Search results for: technology intelligence
7748 IT Skills and Soft Skills for Accountants in Thailand
Authors: Manirath Wongsim
Abstract:
Information technology management has become important for the achievement of organisations. An increase in the pace of technological change has revolutionised the way accountants perform their jobs. In response to this challenge, the identification of a new comprehensive set of information technology competencies combined with information technology skills and other skills (namely, soft skills) are necessary. Thus, this study aims to investigate IT competencies among professional accountants to enhance firm performance. This research was conducted with 42 respondents at ten organisations in Thailand. This research used qualitative, interpretive evidence.The results indicate that the factor IT competencies within the organizational issues defines19 factors. Specifically, these new factors, based on the research findings and the literature and unique to IT competences for professional accountants, include ERP software skills, BI software skills and accounting law and legal skills. The evidence in this study suggests that ERP software, spreadsheets, BI software and accounting software were ranked as much-needed skills to be acquired by accountants while communication skills were ranked as the most required skills, and delegation skills as the least required. The findings of the research’s empirical evidence suggest that organizations should understand appropriate into developing information technology related competencies for knowledge workers in general and professional accountants in particular and provide assistance in all processes of decision making.Keywords: IT competencies, IT competencies for accountants, IT skills for accounting, soft skills for accountants
Procedia PDF Downloads 4127747 Opinion Mining to Extract Community Emotions on Covid-19 Immunization Possible Side Effects
Authors: Yahya Almurtadha, Mukhtar Ghaleb, Ahmed M. Shamsan Saleh
Abstract:
The world witnessed a fierce attack from the Covid-19 virus, which affected public life socially, economically, healthily and psychologically. The world's governments tried to confront the pandemic by imposing a number of precautionary measures such as general closure, curfews and social distancing. Scientists have also made strenuous efforts to develop an effective vaccine to train the immune system to develop antibodies to combat the virus, thus reducing its symptoms and limiting its spread. Artificial intelligence, along with researchers and medical authorities, has accelerated the vaccine development process through big data processing and simulation. On the other hand, one of the most important negatives of the impact of Covid 19 was the state of anxiety and fear due to the blowout of rumors through social media, which prompted governments to try to reassure the public with the available means. This study aims to proposed using Sentiment Analysis (AKA Opinion Mining) and deep learning as efficient artificial intelligence techniques to work on retrieving the tweets of the public from Twitter and then analyze it automatically to extract their opinions, expression and feelings, negatively or positively, about the symptoms they may feel after vaccination. Sentiment analysis is characterized by its ability to access what the public post in social media within a record time and at a lower cost than traditional means such as questionnaires and interviews, not to mention the accuracy of the information as it comes from what the public expresses voluntarily.Keywords: deep learning, opinion mining, natural language processing, sentiment analysis
Procedia PDF Downloads 1717746 Determinants of Rural Household Effective Demand for Biogas Technology in Southern Ethiopia
Authors: Mesfin Nigussie
Abstract:
The objectives of the study were to identify factors affecting rural households’ willingness to install biogas plant and amount willingness to pay in order to examine determinants of effective demand for biogas technology. A multistage sampling technique was employed to select 120 respondents for the study. The binary probit regression model was employed to identify factors affecting rural households’ decision to install biogas technology. The probit model result revealed that household size, total household income, access to extension services related to biogas, access to credit service, proximity to water sources, perception of households about the quality of biogas, perception index about attributes of biogas, perception of households about installation cost of biogas and availability of energy source were statistically significant in determining household’s decision to install biogas. Tobit model was employed to examine determinants of rural household’s amount of willingness to pay. Based on the model result, age of the household head, total annual income of the household, access to extension service and availability of other energy source were significant variables that influence willingness to pay. Providing due considerations for extension services, availability of credit or subsidy, improving the quality of biogas technology design and minimizing cost of installation by using locally available materials are the main suggestions of this research that help to create effective demand for biogas technology.Keywords: biogas technology, effective demand, probit model, tobit model, willingnes to pay
Procedia PDF Downloads 1377745 Web-GIS Technology: A Tool for Farm-to-Market Road Project Profiling and Proposal Prioritization of the Philippines’ Department of Agriculture
Authors: Elbert S. Moyon, Edsel Matt O. Morales, Jaymer M. Jayoma, Kent C. Espejon, Jayson C. Dollete, Mark Phil B. Pacot
Abstract:
This research paper focuses on the potential of using Web-GIS technology in prioritizing farm-to-market road projects by the Philippines’ Department of Agriculture (DA). The study aimed to explore the benefits of Web-GIS in addressing the limitations faced by the DA in terms of Farm to Market Road profiling and project prioritization, which include a lack of access to updated data, limited spatial analysis capabilities, and difficulties in sharing information between stakeholders. The research methodology involves a comprehensive literature review and a case study of a Web-GIS application developed for the DA, which was used to profile and prioritize farm-to-market road projects in the Philippines. The results showed that the Web-GIS technology provides the DA with an effective tool for analyzing and visualizing data, which can help in profiling and prioritizing road projects based on various criteria such as economic, social, and environmental impacts. The study also showed that Web-GIS technology could help in reducing the time and effort required for road project prioritization and improve communication between stakeholders.Keywords: GIS, web application, farm-to-market road, FMR prioritization, Django, GeoServer
