Search results for: student performance prediction
15456 Using Analytics to Redefine Athlete Resilience
Authors: Phil P. Wagner
Abstract:
There is an overwhelming amount of athlete-centric information available for sport practitioners in this era of tech and big data, but protocols in athletic rehabilitation remain arbitrary. It is a common assumption that the rate at which tissue heals amongst individuals is the same; yielding protocols that are entirely time-based. Progressing athletes through rehab programs that lack individualization can potentially expose athletes to stimuli they are not prepared for or unnecessarily lengthen their recovery period. A 7-year aggregated and anonymous database was used to develop reliable and valid assessments to measure athletic resilience. Each assessment utilizes force plate technology with proprietary protocols and analysis to provide key thresholds for injury risk and recovery. Using a T score to analyze movement qualities, much like the Z score used for bone density from a Dexa scan, specific prescriptions are provided to mitigate the athlete’s inherent injury risk. In addition to obliging to surgical clearance, practitioners must put in place a clearance protocol guided by standardized assessments and achievement in strength thresholds. In order to truly hold individuals accountable (practitioners, athletic trainers, performance coaches, etc.), success in improving pre-defined key performance indicators must be frequently assessed and analyzed.Keywords: analytics, athlete rehabilitation, athlete resilience, injury prediction, injury prevention
Procedia PDF Downloads 22915455 Development of Industry Oriented Undergraduate Research Program
Authors: Sung Ryong Kim, Hyung Sup Han, Jae-Yup Kim
Abstract:
Many engineering students feel uncomfortable in solving the industry related problems. There are many ways to strengthen the engineering student’s ability to solve the assigned problem when they get a job. Korea National University of Transportation has developed an industry-oriented undergraduate research program (URP). An URP program is designed for engineering students to provide an experience of solving a company’s research problem. The URP project is carried out for 6 months. Each URP team consisted of 1 company mentor, 1 professor, and 3-4 engineering students. A team of different majors is strongly encouraged to integrate different perspectives of multidisciplinary background. The corporate research projects proposed by companies are chosen by the major-related student teams. A company mentor gives the detailed technical background of the project to the students, and he/she also provides a basic data, raw materials and so forth. The company allows students to use the company's research equipment. An assigned professor has adjusted the project scope and level to the student’s ability after discussing with a company mentor. Monthly meeting is used to check the progress, to exchange ideas, and to help the students. It is proven as an effective engineering education program not only to provide an experience of company research but also to motivate the students in their course work. This program provides a premier interdisciplinary platform for undergraduate students to perform the practical challenges encountered in their major-related companies and it is especially helpful for students who want to get a job from a company that proposed the project.Keywords: company mentor, industry oriented, interdisciplinary platform, undergraduate research program
Procedia PDF Downloads 24615454 The Relation between Learning Styles and English Achievement in the Language Training Centre
Authors: Nurul Yusnita
Abstract:
Many studies have been developed to help the students to get good achievement in English learning. They can be from the teaching method or psychological ones. One of the psychological studies in educational research is learning style. In some ways, learning style can affect the achievement of the students. This study aimed to examine 4 (four) learning styles and their relations to English achievement among the students learning English in Language Training Center of Universitas Muhammadiyah Yogyakarta (LTC UMY). The method of this study was descriptive analytical. The sample consisted of 39 Accounting students in LTC UMY. The data was collected through questionnaires with Likert-scale. The achievement was obtained from the grade of the students. To analyze the questionnaires and to see the relation between the learning styles and the student achievement, SPSS statistical software of correlational analysis was used. The result showed that both visual and auditory had the same percentage of 35.9% (14 students). 3 students (7.7%) had kinaesthetic learning style and 8 students (20.5%) had visual and auditory ones. Meanwhile, there were 5 students (12.8%) who had visual learning style could increase their grades. Only 1 student (2.5%) who had visual and auditory could improve his grade. Besides grade increase, there were also grade decrease. Students with visual, auditory, visual and auditory, and kinaesthetic learning styles were 3 students (7.7%), 5 students (12%), 4 students (10.2%) and 1 student (2.5%) respectively. In conclusion, there was no significant relationship between learning style and English achievement. Most of the good achievers were the students with visual and auditory learning styles and most of them preferred visual method. The implication is the teachers and material designers could improve their method through visual things to achieve effective English teaching learning.Keywords: accounting students, English achievement, language training centre, learning styles
Procedia PDF Downloads 27215453 Teaching Turn-Taking Rules and Pragmatic Principles to Empower EFL Students and Enhance Their Learning in Speaking Modules
Authors: O. F. Elkommos
Abstract:
Teaching and learning EFL speaking modules is one of the most challenging productive modules for both instructors and learners. In a student-centered interactive communicative language teaching approach, learners and instructors should be aware of the fact that the target language must be taught as/for communication. The student must be empowered by tools that will work on more than one level of their communicative competence. Communicative learning will need a teaching and learning methodology that will address the goal. Teaching turn-taking rules, pragmatic principles and speech acts will enhance students' sociolinguistic competence, strategic competence together with discourse competence. Sociolinguistic competence entails the mastering of speech act conventions and illocutionary acts of refusing, agreeing/disagreeing; emotive acts like, thanking, apologizing, inviting, offering; directives like, ordering, requesting, advising, and hinting, among others. Strategic competence includes enlightening students’ consciousness of the various particular turn-taking systemic rules