemicals that can promote health. A substantial amount of agrowaste is produced from the juice processing industries, primarily peels and seeds. This leftover agrowaste is a reservoir of nutraceuticals, particularly bioflavonoids which render it antioxidant and potentially anticancerous. It is, therefore, favorable to utilize this biomass and contribute towards sustainability in a manner that value-added products may be derived from them, nutraceuticals, in this study. However, the pre-systemic metabolism of flavonoids in the gastric phase limits the effectiveness of these bioflavonoids derived from mandarin biomass. In this study, ‘kinnow’ mandarin (Citrus nobilis X Citrus deliciosa) biomass was explored for its flavonoid profile. This work entails supercritical fluid extraction and identification of bioflavonoids from mandarin biomass. Furthermore, to overcome the limitations of these flavonoids in the gastrointestinal tract, a double-layered vehicular mechanism comprising the fabrication of nanoconjugates and edible hydrogels was adopted. Total flavonoids in the mandarin peel extract were estimated by the aluminum chloride complexation method and were found to be 47.3±1.06 mg/ml rutin equivalents as total flavonoids. Mass spectral analysis revealed the abundance of polymethoxyflavones (PMFs), nobiletin and tangeretin as the major flavonoids in the extract, followed by hesperetin and naringenin. Furthermore, the antioxidant potential was analyzed by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) method, which showed an IC50 of 0.55μg/ml. Nanoconjugates were fabricated via the solvent evaporation method, which was further impregnated into hydrogels. Additionally, the release characteristics of nanoconjugate-laden hydrogels in a simulated gastrointestinal environment were studied. The PLGA-PMFs nanoconjugates exhibited a particle size between 200-250nm having a smooth and spherical shape as revealed by FE-SEM. The impregnated alginate hydrogels offered a dense network that ensured the holding of PLGA-PMF nanoconjugates, as confirmed by Cryo-SEM images. Rheological studies revealed the shear-thinning behavior of hydrogels and their high resistance to deformation. Gastrointestinal studies showed a negligible 4.0% release of flavonoids in the gastric phase, followed by a sustained release over the next hours in the intestinal environment. Therefore, based on the enormous potential of recovering nutraceuticals from agro-processing wastes, further augmented by nanotechnological interventions for enhancing the bioefficacy of these compounds, lays the foundation for exploring the path towards the development of value-added products, thereby contributing towards the sustainable use of agrowaste.

Keywords: agrowaste, gastrointestinal, hydrogel, nutraceuticals

Procedia PDF Downloads 90
1073 The Illegal Architecture of Apartheid in Palestine

Authors: Hala Barakat

Abstract:

Architecture plays a crucial role in the colonization and organization of spaces, as well as the preservation of cultures and history. As a result of 70 years of occupation, Palestinian land, culture, and history are endangered today. The government of Israel has used architecture to strangulate Palestinians out and seize their land. The occupation has managed to fragment the West Bank and cause sensible scars on the landscape by creating obstacles, barriers, watchtowers, checkpoints, walls, apartheid roads, border devices, and illegal settlements to unjustly claim land from its indigenous population. The apartheid architecture has divided the Palestinian social and urban fabric into pieces, similarly to the Bantustans. The architectural techniques and methods used by the occupation are evidence of prejudice, and while the illegal settlements remain to be condemned by the United Nations, little is being done to officially end this apartheid. Illegal settlements range in scale from individual units to established cities and house more than 60,000 Israeli settlers that immigrated from all over Europe and the United States. Often architecture by Israel is being directed towards expressing ideologies and serving as evidence of its political agenda. More than 78% of what was granted to Palestine after the development of the Green Line in 1948 is under Israeli occupation today. This project aims to map the illegal architecture as a criticism of governmental agendas in the West Bank and Historic Palestinian land. The paper will also discuss the resistance to the newly developed plan for the last Arab village in Jerusalem, Lifta. The illegal architecture has isolated Palestinians from each other and installed obstacles to control their movement. The architecture of occupation has no ethical or humane logic but rather entirely political, administrative, and it should not be left for the silenced architecture to tell the story. Architecture is not being used as a connecting device but rather a way to implement political injustice and spatial oppression. By narrating stories of the architecture of occupation, we can highlight the spatial injustice of the complex apartheid infrastructure. The Israeli government has managed to intoxicate architecture to serve as a divider between cultural groups, allowing the unlawful and unethical architecture to define its culture and values. As architects and designers, the roles we play in the development of illegal settlements must align with the spatial ethics we practice. Most importantly, our profession is not performing architecturally when we design a house with a particular roof color to ensure it would not be mistaken with a Palestinian house and be attacked accidentally.

