Search results for: road damage detection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 6864

Search results for: road damage detection

5724 Spectrophotometric Detection of Histidine Using Enzyme Reaction and Examination of Reaction Conditions

Authors: Akimitsu Kugimiya, Kouhei Iwato, Toru Saito, Jiro Kohda, Yasuhisa Nakano, Yu Takano

Abstract:

The measurement of amino acid content is reported to be useful for the diagnosis of several types of diseases, including lung cancer, gastric cancer, colorectal cancer, breast cancer, prostate cancer, and diabetes. The conventional detection methods for amino acid are high-performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS), but they have several drawbacks as the equipment is cumbersome and the techniques are costly in terms of time and costs. In contrast, biosensors and biosensing methods provide more rapid and facile detection strategies that use simple equipment. The authors have reported a novel approach for the detection of each amino acid that involved the use of aminoacyl-tRNA synthetase (aaRS) as a molecular recognition element because aaRS is expected to a selective binding ability for corresponding amino acid. The consecutive enzymatic reactions used in this study are as follows: aaRS binds to its cognate amino acid and releases inorganic pyrophosphate. Hydrogen peroxide (H₂O₂) was produced by the enzyme reactions of inorganic pyrophosphatase and pyruvate oxidase. The Trinder’s reagent was added into the reaction mixture, and the absorbance change at 556 nm was measured using a microplate reader. In this study, an amino acid-sensing method using histidyl-tRNA synthetase (HisRS; histidine-specific aaRS) as molecular recognition element in combination with the Trinder’s reagent spectrophotometric method was developed. The quantitative performance and selectivity of the method were evaluated, and the optimal enzyme reaction and detection conditions were determined. The authors developed a simple and rapid method for detecting histidine with a combination of enzymatic reaction and spectrophotometric detection. In this study, HisRS was used to detect histidine, and the reaction and detection conditions were optimized for quantitation of these amino acids in the ranges of 1–100 µM histidine. The detection limits are sufficient to analyze these amino acids in biological fluids. This work was partly supported by Hiroshima City University Grant for Special Academic Research (General Studies).

Keywords: amino acid, aminoacyl-tRNA synthetase, biosensing, enzyme reaction

Procedia PDF Downloads 283
5723 Enhancing Project Performance Forecasting using Machine Learning Techniques

Authors: Soheila Sadeghi

Abstract:

Accurate forecasting of project performance metrics is crucial for successfully managing and delivering urban road reconstruction projects. Traditional methods often rely on static baseline plans and fail to consider the dynamic nature of project progress and external factors. This research proposes a machine learning-based approach to forecast project performance metrics, such as cost variance and earned value, for each Work Breakdown Structure (WBS) category in an urban road reconstruction project. The proposed model utilizes time series forecasting techniques, including Autoregressive Integrated Moving Average (ARIMA) and Long Short-Term Memory (LSTM) networks, to predict future performance based on historical data and project progress. The model also incorporates external factors, such as weather patterns and resource availability, as features to enhance the accuracy of forecasts. By applying the predictive power of machine learning, the performance forecasting model enables proactive identification of potential deviations from the baseline plan, which allows project managers to take timely corrective actions. The research aims to validate the effectiveness of the proposed approach using a case study of an urban road reconstruction project, comparing the model's forecasts with actual project performance data. The findings of this research contribute to the advancement of project management practices in the construction industry, offering a data-driven solution for improving project performance monitoring and control.

Keywords: project performance forecasting, machine learning, time series forecasting, cost variance, earned value management

Procedia PDF Downloads 46
5722 Determination of Frequency Relay Setting during Distributed Generators Islanding

Authors: Tarek Kandil, Ameen Ali

Abstract:

Distributed generation (DG) has recently gained a lot of momentum in power industry due to market deregulation and environmental concerns. One of the most technical challenges facing DGs is islanding of distributed generators. The current industry practice is to disconnect all distributed generators immediately after the occurrence of islands within 200 to 350 ms after loss of main supply. To achieve such goal, each DG must be equipped with an islanding detection device. Frequency relays are one of the most commonly used loss of mains detection method. However, distribution utilities may be faced with concerns related to false operation of these frequency relays due to improper settings. The commercially available frequency relays are considering standard tight setting. This paper investigates some factors related to relays internal algorithm that contribute to their different operating responses. Further, the relay operation in the presence of multiple distributed at the same network is analyzed. Finally, the relay setting can be accurately determined based on these investigation and analysis.