of organizing techniques of opening and closing conversation, adjacency pairs, interrupting, back-channeling, asking for/giving opinion, agreeing/disagreeing, using natural fillers for pauses, gaps, speaker select, self-select, and silence among others. Students will have the tools to manage a conversation. Students are engaged in opportunities of experiencing the natural language not as a mere extra student talking time but rather an empowerment of knowing and using the strategies. They will have the component items they need to use as well as the opportunity to communicate in the target language using topics of their interest and choice. This enhances students' communicative abilities. Available websites and textbooks now use one or more of these tools of turn-taking or pragmatics. These will be students' support in self-study in their independent learning study hours. This will be their reinforcement practice on e-Learning interactive activities. The students' target is to be able to communicate the intended meaning to an addressee that is in turn able to infer that intended meaning. The combination of these tools will be assertive and encouraging to the student to beat the struggle with what to say, how to say it, and when to say it. Teaching the rules, principles and techniques is an act of awareness raising method engaging students in activities that will lead to their pragmatic discourse competence. The aim of the paper is to show how the suggested pragmatic model will empower students with tools and systems that would support their learning. Supporting students with turn taking rules, speech act theory, applying both to texts and practical analysis and using it in speaking classes empowers students’ pragmatic discourse competence and assists them to understand language and its context. They become more spontaneous and ready to learn the discourse pragmatic dimension of the speaking techniques and suitable content. Students showed a better performance and a good motivation to learn. The model is therefore suggested for speaking modules in EFL classes.Keywords: communicative competence, EFL, empowering learners, enhance learning, speech acts, teaching speaking, turn taking, learner centred, pragmatics
Procedia PDF Downloads 17715452 The Impact of Dog-Assisted Wellbeing Intervention on Student Motivation and Affective Engagement in the Primary and Secondary School Setting
Authors: Yvonne Howard
Abstract:
This project currently under development is centered around current learning processes, including a thorough literature review and ongoing practical experiences gained as a deputy head in a school. These daily experiences with students engaging in animal-assisted interventions and the school therapy dog form a strong base for this research. The primary objective of this research is to comprehensively explore the impact of dog-assisted well-being interventions on student motivation and affective engagement within primary and secondary school settings. The educational domain currently encounters a significant challenge due to the lack of substantial research in this area. Despite the perceived positive outcomes of such interventions being acknowledged and shared in various settings, the evidence supporting their effectiveness in an educational context remains limited. This study aims to bridge the gap in the research and shed light on the potential benefits of dog-assisted well-being interventions in promoting student motivation and affective engagement. The significance of this topic recognizes that education is not solely confined to academic achievement but encompasses the overall well-being and emotional development of students. Over recent years, there has been a growing interest in animal-assisted interventions, particularly in healthcare settings. This interest has extended to the educational context. While the effectiveness of these interventions in these areas has been explored in other fields, the educational sector lacks comprehensive research in this regard. Through a systematic and thorough research methodology, this study seeks to contribute valuable empirical data to the field, providing evidence to support informed decision-making regarding the implementation of dog-assisted well-being interventions in schools. This research will utilize a mixed-methods design, combining qualitative and quantitative measures to assess the research objectives. The quantitative phase will include surveys and standardized scales to measure student motivation and affective engagement, while the qualitative phase will involve interviews and observations to gain in-depth insights from students, teachers, and other stakeholders. The findings will contribute evidence-based insights, best practices, and practical guidelines for schools seeking to incorporate dog-assisted interventions, ultimately enhancing student well-being and improving educational outcomes.Keywords: therapy dog, wellbeing, engagement, motivation, AAI, intervention, school
Procedia PDF Downloads 7915451 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 12415450 Prediction of Childbearing Orientations According to Couples' Sexual Review Component
Authors: Razieh Rezaeekalantari
Abstract:
Objective: The purpose of this study was to investigate the prediction of parenting orientations in terms of the components of couples' sexual review. Methods: This was a descriptive correlational research method. The population consisted of 500 couples referring to Sari Health Center. Two hundred and fifteen (215) people were selected randomly by using Krejcie-Morgan-sample-size-table. For data collection, the childbearing orientations scale and the Multidimensional Sexual Self-Concept Questionnaire were used. Result: For data analysis, the mean and standard deviation were used and to analyze the research hypothesis regression correlation and inferential statistics were used. Conclusion: The findings indicate that there is not a significant relationship between the tendency to childbearing and the predictive value of sexual review (r = 0.84) with significant level (sig = 219.19) (P < 0.05). So, with 95% confidence, we conclude that there is not a meaningful relationship between sexual orientation and tendency to child-rearing.Keywords: couples referring, health center, sexual review component, parenting orientations
Procedia PDF Downloads 22115449 Branding and Posting Strategy on Facebook Pages of Higher Education Institutions in Ontario, Canada in 2019-2020: A Quantitative and Qualitative Investigation
Authors: Mai To
Abstract:
Higher education institutions (HEIs) in Ontario, Canada have invested in social media presence for multiple purposes, such as branding, student’ engagement, and recruitment. To have a full picture of the social media strategy implemented by HEIs in Ontario, Canada, this study used a mixed-method approach to analyze Facebook posts’ characteristics and content. A total of 1789 Facebook posts from September 2019 to April 2020 of six selected HEIs were collected for analysis and coding based on five pre-determined branding positions: Elite, Nurturing, Campus, Outcome, and Commodity. Besides, the study also calculated the engagement rate for each social media practice to measure its effectiveness. The results show that there were not many differences in practices such as posting frequency, length, types, and timing among HEIs. However, the distribution of branding positions and content targeting future students versus current students was varied, although the HEIs employed all five branding positions and targeted the same lists of audiences. Some practices such as evening post for colleges and nurturing branding for universities attracted significantly higher engagement. This study provides a review of current social media practices and branding strategy, as well as informs the practices that can better engage the audiences.Keywords: branding, higher education, social media, student engagement, student recruitment
Procedia PDF Downloads 12715448 Data and Model-based Metamodels for Prediction of Performance of Extended Hollo-Bolt Connections
Authors: M. Cabrera, W. Tizani, J. Ninic, F. Wang
Abstract:
Open section beam to concrete-filled tubular column structures has been increasingly utilized in construction over the past few decades due to their enhanced structural performance, as well as economic and architectural advantages. However, the use of this configuration in construction is limited due to the difficulties in connecting the structural members as there is no access to the inner part of the tube to install standard bolts. Blind-bolted systems are a relatively new approach to overcome this limitation as they only require access to one side of the tubular section to tighten the bolt. The performance of these connections in concrete-filled steel tubular sections remains uncharacterized due to the complex interactions between concrete, bolt, and steel section. Over the last years, research in structural performance has moved to a more sophisticated and efficient approach consisting of machine learning algorithms to generate metamodels. This method reduces the need for developing complex, and computationally expensive finite element models, optimizing the search for desirable design variables. Metamodels generated by a data fusion approach use numerical and experimental results by combining multiple models to capture the dependency between the simulation design variables and connection performance, learning the relations between different design parameters and predicting a given output. Fully characterizing this connection will transform high-rise and multistorey construction by means of the introduction of design guidance for moment-resisting blind-bolted connections, which is currently unavailable. This paper presents a review of the steps taken to develop metamodels generated by means of artificial neural network algorithms which predict the connection stress and stiffness based on the design parameters when using Extended Hollo-Bolt blind bolts. It also provides consideration of the failure modes and mechanisms that contribute to the deformability as well as the feasibility of achieving blind-bolted rigid connections when using the blind fastener.Keywords: blind-bolted connections, concrete-filled tubular structures, finite element analysis, metamodeling
Procedia PDF Downloads 15815447 An Interior Design Project Interventions about Changing Student Beliefs about Poverty, Homelessness, and Community Service
Authors: Alireza Derambakhsh
Abstract:
The reason for this study was to inspect undergraduate interior design student state of mind toward destitution, vagrancy, and group administration. An auxiliary intention was to figure out whether introduction to plan ventures for the individuals who have encountered hardship would change student convictions. All first year recruits (n = 18), sophomore (n = 26), junior (n = 17), and senior (n = 25) interior design undergraduate students at a public university completed a questionnaire in light of a few current scales. Amid the semester, the sophomores dealt with assignments that were intended to provide exposure to different socio-economic groups. Students finished three projects. Initially, the outline of a makeshift destitute asylum. Second, a re-model of a childcare focus office and gathering region that gives administrations to low-salary families, and third, the outline of a low-wage, private home. In these ventures, students were obliged to direct broad data assembling so they could better comprehend the issues connected with destitution. Toward the end of the semester, the sophomores finished the survey again and were asked extra inquiries in regards to the class and projects. Students’ sentiments towards the poor were more individualistic when contrasted with the white collar class, yet when the working class correlation was uprooted, some of their mentality gave a more unpredictable comprehension of destitution and vagrancy. The semester-long intercession fundamentally moved students' understanding that underscored auxiliary and multifaceted reason.Keywords: interior design, destitution, vagrancy, group administration
Procedia PDF Downloads 43315446 Sorghum Grains Grading for Food, Feed, and Fuel Using NIR Spectroscopy
Authors: Irsa Ejaz, Siyang He, Wei Li, Naiyue Hu, Chaochen Tang, Songbo Li, Meng Li, Boubacar Diallo, Guanghui Xie, Kang Yu
Abstract:
Background: Near-infrared spectroscopy (NIR) is a non-destructive, fast, and low-cost method to measure the grain quality of different cereals. Previously reported NIR model calibrations using the whole grain spectra had moderate accuracy. Improved predictions are achievable by using the spectra of whole grains, when compared with the use of spectra collected from the flour samples. However, the feasibility for determining the critical biochemicals, related to the classifications for food, feed, and fuel products are not adequately investigated. Objectives: To evaluate the feasibility of using NIRS and the influence of four sample types (whole grains, flours, hulled grain flours, and hull-less grain flours) on the prediction of chemical components to improve the grain sorting efficiency for human food, animal feed, and biofuel. Methods: NIR was applied in this study to determine the eight biochemicals in four types of sorghum samples: hulled grain flours, hull-less grain flours, whole grains, and grain flours. A total of 20 hybrids of sorghum grains were selected from the two locations in China. Followed by NIR spectral and wet-chemically measured biochemical data, partial least squares regression (PLSR) was used to construct the prediction models. Results: The results showed that sorghum grain morphology and sample format affected the prediction of biochemicals. Using NIR data of grain flours generally improved the prediction compared with the use of NIR data of whole grains. In addition, using the spectra of whole grains enabled comparable predictions, which are recommended when a non-destructive and rapid analysis is required. Compared with the hulled grain flours, hull-less grain flours allowed for improved predictions for tannin, cellulose, and hemicellulose using NIR data. Conclusion: The established PLSR models could enable food, feed, and fuel producers to efficiently evaluate a large number of samples by predicting the required biochemical components in sorghum grains without destruction.Keywords: FT-NIR, sorghum grains, biochemical composition, food, feed, fuel, PLSR