Keywords: apartheid, illegal architecture, occupation, politics

Procedia PDF Downloads 149
1072 Optimization of the Feedstock Supply of an Oilseeds Conversion Unit for Biofuel Production in West Africa: A Comparative Study of the Supply of Jatropha curcas and Balanites aegyptiaca Seeds

Authors: Linda D. F. Bambara, Marie Sawadogo

Abstract:

Jatropha curcas (jatropha) is the plant that has been the most studied for biofuel production in West Africa. There exist however other plants such as Balanites aegyptiaca (balanites) that have been targeted as a potential feedstock for biofuel production. This biomass could be an alternative feedstock for the production of straight vegetable oil (SVO) at costs lower than jatropha-based SVO production costs. This study aims firstly to determine, through an MILP model, the optimal organization that minimizes the costs of the oilseeds supply of two biomass conversion units (BCU) exploiting respectively jatropha seeds and the balanitès seeds. Secondly, the study aims to carry out a comparative study of these costs obtained for each BCU. The model was then implemented on two theoretical cases studies built on the basis of the common practices in Burkina Faso and two scenarios were carried out for each case study. In Scenario 1, 3 pre-processing locations ("at the harvesting area", "at the gathering points", "at the BCU") are possible. In scenario 2, only one location ("at the BCU") is possible. For each biomass, the system studied is the upstream supply chain (harvesting, transport and pre-processing (drying, dehulling, depulping)), including cultivation (for jatropha). The model optimizes the area of land to be exploited based on the productivity of the studied plants and material losses that may occur during the harvesting and the supply of the BCU. It then defines the configuration of the logistics network allowing an optimal supply of the BCU taking into account the most common means of transport in West African rural areas. For the two scenarios, the results of the implementation showed that the total area exploited for balanites (1807 ha) is 4.7 times greater than the total area exploited for Jatropha (381 ha). In both case studies, the location of pre-processing “at the harvesting area” was always chosen for scenario1. As the balanites trees were not planted and because the first harvest of the jatropha seeds took place 4 years after planting, the cost price of the seeds at the BCU without the pre-processing costs was about 430 XOF/kg. This cost is 3 times higher than the balanites's one, which is 140 XOF/kg. After the first year of harvest, i.e. 5 years after planting, and assuming that the yield remains constant, the same cost price is about 200 XOF/kg for Jatropha. This cost is still 1.4 times greater than the balanites's one. The transport cost of the balanites seeds is about 120 XOF/kg. This cost is similar for the jatropha seeds. However, when the pre-processing is located at the BCU, i.e. for scenario2, the transport costs of the balanites seeds is 1200 XOF/kg. These costs are 6 times greater than the transport costs of jatropha which is 200 XOF/kg. These results show that the cost price of the balanites seeds at the BCU can be competitive compared to the jatropha's one if the pre-processing is located at the harvesting area.