Keywords: frequency relay, distributed generation, islanding detection, relay setting

Procedia PDF Downloads 532
5721 Urinary Neutrophil Gelatinase Associated Lipocalin as Diagnostic Biomarkers for Lupus Nephritis

Authors: Lorena GóMez Escorcia, Gustavo Aroca MartíNez, Jose Luiz Villarreal, Elkin Navarro Quiroz

Abstract:

Lupus nephritis (LN) is a high-cost disease, occurring in about half of patients with Systemic Lupus Erythematosus (SLE). Renal biopsy constitutes the only protocol that, to date, allows a correct diagnosis of the level of renal involvement in these patients. However, this procedure can have various adverse effects such as kidney bleeding, muscle bleeding, infection, pain, among others. Therefore, the development of new diagnostic alternatives is required. The neutrophil gelatinase-associated lipocalin (NGAL) has been emerging as a novel biomarker of acute kidney injury. The aim of this study was to assess urinary NGAL levels as a marker for disease activity in patients with lupus nephritis. For this work included 50 systemic lupus erythematosus (SLE) patients, 50 with active lupus nephritis (LN), and 50 without autoimmune and renal disease as controls. TNGAL in urine samples was measured by enzyme-linked immunosorbent assay (ELISA). The results revealed that patients with kidney damage had an elevated urinary NGAL as compared to patients with lupus without kidney damage and controls (p <0.005), and the mean of uNGAL was (28.72 ± 4.53), (19.51 ± 4.72), (8.91 ± 3.37) respectively. Measurement of urinary NGAL levels showed a very good diagnostic performance for discriminating patients with Lupus nephritis from SLE without renal damage and of control individuals.

Keywords: lupus nephritis, biomarker, NGAL, urine samples

Procedia PDF Downloads 205
5720 Multivariate Statistical Process Monitoring of Base Metal Flotation Plant Using Dissimilarity Scale-Based Singular Spectrum Analysis

Authors: Syamala Krishnannair

Abstract:

A multivariate statistical process monitoring methodology using dissimilarity scale-based singular spectrum analysis (SSA) is proposed for the detection and diagnosis of process faults in the base metal flotation plant. Process faults are detected based on the multi-level decomposition of process signals by SSA using the dissimilarity structure of the process data and the subsequent monitoring of the multiscale signals using the unified monitoring index which combines T² with SPE. Contribution plots are used to identify the root causes of the process faults. The overall results indicated that the proposed technique outperformed the conventional multivariate techniques in the detection and diagnosis of the process faults in the flotation plant.

Keywords: fault detection, fault diagnosis, process monitoring, dissimilarity scale

Procedia PDF Downloads 207
5719 Study of Physico-Chimical Properties of a Silty Soil

Authors: Moulay Smaïne Ghembaza, Mokhtar Dadouch, Nour-Said Ikhlef

Abstract:

Soil treatment is to make use soil that does not have the characteristics required in a given context. We limit ourselves in this work to the field of road earthworks where we have chosen to develop a local material in the region of Sidi Bel Abbes (Algeria). This material has poor characteristics not meeting the standards used in road geo technics. To remedy this, firstly, we were trying to improve the Proctor Standard characteristics of this material by mechanical treatment increasing the compaction energy. Then, by a chemical treatment, adding some cement dosages, our results show that this material classified A1h a increase maximum dry density and a reduction in the water content of compaction. A comparative study is made on the optimal properties of the material between the two modes of treatment. On the other hand, after treatment, one finds a decrease in the plasticity index and the methylene blue value. This material exhibits a change of class. Therefore, soil class CL turned into a soil class composed CL-ML (Silt of low plasticity). This observation allows this material to be used as backfill or sub grade.

Keywords: treatment of soil, cement, subgrade, Atteberg limits, classification, optimum proctor properties

Procedia PDF Downloads 469
5718 Applicability of Fuzzy Logic for Intrusion Detection in Mobile Adhoc Networks

Authors: Ruchi Makani, B. V. R. Reddy

Abstract:

Mobile Adhoc Networks (MANETs) are gaining popularity due to their potential of providing low-cost mobile connectivity solutions to real-world communication problems. Integrating Intrusion Detection Systems (IDS) in MANETs is a tedious task by reason of its distinctive features such as dynamic topology, de-centralized authority and highly controlled/limited resource environment. IDS primarily use automated soft-computing techniques to monitor the inflow/outflow of traffic packets in a given network to detect intrusion. Use of machine learning techniques in IDS enables system to make decisions on intrusion while continuous keep learning about their dynamic environment. An appropriate IDS model is essential to be selected to expedite this application challenges. Thus, this paper focused on fuzzy-logic based machine learning IDS technique for MANETs and presented their applicability for achieving effectiveness in identifying the intrusions. Further, the selection of appropriate protocol attributes and fuzzy rules generation plays significant role for accuracy of the fuzzy-logic based IDS, have been discussed. This paper also presents the critical attributes of MANET’s routing protocol and its applicability in fuzzy logic based IDS.