Procedia PDF Downloads 6915445 College Faculty Perceptions of Instructional Strategies That Are Effective for Students with Dyslexia
Authors: Samantha R. Dutra
Abstract:
There are many issues that students face in college, such as academic-based struggles, financial issues, family responsibilities, and vocational problems. Students with dyslexia struggle even more with these problems compared to other students. This qualitative study examines faculty perceptions of instructing students with dyslexia. This study is important to the human services and post-secondary educational fields due to the increase in disabled students enrolled in college. This study is also substantial because of the reported bias faced by students with dyslexia and their academic failure. When students with LDs such as dyslexia experience bias, discrimination, and isolation, they are more apt to not seek accommodations, lack communication with faculty, and are more likely to drop out or fail. College students with dyslexia often take longer to complete their post-secondary education and are more likely to withdraw or drop out without earning a degree. Faculty attitudes and academic cultures are major barriers to the success and use of accommodations as well as modified instruction for students with disabilities, which leads to student success. Faculty members are often uneducated or misinformed regarding students with dyslexia. More importantly, many faculty members are unaware of the many ethical and legal implications that they face regarding accommodating students with dyslexia. Instructor expectations can generally be defined as the understanding and perceptions of students regarding their academic success. Skewed instructor expectations can affect how instructors interact with their students and can also affect student success. This is true for students with dyslexia in that instructors may have lower and biased expectations of these students and, therefore, directly impact students’ academic successes and failures. It is vital to understand how instructor attitudes affect the academic achievement of dyslexic students. This study will examine faculty perceptions of instructing students with dyslexia and faculty attitudes towards accommodations and institutional support. The literature concludes that students with dyslexia have many deficits and several learning needs. Furthermore, these are the students with the highest dropout and failure rates, as well as the lowest retention rates. Disabled students generally have many reasons why accommodations and supports just do not help. Some research suggests that accommodations do help students and show positive outcomes. Many improvements need to be made between student support service personnel, faculty, and administrators regarding providing access and adequate supports for students with dyslexia. As the research also suggests, providing more efficient and effective accommodations may increase positive student as well as faculty attitudes in college, and may improve student outcomes overall.Keywords: dyslexia, faculty perception, higher education, learning disability
Procedia PDF Downloads 13915444 Preservice EFL Teachers in a Blended Professional Development Program: Learning to Teach Speech Acts
Authors: Mei-Hui Liu
Abstract:
This study examines the effectiveness of a blended professional development program on preservice EFL (English as a foreign language) teachers’ learning to teach speech acts with the advent of Information and Communication Technology, researchers and scholars underscore the significance of integrating online and face-to-face learning opportunities in the teacher education field. Yet, a paucity of evidence has been documented to investigate the extent to which such a blended professional learning model may impact real classroom practice and student learning outcome. This yearlong project involves various stakeholders, including 25 preservice teachers, 5 English professionals, and 45 secondary school students. Multiple data sources collected are surveys, interviews, reflection journals, online discussion messages, artifacts, and discourse completion tests. Relying on the theoretical lenses of Community of Inquiry, data analysis depicts the nature and process of preservice teachers’ professional development in this blended learning community, which triggers and fosters both face-to-face and synchronous/asynchronous online interactions among preservice teachers and English professionals (i.e., university faculty and in-service teachers). Also included is the student learning outcome after preservice teachers put what they learn from the support community into instructional practice. Pedagogical implications and research suggestions are further provided based on the research findings and limitations.Keywords: blended professional development, preservice EFL teachers, speech act instruction, student learning outcome
Procedia PDF Downloads 22615443 Forecasting Nokoué Lake Water Levels Using Long Short-Term Memory Network
Authors: Namwinwelbere Dabire, Eugene C. Ezin, Adandedji M. Firmin
Abstract:
The prediction of hydrological flows (rainfall-depth or rainfall-discharge) is becoming increasingly important in the management of hydrological risks such as floods. In this study, the Long Short-Term Memory (LSTM) network, a state-of-the-art algorithm dedicated to time series, is applied to predict the daily water level of Nokoue Lake in Benin. This paper aims to provide an effective and reliable method enable of reproducing the future daily water level of Nokoue Lake, which is influenced by a combination of two phenomena: rainfall and river flow (runoff from the Ouémé River, the Sô River, the Porto-Novo lagoon, and the Atlantic Ocean). Performance analysis based on the forecasting horizon indicates that LSTM can predict the water level of Nokoué Lake up to a forecast horizon of t+10 days. Performance metrics such as Root Mean Square Error (RMSE), coefficient of correlation (R²), Nash-Sutcliffe Efficiency (NSE), and Mean Absolute Error (MAE) agree on a forecast horizon of up to t+3 days. The values of these metrics remain stable for forecast horizons of t+1 days, t+2 days, and t+3 days. The values of R² and NSE are greater than 0.97 during the training and testing phases in the Nokoué Lake basin. Based on the evaluation indices used to assess the model's performance for the appropriate forecast horizon of water level in the Nokoué Lake basin, the forecast horizon of t+3 days is chosen for predicting future daily water levels.Keywords: forecasting, long short-term memory cell, recurrent artificial neural network, Nokoué lake