Procedia PDF Downloads 817744 Accelerating Sustainable Urban Transition Through Green Technology Innovation and Clean Energy to Achieve Net Zero Emissions
Authors: Emma Serwaa Obobisa
Abstract:
Urbanization has become the focus for challenging goals relating to environmental performance, such as carbon neutrality. Green technological innovation and clean energy are considered the prominent factors in reducing emissions and achieving sustainable cities. Through the application of a fixed effect model, generalized method of moments, and quantile-on-quantile regression, this study explores the role of green technology innovation and clean energy in accelerating the sustainable urban transition towards net zero emissions in developing countries while controlling for nonrenewable energy consumption, and economic growth. The long-run results show that green technology innovation and renewable energy consumption reduce CO₂ emissions from urban residential buildings. In contrast, economic growth and nonrenewable energy consumption increase CO₂ emissions. This study proposes a consistent technique for encouraging green technological innovation and renewable energy projects in developing countries where the role of innovation in achieving carbon neutrality is still understudied.Keywords: green technology innovation, renewable energy, urbanization, net zero emissions
Procedia PDF Downloads 327743 Identification of Risks Associated with Process Automation Systems
Authors: J. K. Visser, H. T. Malan
Abstract:
A need exists to identify the sources of risks associated with the process automation systems within petrochemical companies or similar energy related industries. These companies use many different process automation technologies in its value chain. A crucial part of the process automation system is the information technology component featuring in the supervisory control layer. The ever-changing technology within the process automation layers and the rate at which it advances pose a risk to safe and predictable automation system performance. The age of the automation equipment also provides challenges to the operations and maintenance managers of the plant due to obsolescence and unavailability of spare parts. The main objective of this research was to determine the risk sources associated with the equipment that is part of the process automation systems. A secondary objective was to establish whether technology managers and technicians were aware of the risks and share the same viewpoint on the importance of the risks associated with automation systems. A conceptual model for risk sources of automation systems was formulated from models and frameworks in literature. This model comprised six categories of risk which forms the basis for identifying specific risks. This model was used to develop a questionnaire that was sent to 172 instrument technicians and technology managers in the company to obtain primary data. 75 completed and useful responses were received. These responses were analyzed statistically to determine the highest risk sources and to determine whether there was difference in opinion between technology managers and technicians. The most important risks that were revealed in this study are: 1) the lack of skilled technicians, 2) integration capability of third-party system software, 3) reliability of the process automation hardware, 4) excessive costs pertaining to performing maintenance and migrations on process automation systems, and 5) requirements of having third-party communication interfacing compatibility as well as real-time communication networks.Keywords: distributed control system, identification of risks, information technology, process automation system
Procedia PDF Downloads 1387742 Artificial Intelligence in Bioscience: The Next Frontier
Authors: Parthiban Srinivasan
Abstract:
With recent advances in computational power and access to enough data in biosciences, artificial intelligence methods are increasingly being used in drug discovery research. These methods are essentially a series of advanced statistics based exercises that review the past to indicate the likely future. Our goal is to develop a model that accurately predicts biological activity and toxicity parameters for novel compounds. We have compiled a robust library of over 150,000 chemical compounds with different pharmacological properties from literature and public domain databases. The compounds are stored in simplified molecular-input line-entry system (SMILES), a commonly used text encoding for organic molecules. We utilize an automated process to generate an array of numerical descriptors (features) for each molecule. Redundant and irrelevant descriptors are eliminated iteratively. Our prediction engine is based on a portfolio of machine learning algorithms. We found Random Forest algorithm to be a better choice for this analysis. We captured non-linear relationship in the data and formed a prediction model with reasonable accuracy by averaging across a large number of randomized decision trees. Our next step is to apply deep neural network (DNN) algorithm to predict the biological activity and toxicity properties. We expect the DNN algorithm to give better results and improve the accuracy of the prediction. This presentation will review all these prominent machine learning and deep learning methods, our implementation protocols and discuss these techniques for their usefulness in biomedical and health informatics.Keywords: deep learning, drug discovery, health informatics, machine learning, toxicity prediction
Procedia PDF Downloads 3567741 Enhancing Social Well-Being in Older Adults Through Tailored Technology Interventions: A Future Systematic Review
Authors: Rui Lin, Jimmy Xiangji Huang, Gary Spraakman
Abstract:
This forthcoming systematic review will underscore the imperative of leveraging technology to mitigate social isolation in older adults, particularly in the context of unprecedented global challenges such as the COVID-19 pandemic. With the continual evolution of technology, it becomes crucial to scrutinize the efficacy of interventions and discern how they can alleviate social isolation and augment social well-being among the elderly. This review will strive to clarify the best methods for older adults to utilize cost-effective and user-friendly technology and will investigate how the adaptation and execution of such interventions can be fine-tuned to maximize their positive outcomes. The study will follow the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines to filter pertinent studies. We foresee conducting an analysis of articles and executing a narrative analysis to discover themes and indicators related to quality of life and, technology use and well-being. The review will examine how involving older adults at the community level, applying top practices from community-based participatory research, can establish efficient strategies to implement technology-based interventions designed to diminish social isolation and boost digital use self-efficacy. Applications based on mobile technology and virtual platforms are set to assume a crucial role not only in enhancing connections within families but also in connecting older adults to vital healthcare resources, fostering both physical and mental well-being. The review will investigate how technological devices and platforms can address the cognitive, visual, and auditory requirements of older adults, thus strengthening their confidence and proficiency in digital use—a crucial factor during enforced social distancing or self-isolation periods during pandemics. This review will endeavor to provide insights into the multifaceted benefits of technology for older adults, focusing on how tailored technological interventions can be a beacon of social and mental wellness in times of social restrictions. It will contribute to the growing body of knowledge on the intersection of technology and elderly well-being, offering nuanced understandings and practical implications for developing user-centric, effective, and inclusive technological solutions for older populations.Keywords: older adults, health service delivery, digital health, social isolation, social well-being
Procedia PDF Downloads 607740 Matching Human Competencies with Mobile Technology and Business Strategy in Women-Led SMEs
Authors: Deborah O. Ajumobi, Michael Kyobe
Abstract:
Studies show that women entrepreneurs are constrained and faced with challenges that inhibit the growth and performance of their businesses. However, with their human competencies, mobile technology and the appropriate business strategy, women-led SMEs can steer their businesses to better performance. While the need for SMEs to align these three elements has been suggested, there is limited knowledge on how SMEs can achieve this and no studies to the authors’ knowledge have examined this in women-led SMEs. This study therefore seeks to fill this gap by investigating how Women-led SMEs can best align these three elements to enhance business performance. In light of this, extensive literature review and theoretical work on the phenomenon has been conducted. Given the existence of the interplay between these three elements, we argue that the perspective of alignment as gestalts is most appropriate in determining the best way women-Led SMEs may align these aspects.Keywords: women-led SMEs, human Competencies, mobile technology, business strategy, alignment
Procedia PDF Downloads 5007739 Managing IT Departments in Higher Education Institutes: Coping with the Exponentially Growing Needs and Expectations
Authors: Balqees A. Al-Thuhli, Ali H. Al-Badi, Khamis Al-Gharbi
Abstract:
Information technology is changing rapidly and the users’ expectations are also growing. Dealing with these changes in information technology, while satisfying the users’ needs and expectations is a big challenge. IT managers need to explore new mechanisms/strategies to enable them to cope with such challenges. The objectives of this research are to identify the significant challenges that might face IT managers in higher education institutes in the face of the high and ever growing customer expectations and to propose possible solutions to cope with such high-speed changes in information technology. To achieve these objectives, interviews with the IT professionals from different higher education institutes in Oman were conducted. In addition, documentation (printed and online) related to these institutions were studied and an intensive literature review of published work was examined. The findings of this research are expected to give a better understanding of the challenges that might face the IT managers at higher education institutes. This acquired understanding is expected to highlight the importance of being adaptable and fast in keeping up with the ever-growing technological changes. Moreover, adopting different tools and technologies could assist IT managers in developing their organisations’ IT policies and strategies.Keywords: information technology, rapid change, CIO roles, challenges, IT managers, coping mechanisms, users' expectations
Procedia PDF Downloads 2607738 The Importance of Visual Communication in Artificial Intelligence
Authors: Manjitsingh Rajput
Abstract:
Visual communication plays an important role in artificial intelligence (AI) because it enables machines to understand and interpret visual information, similar to how humans do. This abstract explores the importance of visual communication in AI and emphasizes the importance of various applications such as computer vision, object emphasis recognition, image classification and autonomous systems. In going deeper, with deep learning techniques and neural networks that modify visual understanding, In addition to AI programming, the abstract discusses challenges facing visual interfaces for AI, such as data scarcity, domain optimization, and interpretability. Visual communication and other approaches, such as natural language processing and speech recognition, have also been explored. Overall, this abstract highlights the critical role that visual communication plays in advancing AI capabilities and enabling machines to perceive and understand the world around them. The abstract also explores the integration of visual communication with other modalities like natural language processing and speech recognition, emphasizing the critical role of visual communication in AI capabilities. This methodology explores the importance of visual communication in AI development and implementation, highlighting its potential to enhance the effectiveness and accessibility of AI systems. It provides a comprehensive approach to integrating visual elements into AI systems, making them more user-friendly and efficient. In conclusion, Visual communication is crucial in AI systems for object recognition, facial analysis, and augmented reality, but challenges like data quality, interpretability, and ethics must be addressed. Visual communication enhances user experience, decision-making, accessibility, and collaboration. Developers can integrate visual elements for efficient and accessible AI systems.Keywords: visual communication AI, computer vision, visual aid in communication, essence of visual communication.