Keywords: Balanites aegyptiaca, biomass conversion, Jatropha curcas, optimization, post-harvest operations

Procedia PDF Downloads 335
1071 The Use of Optical-Radar Remotely-Sensed Data for Characterizing Geomorphic, Structural and Hydrologic Features and Modeling Groundwater Prospective Zones in Arid Zones

Authors: Mohamed Abdelkareem

Abstract:

Remote sensing data contributed on predicting the prospective areas of water resources. Integration of microwave and multispectral data along with climatic, hydrologic, and geological data has been used here. In this article, Sentinel-2, Landsat-8 Operational Land Imager (OLI), Shuttle Radar Topography Mission (SRTM), Tropical Rainfall Measuring Mission (TRMM), and Advanced Land Observing Satellite (ALOS) Phased Array Type L‐band Synthetic Aperture Radar (PALSAR) data were utilized to identify the geological, hydrologic and structural features of Wadi Asyuti which represents a defunct tributary of the Nile basin, in the eastern Sahara. The image transformation of Sentinel-2 and Landsat-8 data allowed characterizing the different varieties of rock units. Integration of microwave remotely-sensed data and GIS techniques provided information on physical characteristics of catchments and rainfall zones that are of a crucial role for mapping groundwater prospective zones. A fused Landsat-8 OLI and ALOS/PALSAR data improved the structural elements that difficult to reveal using optical data. Lineament extraction and interpretation indicated that the area is clearly shaped by the NE-SW graben that is cut by NW-SE trend. Such structures allowed the accumulation of thick sediments in the downstream area. Processing of recent OLI data acquired on March 15, 2014, verified the flood potential maps and offered the opportunity to extract the extent of the flooding zone of the recent flash flood event (March 9, 2014), as well as revealed infiltration characteristics. Several layers including geology, slope, topography, drainage density, lineament density, soil characteristics, rainfall, and morphometric characteristics were combined after assigning a weight for each using a GIS-based knowledge-driven approach. The results revealed that the predicted groundwater potential zones (GPZs) can be arranged into six distinctive groups, depending on their probability for groundwater, namely very low, low, moderate, high very, high, and excellent. Field and well data validated the delineated zones.

Keywords: GIS, remote sensing, groundwater, Egypt

Procedia PDF Downloads 93
1070 Satellite Interferometric Investigations of Subsidence Events Associated with Groundwater Extraction in Sao Paulo, Brazil

Authors: B. Mendonça, D. Sandwell

Abstract:

The Metropolitan Region of Sao Paulo (MRSP) has suffered from serious water scarcity. Consequently, the most convenient solution has been building wells to extract groundwater from local aquifers. However, it requires constant vigilance to prevent over extraction and future events that can pose serious threat to the population, such as subsidence. Radar imaging techniques (InSAR) have allowed continuous investigation of such phenomena. The analysis of data in the present study consists of 23 SAR images dated from October 2007 to March 2011, obtained by the ALOS-1 spacecraft. Data processing was made with the software GMTSAR, by using the InSAR technique to create pairs of interferograms with ground displacement during different time spans. First results show a correlation between the location of 102 wells registered in 2009 and signals of ground displacement equal or lower than -90 millimeters (mm) in the region. The longest time span interferogram obtained dates from October 2007 to March 2010. As a result, from that interferogram, it was possible to detect the average velocity of displacement in millimeters per year (mm/y), and which areas strong signals have persisted in the MRSP. Four specific areas with signals of subsidence of 28 mm/y to 40 mm/y were chosen to investigate the phenomenon: Guarulhos (Sao Paulo International Airport), the Greater Sao Paulo, Itaquera and Sao Caetano do Sul. The coverage area of the signals was between 0.6 km and 1.65 km of length. All areas are located above a sedimentary type of aquifer. Itaquera and Sao Caetano do Sul showed signals varying from 28 mm/y to 32 mm/y. On the other hand, the places most likely to be suffering from stronger subsidence are the ones in the Greater Sao Paulo and Guarulhos, right beside the International Airport of Sao Paulo. The rate of displacement observed in both regions goes from 35 mm/y to 40 mm/y. Previous investigations of the water use at the International Airport highlight the risks of excessive water extraction that was being done through 9 deep wells. Therefore, it is affirmed that subsidence events are likely to occur and to cause serious damage in the area. This study could show a situation that has not been explored with proper importance in the city, given its social and economic consequences. Since the data were only available until 2011, the question that remains is if the situation still persists. It could be reaffirmed, however, a scenario of risk at the International Airport of Sao Paulo that needs further investigation.