Procedia PDF Downloads 6415442 E-Management and Firm Performance: An Empirical Study in Tunisian Firms
Authors: Khlif Hamadi
Abstract:
The principal aim of our research is to analyze the impact of the adoption of e-management approach on the performance of Tunisian firms. The method of structural equation was adopted to conduct our exploratory and confirmatory analysis. The results arising from the questionnaire sent to 155 E-managers affirm that the adoption of e-management approach influences the performance of Tunisian firms. The results of the questionnaire show that e-management favors the deployment of ICT usage and contributes enormously to the performance of the modern enterprise. The theoretical and practical implications of the study, as well as directions for future research, are discussed.Keywords: e-management, ICT Deployment, organizational performance, e-manager
Procedia PDF Downloads 34715441 Cardiovascular Disease Prediction Using Machine Learning Approaches
Abstract:
It is estimated that heart disease accounts for one in ten deaths worldwide. United States deaths due to heart disease are among the leading causes of death according to the World Health Organization. Cardiovascular diseases (CVDs) account for one in four U.S. deaths, according to the Centers for Disease Control and Prevention (CDC). According to statistics, women are more likely than men to die from heart disease as a result of strokes. A 50% increase in men's mortality was reported by the World Health Organization in 2009. The consequences of cardiovascular disease are severe. The causes of heart disease include diabetes, high blood pressure, high cholesterol, abnormal pulse rates, etc. Machine learning (ML) can be used to make predictions and decisions in the healthcare industry. Thus, scientists have turned to modern technologies like Machine Learning and Data Mining to predict diseases. The disease prediction is based on four algorithms. Compared to other boosts, the Ada boost is much more accurate.Keywords: heart disease, cardiovascular disease, coronary artery disease, feature selection, random forest, AdaBoost, SVM, decision tree
Procedia PDF Downloads 15415440 Comparison of the Distillation Curve Obtained Experimentally with the Curve Extrapolated by a Commercial Simulator
Authors: Lívia B. Meirelles, Erika C. A. N. Chrisman, Flávia B. de Andrade, Lilian C. M. de Oliveira
Abstract:
True Boiling Point distillation (TBP) is one of the most common experimental techniques for the determination of petroleum properties. This curve provides information about the performance of petroleum in terms of its cuts. The experiment is performed in a few days. Techniques are used to determine the properties faster with a software that calculates the distillation curve when a little information about crude oil is known. In order to evaluate the accuracy of distillation curve prediction, eight points of the TBP curve and specific gravity curve (348 K and 523 K) were inserted into the HYSYS Oil Manager, and the extended curve was evaluated up to 748 K. The methods were able to predict the curve with the accuracy of 0.6%-9.2% error (Software X ASTM), 0.2%-5.1% error (Software X Spaltrohr).Keywords: distillation curve, petroleum distillation, simulation, true boiling point curve
Procedia PDF Downloads 44215439 Television Is Useful in Promoting Safe Sexual Practices to Student Populations: A Mixed-Methods Questionnaire Exploring the Impact of Channel Four’s ‘It’s a Sin (2021)’
Authors: Betsy H. Edwards
Abstract:
Background: Public Health England recognises unprotected sex and consequent transmission of sexually transmitted infections (STIs) as significant problems within student populations. Government surveys show that 50% of sexually-active young adults engage in unprotected sex with new partners, with 10% never using condoms. The recent Channel Four mini-series ‘It’s a Sin’ dramatises the 1980s AIDS epidemic and has been praised for its educational value and for promoting safe sexual practices to its viewers. This mixed-methods questionnaire study aims to investigate whether the series can change attitudes towards safe sex in student populations, can promote the use of condoms in student populations, and whether television, in general, is a useful tool for promoting health education. Methods: A questionnaire, created on Microsoft Forms, was distributed to students at the University of Birmingham via Facebook groups between September 2021 and May 2022. To consent, participants had to be aged 18 or over, a student at the university, have seen the entire series of ‘It’s a Sin’, and read the study information. Data was confidentially stored within the University’s secured OneDrive in accordance with the study’s approved ethics application. Quantitative questions measured participants’ attitudes and behaviours using Likert scales. Qualitative data was analysed using thematic analysis. Quantitative Results: 78 students completed the questionnaire. 43 participants (55%) felt that the series ‘It’s a Sin’ promoted safe sex. 74 participants (96%) and 31 participants (39%) said they were ‘very likely’ or ‘likely’ to use condoms with a casual partner during penetrative sex and oral sex respectively. 27 participants (35%) felt that watching ‘It’s a Sin’ made them more likely to use condoms; of these 27 participants, all were ‘very likely’ or ‘likely’ to use condoms during penetrative sex, and 9 were ‘very likely’ or ‘likely’ to during oral sex. 49 participants (63%) and 53 participants (68%) felt that television is a good way to provide health education and to promote healthy behaviours respectively. Qualitative Results: 56 participants (72%) gave reasons why the series had been associated with an increased uptake in HIV testing. Three themes emerged: increased education and attention, decreased stigmatisation, and relatability of characters on screen. Conclusions: This study suggests that the series ‘It’s a Sin’ can influence attitudes towards and the uptake of safe sexual practices. It would be useful for further research - using larger, randomised samples - to explore impacts upon populations lesser-educated about sexual health, who potentially have more to gain from watching series such as ‘It’s a Sin’.Keywords: GUM, It's a sin, media, sexual health, students, television, tv
Procedia PDF Downloads 9815438 Prediction of Sepsis Illness from Patients Vital Signs Using Long Short-Term Memory Network and Dynamic Analysis
Authors: Marcio Freire Cruz, Naoaki Ono, Shigehiko Kanaya, Carlos Arthur Mattos Teixeira Cavalcante
Abstract:
The systems that record patient care information, known as Electronic Medical Record (EMR) and those that monitor vital signs of patients, such as heart rate, body temperature, and blood pressure have been extremely valuable for the effectiveness of the patient’s treatment. Several kinds of research have been using data from EMRs and vital signs of patients to predict illnesses. Among them, we highlight those that intend to predict, classify, or, at least identify patterns, of sepsis illness in patients under vital signs monitoring. Sepsis is an organic dysfunction caused by a dysregulated patient's response to an infection that affects millions of people worldwide. Early detection of sepsis is expected to provide a significant improvement in its treatment. Preceding works usually combined medical, statistical, mathematical and computational models to develop detection methods for early prediction, getting higher accuracies, and using the smallest number of variables. Among other techniques, we could find researches using survival analysis, specialist systems, machine learning and deep learning that reached great results. In our research, patients are modeled as points moving each hour in an n-dimensional space where n is the number of vital signs (variables). These points can reach a sepsis target point after some time. For now, the sepsis target point was calculated using the median of all patients’ variables on the sepsis onset. From these points, we calculate for each hour the position vector, the first derivative (velocity vector) and the second derivative (acceleration vector) of the variables to evaluate their behavior. And we construct a prediction model based on a Long Short-Term Memory (LSTM) Network, including these derivatives as explanatory variables. The accuracy of the prediction 6 hours before the time of sepsis, considering only the vital signs reached 83.24% and by including the vectors position, speed, and acceleration, we obtained 94.96%. The data are being collected from Medical Information Mart for Intensive Care (MIMIC) Database, a public database that contains vital signs, laboratory test results, observations, notes, and so on, from more than 60.000 patients.Keywords: dynamic analysis, long short-term memory, prediction, sepsis
Procedia PDF Downloads 12615437 Organizational Learning, Job Satisfaction and Work Performance among Nurses
Authors: Rafia Rafique, Arifa Khadim
Abstract:
This research investigates the moderating role of job satisfaction between organizational learning and work performance among nurses. Correlation research design was used. Non-probability purposive sampling technique was utilized to recruit a sample of 110 nurses from public hospitals situated in the city of Lahore. The construct of organizational learning was measured using subscale of Integrated Scale for Measuring Organizational Learning. Job satisfaction was measured with the help of Job Satisfaction Survey. Performance of employees (task performance, contextual performance and counterproductive work behavior) was assessed by Individual Work Performance Questionnaire. Job satisfaction negatively moderates the relationship between organizational learning and counterproductive work behavior. Education has a significant positive relationship with organizational learning. Age, current hospital experience, marital satisfaction and salary of the nurses have positive relationship while number of children has significant negative relationship with counterproductive work behavior. These outcomes can be insightful in understanding the dynamics involved in work performance. Based on the result of this study relevant solutions can be proposed to improve the work performance of nurses.Keywords: counterproductive work behavior, nurses, organizational learning, work performance
Procedia PDF Downloads 44615436 Entropy Risk Factor Model of Exchange Rate Prediction
Authors: Darrol Stanley, Levan Efremidze, Jannie Rossouw
Abstract:
We investigate the predictability of the USD/ZAR (South African Rand) exchange rate with sample entropy analytics for the period of 2004-2015. We calculate sample entropy based on the daily data of the exchange rate and conduct empirical implementation of several market timing rules based on these entropy signals. The dynamic investment portfolio based on entropy signals produces better risk adjusted performance than a buy and hold strategy. The returns are estimated on the portfolio values in U.S. dollars. These results are preliminary and do not yet account for reasonable transactions costs, although these are very small in currency markets.Keywords: currency trading, entropy, market timing, risk factor model
Procedia PDF Downloads 27115435 Personalized Infectious Disease Risk Prediction System: A Knowledge Model
Authors: Retno A. Vinarti, Lucy M. Hederman
Abstract:
This research describes a knowledge model for a system which give personalized alert to users about infectious disease risks in the context of weather, location and time. The knowledge model is based on established epidemiological concepts augmented by information gleaned from infection-related data repositories. The existing disease risk prediction research has more focuses on utilizing raw historical data and yield seasonal patterns of infectious disease risk emergence. This research incorporates both data and epidemiological concepts gathered from Atlas of Human Infectious Disease (AHID) and Centre of Disease Control (CDC) as basic reasoning of infectious disease risk prediction. Using CommonKADS methodology, the disease risk prediction task is an assignment synthetic task, starting from knowledge identification through specification, refinement to implementation. First, knowledge is gathered from AHID primarily from the epidemiology and risk group chapters for each infectious disease. The result of this stage is five major elements (Person, Infectious Disease, Weather, Location and Time) and their properties. At the knowledge specification stage, the initial tree model of each element and detailed relationships are produced. This research also includes a validation step as part of knowledge refinement: on the basis that the best model is formed using the most common features, Frequency-based Selection (FBS) is applied. The portion of the Infectious Disease risk model relating to Person comes out strongest, with Location next, and Weather weaker. For Person attribute, Age is the strongest, Activity and Habits are moderate, and Blood type is weakest. At the Location attribute, General category (e.g. continents, region, country, and island) results much stronger than Specific category (i.e. terrain feature). For Weather attribute, Less Precise category (i.e. season) comes out stronger than Precise category (i.e. exact temperature or humidity interval). However, given that some infectious diseases are significantly more serious than others, a frequency based metric may not be appropriate. Future work will incorporate epidemiological measurements of disease seriousness (e.g. odds ratio, hazard ratio and fatality rate) into the validation metrics. This research is limited to modelling existing knowledge about epidemiology and chain of infection concepts. Further step, verification in knowledge refinement stage, might cause some minor changes on the shape of tree.Keywords: epidemiology, knowledge modelling, infectious disease, prediction, risk