Procedia PDF Downloads 947737 Designing Information Systems in Education as Prerequisite for Successful Management Results
Authors: Vladimir Simovic, Matija Varga, Tonco Marusic
Abstract:
This research paper shows matrix technology models and examples of information systems in education (in the Republic of Croatia and in the Germany) in support of business, education (when learning and teaching) and e-learning. Here we researched and described the aims and objectives of the main process in education and technology, with main matrix classes of data. In this paper, we have example of matrix technology with detailed description of processes related to specific data classes in the processes of education and an example module that is support for the process: ‘Filling in the directory and the diary of work’ and ‘evaluation’. Also, on the lower level of the processes, we researched and described all activities which take place within the lower process in education. We researched and described the characteristics and functioning of modules: ‘Fill the directory and the diary of work’ and ‘evaluation’. For the analysis of the affinity between the aforementioned processes and/or sub-process we used our application model created in Visual Basic, which was based on the algorithm for analyzing the affinity between the observed processes and/or sub-processes.Keywords: designing, education management, information systems, matrix technology, process affinity
Procedia PDF Downloads 4377736 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography
Authors: Wei-Hsuan Hsu, Yi-Xuan Huang
Abstract:
Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.Keywords: electrowetting, mold filling, nano-imprint, surface modification
Procedia PDF Downloads 1707735 Don't Just Guess and Slip: Estimating Bayesian Knowledge Tracing Parameters When Observations Are Scant
Authors: Michael Smalenberger
Abstract:
Intelligent tutoring systems (ITS) are computer-based platforms which can incorporate artificial intelligence to provide step-by-step guidance as students practice problem-solving skills. ITS can replicate and even exceed some benefits of one-on-one tutoring, foster transactivity in collaborative environments, and lead to substantial learning gains when used to supplement the instruction of a teacher or when used as the sole method of instruction. A common facet of many ITS is their use of Bayesian Knowledge Tracing (BKT) to estimate parameters necessary for the implementation of the artificial intelligence component, and for the probability of mastery of a knowledge component relevant to the ITS. While various techniques exist to estimate these parameters and probability of mastery, none directly and reliably ask the user to self-assess these. In this study, 111 undergraduate students used an ITS in a college-level introductory statistics course for which detailed transaction-level observations were recorded, and users were also routinely asked direct questions that would lead to such a self-assessment. Comparisons were made between these self-assessed values and those obtained using commonly used estimation techniques. Our findings show that such self-assessments are particularly relevant at the early stages of ITS usage while transaction level data are scant. Once a user’s transaction level data become available after sufficient ITS usage, these can replace the self-assessments in order to eliminate the identifiability problem in BKT. We discuss how these findings are relevant to the number of exercises necessary to lead to mastery of a knowledge component, the associated implications on learning curves, and its relevance to instruction time.Keywords: Bayesian Knowledge Tracing, Intelligent Tutoring System, in vivo study, parameter estimation
Procedia PDF Downloads 1717734 Innovation in Information Technology Services: Framework to Improve the Effectiveness and Efficiency of Information Technology Service Management Processes, Projects and Decision Support Management
Authors: Pablo Cardozo Herrera
Abstract:
In a dynamic market of Information Technology (IT) Service and with high quality demands and high performance requirements in decreasing costs, it is imperative that IT companies invest organizational effort in order to increase the effectiveness of their Information Technology Service Management (ITSM) processes through the improvement of ITSM project management and through solid support to the strategic decision-making process of IT directors. In this article, the author presents an analysis of common issues of IT companies around the world, with strategic needs of information unmet that provoke their ITSM processes and projects management that do not achieve the effectiveness and efficiency expected of their results. In response to the issues raised, the author proposes a framework consisting of an innovative theoretical framework model of ITSM management and a technological solution aligned to the Information Technology Infrastructure Library (ITIL) good practices guidance and ISO/IEC 20000-1 requirements. The article describes a research that proves the proposed framework is able to integrate, manage and coordinate in a holistic way, measurable and auditable, all ITSM processes and projects of IT organization and utilize the effectiveness assessment achieved for their strategic decision-making process increasing the process maturity level and improving the capacity of an efficient management.Keywords: innovation in IT services, ITSM processes, ITIL and ISO/IEC 20000-1, IT service management, IT service excellence
Procedia PDF Downloads 3967733 Development of Forging Technology of Cam Ring Gear for Truck Using Small Bar
Authors: D. H. Park, Y. H. Tak, H. H. Kwon, G. J. Kwon, H. G. Kim
Abstract:
This study focused on developing forging technology of a large-diameter cam ring gear from the small bar. The analyses of temperature variation and deformation behavior of the material are important to obtain the optimal forging products. The hot compression test was carried out to know formability at high temperature. In order to define the optimum forging conditions including material temperature, strain and forging load, the finite element method was used to simulate the forging process of cam ring gear parts. Test results were in good agreement with the simulations. An existing cam ring gear is presented the chips generated by cutting the rod material and the durability issues, but this would be to develop a large-diameter cam ring gear forging parts for truck in order to solve the durability problem and the material waste.Keywords: forging technology, cam ring, gear, truck, small bar
Procedia PDF Downloads 2967732 The Application of Creative Economy in National R&D Programs of Health Technology (HT) Area in Korea
Authors: Hong Bum Kim
Abstract:
Health technology (HT) area have high growth potential because of global trends such as ageing and economical development. For its high employment effect and capability for creating new business, HT is being considered as one of the major next-generation growth power. Particularly, convergence technologies which are emerged by fusion of HT and other technological area is emphasized for new industry creation in Korea, as a part of Creative Economy. In this study, current status of HT area in Korea is analyzed. The aspect of transition in emphasized technological area of HT-related national R&D enterprise is statistically reviewed. Current level of HT-related technologies such as BT, IT and NT is investigated in this context. Existing research system for HT-convergence technology development such as establishment of research center is also analyzed. Finally, proposed research support system such as system of legislation for developing HT area as one of the main component of Creative Economy in Korea will be analyzed. Analysis of technology trend and policy will help to draw a new direction in progression of R&D enterprise in HT area. Improvement of policy such as legal system reorganization and measure of social agreement for burden of expense could be deduced based on these results.Keywords: HT, creative economy, policy, national R&D programs
Procedia PDF Downloads 3867731 Explaining E-Learning Systems Usage in Higher Education Institutions: UTAUT Model
Authors: Muneer Abbad
Abstract:
This research explains the e-learning usage in a university in Jordan. Unified theory of acceptance and use of technology (UTAUT) model has been used as a base model to explain the usage. UTAUT is a model of individual acceptance that is compiled mainly from different models of technology acceptance. This research is the initial part from full explanations of the users' acceptance model that use Structural Equation Modelling (SEM) method to explain the users' acceptance of the e-learning systems based on UTAUT model. In this part data has been collected and prepared for further analysis. The main factors of UTAUT model has been tested as different factors using exploratory factor analysis (EFA). The second phase will be confirmatory factor analysis (CFA) and SEM to explain the users' acceptance of e-learning systems.Keywords: e-learning, moodle, adoption, Unified Theory of Acceptance and Use of Technology (UTAUT)
Procedia PDF Downloads 4057730 Review of Research on Effectiveness Evaluation of Technology Innovation Policy
Authors: Xue Wang, Li-Wei Fan
Abstract:
The technology innovation has become the driving force of social and economic development and transformation. The guidance and support of public policies is an important condition to promote the realization of technology innovation goals. Policy effectiveness evaluation is instructive in policy learning and adjustment. This paper reviews existing studies and systematically evaluates the effectiveness of policy-driven technological innovation. We used 167 articles from WOS and CNKI databases as samples to clarify the measurement of technological innovation indicators and analyze the classification and application of policy evaluation methods. In general, technology innovation input and technological output are the two main aspects of technological innovation index design, among which technological patents are the focus of research, the number of patents reflects the scale of technological innovation, and the quality of patents reflects the value of innovation from multiple aspects. As for policy evaluation methods, statistical analysis methods are applied to the formulation, selection and evaluation of the after-effect of policies to analyze the effect of policy implementation qualitatively and quantitatively. The bibliometric methods are mainly based on the public policy texts, discriminating the inter-government relationship and the multi-dimensional value of the policy. Decision analysis focuses on the establishment and measurement of the comprehensive evaluation index system of public policy. The economic analysis methods focus on the performance and output of technological innovation to test the policy effect. Finally, this paper puts forward the prospect of the future research direction.Keywords: technology innovation, index, policy effectiveness, evaluation of policy, bibliometric analysis
Procedia PDF Downloads 707729 Lung HRCT Pattern Classification for Cystic Fibrosis Using a Convolutional Neural Network
Authors: Parisa Mansour
Abstract:
Cystic fibrosis (CF) is one of the most common autosomal recessive diseases among whites. It mostly affects the lungs, causing infections and inflammation that account for 90% of deaths in CF patients. Because of this high variability in clinical presentation and organ involvement, investigating treatment responses and evaluating lung changes over time is critical to preventing CF progression. High-resolution computed tomography (HRCT) greatly facilitates the assessment of lung disease progression in CF patients. Recently, artificial intelligence was used to analyze chest CT scans of CF patients. In this paper, we propose a convolutional neural network (CNN) approach to classify CF lung patterns in HRCT images. The proposed network consists of two convolutional layers with 3 × 3 kernels and maximally connected in each layer, followed by two dense layers with 1024 and 10 neurons, respectively. The softmax layer prepares a predicted output probability distribution between classes. This layer has three exits corresponding to the categories of normal (healthy), bronchitis and inflammation. To train and evaluate the network, we constructed a patch-based dataset extracted from more than 1100 lung HRCT slices obtained from 45 CF patients. Comparative evaluation showed the effectiveness of the proposed CNN compared to its close peers. Classification accuracy, average sensitivity and specificity of 93.64%, 93.47% and 96.61% were achieved, indicating the potential of CNNs in analyzing lung CF patterns and monitoring lung health. In addition, the visual features extracted by our proposed method can be useful for automatic measurement and finally evaluation of the severity of CF patterns in lung HRCT images.Keywords: HRCT, CF, cystic fibrosis, chest CT, artificial intelligence