Keywords: AODV, mobile adhoc networks, intrusion detection, anomaly detection, fuzzy logic, fuzzy membership function, fuzzy inference system

Procedia PDF Downloads 176
5717 Durability Analysis of a Knuckle Arm Using VPG System

Authors: Geun-Yeon Kim, S. P. Praveen Kumar, Kwon-Hee Lee

Abstract:

A steering knuckle arm is the component that connects the steering system and suspension system. The structural performances such as stiffness, strength, and durability are considered in its design process. The former study suggested the lightweight design of a knuckle arm considering the structural performances and using the metamodel-based optimization. The six shape design variables were defined, and the optimum design was calculated by applying the kriging interpolation method. The finite element method was utilized to predict the structural responses. The suggested knuckle was made of the aluminum Al6082, and its weight was reduced about 60% in comparison with the base steel knuckle, satisfying the design requirements. Then, we investigated its manufacturability by performing foraging analysis. The forging was done as hot process, and the product was made through two-step forging. As a final step of its developing process, the durability is investigated by using the flexible dynamic analysis software, LS-DYNA and the pre and post processor, eta/VPG. Generally, a car make does not provide all the information with the part manufacturer. Thus, the part manufacturer has a limit in predicting the durability performance with the unit of full car. The eta/VPG has the libraries of suspension, tire, and road, which are commonly used parts. That makes a full car modeling. First, the full car is modeled by referencing the following information; Overall Length: 3,595mm, Overall Width: 1,595mm, CVW (Curve Vehicle Weight): 910kg, Front Suspension: MacPherson Strut, Rear Suspension: Torsion Beam Axle, Tire: 235/65R17. Second, the road is selected as the cobblestone. The road condition of the cobblestone is almost 10 times more severe than that of usual paved road. Third, the dynamic finite element analysis using the LS-DYNA is performed to predict the durability performance of the suggested knuckle arm. The life of the suggested knuckle arm is calculated as 350,000km, which satisfies the design requirement set up by the part manufacturer. In this study, the overall design process of a knuckle arm is suggested, and it can be seen that the developed knuckle arm satisfies the design requirement of the durability with the unit of full car. The VPG analysis is successfully performed even though it does not an exact prediction since the full car model is very rough one. Thus, this approach can be used effectively when the detail to full car is not given.

Keywords: knuckle arm, structural optimization, Metamodel, forging, durability, VPG (Virtual Proving Ground)

Procedia PDF Downloads 418
5716 Study of the Genotoxic Potential of Plant Growth Regulator Ethephon

Authors: Mahshid Hodjat, Maryam Baeeri, Mohammad Amin Rezvanfar, Mohammad Abdollahi

Abstract:

Ethephon is one of the most widely used plant growth regulator in agriculture that its application has been increased in recent years. The toxicity of organophosphate compounds is mostly attributed to their potent inhibition of acetylcholinesterase and their involvement in neurodegenerative disease. Although there are few reports on butyrylcholinesterase inhibitory role of ethephon, still there is no evidence on neurotoxicity and genotoxicity of this compound. The aim of the current study is to assess the potential genotoxic effect of ethephon using two genotoxic endpoints; γH2AX expression and comet assay on embryonic murine fibroblast. γH2AX serves as an early and sensitive biomarker for evaluating the genotoxic effects of chemicals. Oxidative stress biomarkers, including intracellular reactive oxygen species, lipid peroxidation and antioxidant capacity were also examined. The results showed a significant increase in cell proliferation 24h post-treatment with 10, 40,160µg/ml ethephon. The γH2AX expression and γH2AX foci count per cell were increased at low concentration of ethephon that was concomitant with increased DNA damage break at 40 and 160 µg/ml as illustrated by increased comet tail moment. A significant increase in lipid peroxidation and ROS formation were observed at 160 µg/ml and higher doses. The results showed that low-dose of ethephon promoted cell proliferation while induce DNA damage, raising the possibility of ethephon mutagenicity. Ethephon-induced genotoxic effect of low dose might not related to oxidative damage. However, ethephon was found to increase oxidative stress at higher doses, lead to cellular cytotoxicity. Taken together, all data indicated that ethylene, deserves more attention as a plant regulator with potential genotoxicity for which appropriate control is needed to reduce its usage.

Keywords: ethephon, DNA damage, γH2AX, oxidative stress

Procedia PDF Downloads 307
5715 A Machine Learning Pipeline for Real-Time Activity Detection on Low Computational Power Devices for Metaverse Applications

Authors: Amit Kumar, Amanpreet Chander, Ashish Sahani

Abstract:

This paper presents our recent work on real-time human activity detection based on the media pipe pipeline and machine learning algorithms. The proposed system can detect human activities, including running, jumping, squatting, bending to the left or right, and standing still. This is a robust solution for developing a yoga, dance, metaverse, and fitness application that checks for the correction of the pose without having any additional monitor like a personal trainer. MediaPipe solution offers an open-source cross-platform which utilizes a two-step detector-tracker ML pipeline for live detection of key landmarks on our body which can be used for motion data collection. The prediction of real-time poses uses a variety of machine learning techniques and different types of analysis. Without primarily relying on powerful desktop environments for inference, our method achieves real-time performance on the majority of contemporary mobile phones, desktops/laptops, Python, or even the web. Experimental results show that our method outperforms the existing method in terms of accuracy and real-time capability, achieving an accuracy of 99.92% on testing datasets.