Procedia PDF Downloads 24215434 Productivity-Emotiveness Model of School Students’ Capacity Levels
Authors: Ivan Samokhin
Abstract:
A new two-factor model of school students’ capacity levels is proposed. It considers the academic productivity and emotional condition of children taking part in the study process. Each basic level reflects the correlation of these two factors. The teacher decides whether the required result is achieved or not and write down the grade (from 'A' to 'F') in the register. During the term, the teacher can estimate the students’ progress with any intervals, but it is not desirable to exceed a two-week period (with primary school being an exception). Each boy or girl should have a special notebook to record the emotions which they feel studying a subject. The children can make their notes the way they like it – for example, using a ten-point scale or a short verbal description. It is recommended to record the emotions twice a day: after the lesson and after doing the homework. Before the students start doing this, they should be instructed by a school psychologist, who has to emphasize that an attitude to the subject – not to a person in charge of it – is relevant. At the end of the term, the notebooks are given to the teacher, who is now able to make preliminary conclusions about academic results and psychological comfort of each student. If necessary, some pedagogical measures can be taken. The data about a supposed capacity level is available for the teacher and the school administration. In certain cases, this information can be also revealed to the student’s parents, while the student learns it only after receiving a school-leaving certificate (until this moment, the results are not considered ultimate). Then a person may take these data into consideration when choosing his/her future area of higher education. We single out four main capacity levels: 'nominally low', 'inclination', 'ability' and 'gift'.Keywords: academic productivity, capacity level, emotional condition, school students
Procedia PDF Downloads 22615433 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network
Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti
Abstract:
Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.Keywords: artificial neural network, EDM, metal removal rate, modeling, surface roughness
Procedia PDF Downloads 41315432 Study Skills Empowering Strategies to Enhance Second Year Diploma Accountancy Students’ Academic Performance
Authors: Mohamed Karodia
Abstract:
Accountancy as a subject is one of the sciences that for many years has been perceived as a difficult subject to study and teach. Yet, it continuously attracts scholars graduating from school and entering Higher Education Institutions as a subject of choice and career. The teaching and learning of this subject have not been easy and has evolved and progressed over the past few decades however students still find it difficult to study and this has resulted in poor student achievement. In search of solutions, this study has considered the effect and efficacy that study skills have on the performance of Accountancy students and in particular students studying Second Year Diploma in Accountancy at the University of Johannesburg. These students appear to have a lack of appropriate study skills and as a result of these impacts on their performance in the courses, they are studying. This study also focuses on strategies to enhance Second Year Diploma Accountancy students’ academic performance. A literature review was conducted to investigate what scholarly literature suggests about study skills, in general, and in particular for Accountancy to be successful. In order to determine what study skills Second Year Accountancy students are applying when they learn and why they are failing the Accountancy examinations and formal class tests, the study adopted the quantitative research method. A questionnaire addressing various aspects of study skills, studying accountancy and studying, in general, was provided to 800 students studying Second Year Diploma in Accountancy at the University of Johannesburg’s Soweto Campus. The quantitative data collected were analyzed using descriptive statistics in the form of proportions, frequencies, means, and standard deviations, t-tests to compare differences between two groups as well as correlations between variables. Based on the findings of this study, it is recommended that students are provided with courses in time management, procrastination, reading, note taking and writing, test preparation techniques as well as study attitude. Lecturers spend more time teaching students how to study in general as well as accountancy specifically preferably at the first-year level before proceeding to the second year. It is also recommended that the University implements a study skills course to assist the students with studying.Keywords: accountancy, skills, strategies, study
Procedia PDF Downloads 13315431 Surface Roughness Prediction Using Numerical Scheme and Adaptive Control
Authors: Michael K.O. Ayomoh, Khaled A. Abou-El-Hossein., Sameh F.M. Ghobashy
Abstract:
This paper proposes a numerical modelling scheme for surface roughness prediction. The approach is premised on the use of 3D difference analysis method enhanced with the use of feedback control loop where a set of adaptive weights are generated. The surface roughness values utilized in this paper were adapted from [1]. Their experiments were carried out using S55C high carbon steel. A comparison was further carried out between the proposed technique and those utilized in [1]. The experimental design has three cutting parameters namely: depth of cut, feed rate and cutting speed with twenty-seven experimental sample-space. The simulation trials conducted using Matlab software is of two sub-classes namely: prediction of the surface roughness readings for the non-boundary cutting combinations (NBCC) with the aid of the known surface roughness readings of the boundary cutting combinations (BCC). The following simulation involved the use of the predicted outputs from the NBCC to recover the surface roughness readings for the boundary cutting combinations (BCC). The simulation trial for the NBCC attained a state of total stability in the 7th iteration i.e. a point where the actual and desired roughness readings are equal such that error is minimized to zero by using a set of dynamic weights generated in every following simulation trial. A comparative study among the three methods showed that the proposed difference analysis technique with adaptive weight from feedback control, produced a much accurate output as against the abductive and regression analysis techniques presented in this.Keywords: Difference Analysis, Surface Roughness; Mesh- Analysis, Feedback control, Adaptive weight, Boundary Element