Procedia PDF Downloads 657728 Analysis of Public Space Usage Characteristics Based on Computer Vision Technology - Taking Shaping Park as an Example
Authors: Guantao Bai
Abstract:
Public space is an indispensable and important component of the urban built environment. How to more accurately evaluate the usage characteristics of public space can help improve its spatial quality. Compared to traditional survey methods, computer vision technology based on deep learning has advantages such as dynamic observation and low cost. This study takes the public space of Shaping Park as an example and, based on deep learning computer vision technology, processes and analyzes the image data of the public space to obtain the spatial usage characteristics and spatiotemporal characteristics of the public space. Research has found that the spontaneous activity time in public spaces is relatively random with a relatively short average activity time, while social activities have a relatively stable activity time with a longer average activity time. Computer vision technology based on deep learning can effectively describe the spatial usage characteristics of the research area, making up for the shortcomings of traditional research methods and providing relevant support for creating a good public space.Keywords: computer vision, deep learning, public spaces, using features
Procedia PDF Downloads 697727 Weakly Solving Kalah Game Using Artificial Intelligence and Game Theory
Authors: Hiba El Assibi
Abstract:
This study aims to weakly solve Kalah, a two-player board game, by developing a start-to-finish winning strategy using an optimized Minimax algorithm with Alpha-Beta Pruning. In weakly solving Kalah, our focus is on creating an optimal strategy from the game's beginning rather than analyzing every possible position. The project will explore additional enhancements like symmetry checking and code optimizations to speed up the decision-making process. This approach is expected to give insights into efficient strategy formulation in board games and potentially help create games with a fair distribution of outcomes. Furthermore, this research provides a unique perspective on human versus Artificial Intelligence decision-making in strategic games. By comparing the AI-generated optimal moves with human choices, we can explore how seemingly advantageous moves can, in the long run, be harmful, thereby offering a deeper understanding of strategic thinking and foresight in games. Moreover, this paper discusses the evaluation of our strategy against existing methods, providing insights on performance and computational efficiency. We also discuss the scalability of our approach to the game, considering different board sizes (number of pits and stones) and rules (different variations) and studying how that affects performance and complexity. The findings have potential implications for the development of AI applications in strategic game planning, enhancing our understanding of human cognitive processes in game settings, and offer insights into creating balanced and engaging game experiences.Keywords: minimax, alpha beta pruning, transposition tables, weakly solving, game theory
Procedia PDF Downloads 517726 Permeability Prediction Based on Hydraulic Flow Unit Identification and Artificial Neural Networks
Authors: Emad A. Mohammed
Abstract:
The concept of hydraulic flow units (HFU) has been used for decades in the petroleum industry to improve the prediction of permeability. This concept is strongly related to the flow zone indicator (FZI) which is a function of the reservoir rock quality index (RQI). Both indices are based on reservoir porosity and permeability of core samples. It is assumed that core samples with similar FZI values belong to the same HFU. Thus, after dividing the porosity-permeability data based on the HFU, transformations can be done in order to estimate the permeability from the porosity. The conventional practice is to use the power law transformation using conventional HFU where percentage of error is considerably high. In this paper, neural network technique is employed as a soft computing transformation method to predict permeability instead of power law method to avoid higher percentage of error. This technique is based on HFU identification where Amaefule et al. (1993) method is utilized. In this regard, Kozeny and Carman (K–C) model, and modified K–C model by Hasan and Hossain (2011) are employed. A comparison is made between the two transformation techniques for the two porosity-permeability models. Results show that the modified K-C model helps in getting better results with lower percentage of error in predicting permeability. The results also show that the use of artificial intelligence techniques give more accurate prediction than power law method. This study was conducted on a heterogeneous complex carbonate reservoir in Oman. Data were collected from seven wells to obtain the permeability correlations for the whole field. The findings of this study will help in getting better estimation of permeability of a complex reservoir.Keywords: permeability, hydraulic flow units, artificial intelligence, correlation
Procedia PDF Downloads 1357725 Searching the Relationship among Components that Contribute to Interactive Plight and Educational Execution
Authors: Shri Krishna Mishra