Keywords: ground subsidence, Interferometric Satellite Aperture Radar (InSAR), metropolitan region of Sao Paulo, water extraction

Procedia PDF Downloads 351
1069 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong

Authors: Cynthia Sau Chun Yip, Richard Fielding

Abstract:

High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.

Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption

Procedia PDF Downloads 308
1068 Intelligent Indoor Localization Using WLAN Fingerprinting

Authors: Gideon C. Joseph

Abstract:

The ability to localize mobile devices is quite important, as some applications may require location information of these devices to operate or deliver better services to the users. Although there are several ways of acquiring location data of mobile devices, the WLAN fingerprinting approach has been considered in this work. This approach uses the Received Signal Strength Indicator (RSSI) measurement as a function of the position of the mobile device. RSSI is a quantitative technique of describing the radio frequency power carried by a signal. RSSI may be used to determine RF link quality and is very useful in dense traffic scenarios where interference is of major concern, for example, indoor environments. This research aims to design a system that can predict the location of a mobile device, when supplied with the mobile’s RSSIs. The developed system takes as input the RSSIs relating to the mobile device, and outputs parameters that describe the location of the device such as the longitude, latitude, floor, and building. The relationship between the Received Signal Strengths (RSSs) of mobile devices and their corresponding locations is meant to be modelled; hence, subsequent locations of mobile devices can be predicted using the developed model. It is obvious that describing mathematical relationships between the RSSIs measurements and localization parameters is one option to modelling the problem, but the complexity of such an approach is a serious turn-off. In contrast, we propose an intelligent system that can learn the mapping of such RSSIs measurements to the localization parameters to be predicted. The system is capable of upgrading its performance as more experiential knowledge is acquired. The most appealing consideration to using such a system for this task is that complicated mathematical analysis and theoretical frameworks are excluded or not needed; the intelligent system on its own learns the underlying relationship in the supplied data (RSSI levels) that corresponds to the localization parameters. These localization parameters to be predicted are of two different tasks: Longitude and latitude of mobile devices are real values (regression problem), while the floor and building of the mobile devices are of integer values or categorical (classification problem). This research work presents artificial neural network based intelligent systems to model the relationship between the RSSIs predictors and the mobile device localization parameters. The designed systems were trained and validated on the collected WLAN fingerprint database. The trained networks were then tested with another supplied database to obtain the performance of trained systems on achieved Mean Absolute Error (MAE) and error rates for the regression and classification tasks involved therein.

Keywords: indoor localization, WLAN fingerprinting, neural networks, classification, regression

Procedia PDF Downloads 343
1067 Advancing Agriculture through Technology: An Abstract of Research Findings

Authors: Eugene Aninagyei-Bonsu

Abstract:

Introduction: Agriculture has been a cornerstone of human civilization, ensuring food security and livelihoods for billions of people worldwide. In recent decades, rapid advancements in technology have revolutionized the agricultural sector, offering innovative solutions to enhance productivity, sustainability, and efficiency. This abstract summarizes key findings from a research study that explores the impacts of technology in modern agriculture and its implications for future food production systems. Methodologies: The research study employed a mixed-methods approach, combining quantitative data analysis with qualitative interviews and surveys to gain a comprehensive understanding of the role of technology in agriculture. Data was collected from various stakeholders, including farmers, agricultural technicians, and industry experts, to capture diverse perspectives on the adoption and utilization of agricultural technologies. The study also utilized case studies and literature reviews to contextualize the findings within the broader agricultural landscape. Major Findings: The research findings reveal that technology plays a pivotal role in transforming traditional farming practices and driving innovation in agriculture. Advanced technologies such as precision agriculture, drone technology, genetic engineering, and smart irrigation systems have significantly improved crop yields, reduced environmental impact, and optimized resource utilization. Farmers who have embraced these technologies have reported increased productivity, enhanced profitability, and improved resilience to environmental challenges. Furthermore, the study highlights the importance of accessible and affordable technology solutions for smallholder farmers in developing countries. Mobile applications, sensor technologies, and digital platforms have enabled small-scale farmers to access market information, weather forecasts, and agricultural best practices, empowering them to make informed decisions and improve their livelihoods. The research emphasizes the need for targeted policies and investments to bridge the digital divide and promote equitable technology adoption in agriculture. Conclusion: In conclusion, this research underscores the transformative potential of technology in agriculture and its critical role in advancing sustainable food production systems. The findings suggest that harnessing technology can address key challenges facing the agricultural sector, including climate change, resource scarcity, and food insecurity. By embracing innovation and leveraging technology, farmers can enhance their productivity, profitability, and resilience in a rapidly evolving global food system. Moving forward, policymakers, researchers, and industry stakeholders must collaborate to facilitate the adoption of appropriate technologies, support capacity building, and promote sustainable agricultural practices for a more resilient and food-secure future.

Keywords: technology development in modern agriculture, the influence of information technology access in agriculture, analyzing agricultural technology development, analyzing of the frontier technology of agriculture loT

Procedia PDF Downloads 31
1066 Reduction of Residual Stress by Variothermal Processing and Validation via Birefringence Measurement Technique on Injection Molded Polycarbonate Samples

Authors: Christoph Lohr, Hanna Wund, Peter Elsner, Kay André Weidenmann

Abstract:

Injection molding is one of the most commonly used techniques in the industrial polymer processing. In the conventional process of injection molding, the liquid polymer is injected into the cavity of the mold, where the polymer directly starts hardening at the cooled walls. To compensate the shrinkage, which is caused predominantly by the immediate cooling, holding pressure is applied. Through that whole process, residual stresses are produced by the temperature difference of the polymer melt and the injection mold and the relocation of the polymer chains, which were oriented by the high process pressures and injection speeds. These residual stresses often weaken or change the structural behavior of the parts or lead to deformation of components. One solution to reduce the residual stresses is the use of variothermal processing. Hereby the mold is heated – i.e. near/over the glass transition temperature of the polymer – the polymer is injected and before opening the mold and ejecting the part the mold is cooled. For the next cycle, the mold gets heated again and the procedure repeats. The rapid heating and cooling of the mold are realized indirectly by convection of heated and cooled liquid (here: water) which is pumped through fluid channels underneath the mold surface. In this paper, the influences of variothermal processing on the residual stresses are analyzed with samples in a larger scale (500 mm x 250 mm x 4 mm). In addition, the influence on functional elements, such as abrupt changes in wall thickness, bosses, and ribs, on the residual stress is examined. Therefore the polycarbonate samples are produced by variothermal and isothermal processing. The melt is injected into a heated mold, which has in our case a temperature varying between 70 °C and 160 °C. After the filling of the cavity, the closed mold is cooled down varying from 70 °C to 100 °C. The pressure and temperature inside the mold are monitored and evaluated with cavity sensors. The residual stresses of the produced samples are illustrated by birefringence where the effect on the refractive index on the polymer under stress is used. The colorful spectrum can be uncovered by placing the sample between a polarized light source and a second polarization filter. To show the achievement and processing effects on the reduction of residual stress the birefringence images of the isothermal and variothermal produced samples are compared and evaluated. In this comparison to the variothermal produced samples have a lower amount of maxima of each color spectrum than the isothermal produced samples, which concludes that the residual stress of the variothermal produced samples is lower.

Keywords: birefringence, injection molding, polycarbonate, residual stress, variothermal processing

Procedia PDF Downloads 281