Procedia PDF Downloads 62215430 Determinants of Firm Financial Performance: An Empirical Investigation in Context of Public Limited Companies
Authors: Syed Hassan Amjad
Abstract:
In today’s competitive environment, in order for a company to exist, it must continually improve its Performance by reducing cost, improving quality and productivity, and easy access to market.The purpose of this thesis is to check the firm financial growth and performance and which type of factors affect the firm financial performance. This paper examines the key determinants of firm financial performance. We will differentiate between financial and non financial drivers of the firm financial performance. For the measurement of the firm financial performance there are many ways but all the measure had been taken in aggregation, such as debt, tax rate, operating expenses, earning per share and economic conditions. This study has also been done in developed countries but these researches show that foreign companies face many difficulties inimproving the firm financial performance. In findings we found that marketing expenditures and international diversification had a positive impact on firm valuation. In research also found that a firm's ownership composition, particularly the level of equity ownership by Domestic Financial Institutions and Dispersed Public Shareholders, and the leverage of the firm, tax rate and economic conditions were important factors affecting its financial performance.Keywords: debt, tax rate, firm financial performance, operating expenses, dividend per share, economic conditions
Procedia PDF Downloads 34315429 The Design of a Vehicle Traffic Flow Prediction Model for a Gauteng Freeway Based on an Ensemble of Multi-Layer Perceptron
Authors: Tebogo Emma Makaba, Barnabas Ndlovu Gatsheni
Abstract:
The cities of Johannesburg and Pretoria both located in the Gauteng province are separated by a distance of 58 km. The traffic queues on the Ben Schoeman freeway which connects these two cities can stretch for almost 1.5 km. Vehicle traffic congestion impacts negatively on the business and the commuter’s quality of life. The goal of this paper is to identify variables that influence the flow of traffic and to design a vehicle traffic prediction model, which will predict the traffic flow pattern in advance. The model will unable motorist to be able to make appropriate travel decisions ahead of time. The data used was collected by Mikro’s Traffic Monitoring (MTM). Multi-Layer perceptron (MLP) was used individually to construct the model and the MLP was also combined with Bagging ensemble method to training the data. The cross—validation method was used for evaluating the models. The results obtained from the techniques were compared using predictive and prediction costs. The cost was computed using combination of the loss matrix and the confusion matrix. The predicted models designed shows that the status of the traffic flow on the freeway can be predicted using the following parameters travel time, average speed, traffic volume and day of month. The implications of this work is that commuters will be able to spend less time travelling on the route and spend time with their families. The logistics industry will save more than twice what they are currently spending.Keywords: bagging ensemble methods, confusion matrix, multi-layer perceptron, vehicle traffic flow
Procedia PDF Downloads 34415428 Springback Prediction for Sheet Metal Cold Stamping Using Convolutional Neural Networks
Abstract:
Cold stamping has been widely applied in the automotive industry for the mass production of a great range of automotive panels. Predicting the springback to ensure the dimensional accuracy of the cold-stamped components is a critical step. The main approaches for the prediction and compensation of springback in cold stamping include running Finite Element (FE) simulations and conducting experiments, which require forming process expertise and can be time-consuming and expensive for the design of cold stamping tools. Machine learning technologies have been proven and successfully applied in learning complex system behaviours using presentative samples. These technologies exhibit the promising potential to be used as supporting design tools for metal forming technologies. This study, for the first time, presents a novel application of a Convolutional Neural Network (CNN) based surrogate model to predict the springback fields for variable U-shape cold bending geometries. A dataset is created based on the U-shape cold bending geometries and the corresponding FE simulations results. The dataset is then applied to train the CNN surrogate model. The result shows that the surrogate model can achieve near indistinguishable full-field predictions in real-time when compared with the FE simulation results. The application of CNN in efficient springback prediction can be adopted in industrial settings to aid both conceptual and final component designs for designers without having manufacturing knowledge.Keywords: springback, cold stamping, convolutional neural networks, machine learning
Procedia PDF Downloads 15115427 Influence of Some Psychological Factors on the Learning Gains of Distance Learners in Mathematics in Ibadan, Nigeria
Authors: Adeola Adejumo, Oluwole David Adebayo, Muraina Kamilu Olanrewaju
Abstract:
The purpose of this study was to investigate the influence of some psychological factors (i.e, school climate, parental involvement and classroom interaction) on the learning gains of university undergraduates in Mathematics in Ibadan, Nigeria. Three hundred undergraduates who are on open distance learning education programme in the University of Ibadan and thirty mathematics lecturers constituted the study’s sample. Both the independent and dependent variables were measured with relevant standardized instruments and the data obtained was analyzed using multiple regression statistical method. The instruments used were school climate scale, parental involvement scale and classroom interaction scale. Three research questions were answered in the study. The result showed that there was significant relationship between the three independent variables (school climate, parental involvement and classroom interaction) on the students’ learning gain in mathematics and that the independent variables both jointly and relatively contributed significantly to the prediction of students’ learning gain in mathematics. On the strength of these findings, the need to enhance the school climate, improve the parents’ involvement in the student’s education and encourage students’ classroom interaction were stressed and advocated.Keywords: school climate, parental involvement, ODL, learning gains, mathematics
Procedia PDF Downloads 523