Abstract:
In an educational context, technology can prompt interactive plight only when it is used in conjunction with interactive plight methods. This study, therefore, examines the relationships among components that contribute to higher levels of interactive plight and execution, such as interactive Plight methods, technology, intrinsic motivation and deep learning. 526 students participated in this study. With structural equation modelling, the authors test the conceptual model and identify satisfactory model fit. The results indicate that interactive Plight methods, technology and intrinsic motivation have significant relationship with interactive Plight; deep learning mediates the relationships of the other variables with Execution.Keywords: searching the relationship among components, contribute to interactive plight, educational execution, intrinsic motivation
Procedia PDF Downloads 4527724 A Machine Learning Based Framework for Education Levelling in Multicultural Countries: UAE as a Case Study
Authors: Shatha Ghareeb, Rawaa Al-Jumeily, Thar Baker
Abstract:
In Abu Dhabi, there are many different education curriculums where sector of private schools and quality assurance is supervising many private schools in Abu Dhabi for many nationalities. As there are many different education curriculums in Abu Dhabi to meet expats’ needs, there are different requirements for registration and success. In addition, there are different age groups for starting education in each curriculum. In fact, each curriculum has a different number of years, assessment techniques, reassessment rules, and exam boards. Currently, students that transfer curriculums are not being placed in the right year group due to different start and end dates of each academic year and their date of birth for each year group is different for each curriculum and as a result, we find students that are either younger or older for that year group which therefore creates gaps in their learning and performance. In addition, there is not a way of storing student data throughout their academic journey so that schools can track the student learning process. In this paper, we propose to develop a computational framework applicable in multicultural countries such as UAE in which multi-education systems are implemented. The ultimate goal is to use cloud and fog computing technology integrated with Artificial Intelligence techniques of Machine Learning to aid in a smooth transition when assigning students to their year groups, and provide leveling and differentiation information of students who relocate from a particular education curriculum to another, whilst also having the ability to store and access student data from anywhere throughout their academic journey.Keywords: admissions, algorithms, cloud computing, differentiation, fog computing, levelling, machine learning
Procedia PDF Downloads 1417723 Impact of Information and Communication Technology on Achievement of Technical Students and Perspective Teachers: A Study of Haryana State
Authors: Anu Malhotra, Rahul Malhotra
Abstract:
This review paper is focused on achievement ability analysis of perspective teachers and students of technical education of Haryana. It is well known that women have higher verbal achievement, while men have higher achievement in non-verbal and scientific achievement. Chi-square analyses were performed to evaluate the effect of information and communication technology tools on the scientific, verbal and non-verbal achievement of the controlled and uncontrolled group of 204 students of Haryana. The computed value of expected count, which is more than 5, shows that there is a significant improvement in achievement ability of students of the controlled group when compared to the uncontrolled group. The research analyzes that the Information and communication technology tools play an important role in enhancing student’s achievement.Keywords: achievement, ICT, perspective teacher, verbal achievement
Procedia PDF Downloads 1737722 Voting Representation in Social Networks Using Rough Set Techniques
Authors: Yasser F. Hassan
Abstract:
Social networking involves use of an online platform or website that enables people to communicate, usually for a social purpose, through a variety of services, most of which are web-based and offer opportunities for people to interact over the internet, e.g. via e-mail and ‘instant messaging’, by analyzing the voting behavior and ratings of judges in a popular comments in social networks. While most of the party literature omits the electorate, this paper presents a model where elites and parties are emergent consequences of the behavior and preferences of voters. The research in artificial intelligence and psychology has provided powerful illustrations of the way in which the emergence of intelligent behavior depends on the development of representational structure. As opposed to the classical voting system (one person – one decision – one vote) a new voting system is designed where agents with opposed preferences are endowed with a given number of votes to freely distribute them among some issues. The paper uses ideas from machine learning, artificial intelligence and soft computing to provide a model of the development of voting system response in a simulated agent. The modeled development process involves (simulated) processes of evolution, learning and representation development. The main value of the model is that it provides an illustration of how simple learning processes may lead to the formation of structure. We employ agent-based computer simulation to demonstrate the formation and interaction of coalitions that arise from individual voter preferences. We are interested in coordinating the local behavior of individual agents to provide an appropriate system-level behavior.Keywords: voting system, rough sets, multi-agent, social networks, emergence, power indices
Procedia PDF Downloads 3927721 Transferring Data from Glucometer to Mobile Device via Bluetooth with Arduino Technology
Authors: Tolga Hayit, Ucman Ergun, Ugur Fidan
Abstract:
Being healthy is undoubtedly an indispensable necessity for human life. With technological improvements, in the literature, various health monitoring and imaging systems have been developed to satisfy your health needs. In this context, the work of monitoring and recording the data of individual health monitoring data via wireless technology is also being part of these studies. Nowadays, mobile devices which are located in almost every house and which become indispensable of our life and have wireless technology infrastructure have an important place of making follow-up health everywhere and every time because these devices were using in the health monitoring systems. In this study, Arduino an open-source microcontroller card was used in which a sample sugar measuring device was connected in series. In this way, the glucose data (glucose ratio, time) obtained with the glucometer is transferred to the mobile device based on the Android operating system with the Bluetooth technology channel. A mobile application was developed using the Apache Cordova framework for listing data, presenting graphically and reading data over Arduino. Apache Cordova, HTML, Javascript and CSS are used in coding section. The data received from the glucometer is stored in the local database of the mobile device. It is intended that people can transfer their measurements to their mobile device by using wireless technology and access the graphical representations of their data. In this context, the aim of the study is to be able to perform health monitoring by using different wireless technologies in mobile devices that can respond to different wireless technologies at present. Thus, that will contribute the other works done in this area.Keywords: Arduino, Bluetooth, glucose measurement, mobile health monitoring
Procedia PDF Downloads 3217720 Benefits of Automobile Electronic Technology in the Logistics Industry in Third World Countries
Authors: Jonathan Matyenyika
Abstract:
In recent years, automobile manufacturers have increasingly produced vehicles equipped with cutting-edge automotive electronic technology to match the fast-paced digital world of today; this has brought about various benefits in different business sectors that make use of these vehicles as a means of turning over a profit. In the logistics industry, vehicles equipped with this technology have proved to be very utilitarian; this paper focuses on the benefits automobile electronic equipped vehicles have in the logistics industry. Automotive vehicle manufacturers have introduced new technological electronic features to their vehicles to enhance and improve the overall performance, efficiency, safety and driver comfort. Some of these features have proved to be beneficial to logistics operators. To start with the introduction of adaptive cruise control in long-distance haulage vehicles, to see how this system benefits the drivers, we carried out research in the form of interviews with long-distance truck drivers with the main question being, what major difference have they experienced since they started to operate vehicles equipped with this technology to which most stated they had noticed that they are less tired and are able to drive longer distances as compared to when they used vehicles not equipped with this system. As a result, they can deliver faster and take on the next assignment, thus improving efficiency and bringing in more monetary return for the logistics company. Secondly, the introduction of electric hybrid technology, this system allows the vehicle to be propelled by electric power stored in batteries located in the vehicle instead of fossil fuel. Consequently, this benefits the logistic company as vehicles become cheaper to run as electricity is more affordable as compared to fossil fuel. The merging of electronic systems in vehicles has proved to be of great benefit, as my research proves that this can benefit the logistics industry in plenty of ways.Keywords: logistics, manufacturing, hybrid technology, haulage vehicles
Procedia PDF Downloads 557719 A Deep Learning Approach to Calculate Cardiothoracic Ratio From Chest Radiographs
Authors: Pranav Ajmera, Amit Kharat, Tanveer Gupte, Richa Pant, Viraj Kulkarni, Vinay Duddalwar, Purnachandra Lamghare
Abstract:
The cardiothoracic ratio (CTR) is the ratio of the diameter of the heart to the diameter of the thorax. An abnormal CTR, that is, a value greater than 0.55, is often an indicator of an underlying pathological condition. The accurate prediction of an abnormal CTR from chest X-rays (CXRs) aids in the early diagnosis of clinical conditions. We propose a deep learning-based model for automatic CTR calculation that can assist the radiologist with the diagnosis of cardiomegaly and optimize the radiology flow. The study population included 1012 posteroanterior (PA) CXRs from a single institution. The Attention U-Net deep learning (DL) architecture was used for the automatic calculation of CTR. A CTR of 0.55 was used as a cut-off to categorize the condition as cardiomegaly present or absent. An observer performance test was conducted to assess the radiologist's performance in diagnosing cardiomegaly with and without artificial intelligence (AI) assistance. The Attention U-Net model was highly specific in calculating the CTR. The model exhibited a sensitivity of 0.80 [95% CI: 0.75, 0.85], precision of 0.99 [95% CI: 0.98, 1], and a F1 score of 0.88 [95% CI: 0.85, 0.91]. During the analysis, we observed that 51 out of 1012 samples were misclassified by the model when compared to annotations made by the expert radiologist. We further observed that the sensitivity of the reviewing radiologist in identifying cardiomegaly increased from 40.50% to 88.4% when aided by the AI-generated CTR. Our segmentation-based AI model demonstrated high specificity and sensitivity for CTR calculation. The performance of the radiologist on the observer performance test improved significantly with AI assistance. A DL-based segmentation model for rapid quantification of CTR can therefore have significant potential to be used in clinical workflows.Keywords: cardiomegaly, deep learning, chest radiograph, artificial intelligence, cardiothoracic ratio
Procedia PDF Downloads 96