Keywords: human activity detection, media pipe, machine learning, metaverse applications

Procedia PDF Downloads 177
5714 Occupational Exposure to Polycyclic Aromatic Hydrocarbons (Pha) among Asphalt and Road Paving Workers

Authors: Boularas El Alia, H. Rezk-Allah, S. Chaoui, A. Chama, B. Rezk-Allah

Abstract:

Aims: To assess the current exposure to the PHA among various workers in the sector of asphalt and road paving. Methods: The assessment of the exposure to PHA has been performed on workers (n=14) belonging to two companies, allocated into several activities such as road paving, manufacturing of coated bituminous warm, manufacturing of asphalt cut-back, manufacturing of emulsion of asphalt. A group of control subjects (n=18) was associated. The internal exposure to PHA was investigated by measurement of the urinary excretion of 2-naphtol, urine metabolite of naphtalene, one of the biomarkers of total PHA exposure. Urine samples were collected from the exposed workers, at the beginning of the week, at the beginning of the work shift (BWBS) and at the end of the work shift, at the end of the week (ESEW). In the control subjects, single samples of urine were collected after the end of the work shift.Every subject was invited to answer a questionnaire for the collection of technical and medical data as well as smoking habits and food intake. The concentration of 2-naphtol in the hydrolysate of urine was determined spectrophotometrically, after its reaction with the Fast Blue BB salt (diazotized 4-benzoylamino-2,5-diethoxyaniline). Results: For all the workers included in the study, the 2-urinary naphtol concentrations were higher than those in the control subjects (Median=9,55 µg/g creatinine) whether it is at (BWBS) (Md=16,2 µg/g creatinine) or at (ESEW) (n=18,Median=32,22 µg/g creatinine). Considerable differences are observed according to the category of job. The concentrations are also higher among smokers. Conclusion:The results show a significant exposure, mainly during manual laying, reveals an important risk particularly for the respiratory system.Considering the current criteria, carcinogenic risk due to the PHA seems not insignificant.

Keywords: PHA, asphalt, assessment, occupational, exposure

Procedia PDF Downloads 476
5713 Exploring the Gas Sensing Performance of Cu-Doped Iron Oxide Derived from Metal-Organic Framework

Authors: Annu Sheokand, Vinay Kumar

Abstract:

Hydrogen sulfide (H₂S) detection is essential for environmental monitoring and industrial safety due to its high toxicity, even at low concentrations. This study explores the H₂S gas sensing properties of Cu-doped Fe₂O₃ materials derived from metal-organic frameworks (MOFs), which offer high surface area and controlled porosity for optimized gas sensing. The structural and morphological characteristics of the synthesized material were thoroughly analyzed using techniques such as X-ray Diffraction (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), and UV-Vis Spectroscopy. The resulting sensor exhibited remarkable sensitivity and selectivity, achieving a detection limit at the ppb level for H₂S. The study indicates that Cu doping significantly enhances the gas sensing performance of Fe₂O₃ by introducing abundant active sites within the material. These enhanced sensing properties emphasize the potential of MOF-derived Cu-doped Fe₂O₃ as a highly effective material for H₂S gas sensors in various applications.

Keywords: detection limit, doping, MOF, sensitivity, sensor

Procedia PDF Downloads 12
5712 Study the Effect of Liquefaction on Buried Pipelines during Earthquakes

Authors: Mohsen Hababalahi, Morteza Bastami

Abstract:

Buried pipeline damage correlations are critical part of loss estimation procedures applied to lifelines for future earthquakes. The vulnerability of buried pipelines against earthquake and liquefaction has been observed during some of previous earthquakes and there are a lot of comprehensive reports about this event. One of the main reasons for impairment of buried pipelines during earthquake is liquefaction. Necessary conditions for this phenomenon are loose sandy soil, saturation of soil layer and earthquake intensity. Because of this fact that pipelines structure are very different from other structures (being long and having light mass) by paying attention to the results of previous earthquakes and compare them with other structures, it is obvious that the danger of liquefaction for buried pipelines is not high risked, unless effective parameters like earthquake intensity and non-dense soil and other factors be high. Recent liquefaction researches for buried pipeline include experimental and theoretical ones as well as damage investigations during actual earthquakes. The damage investigations have revealed that a damage ratio of pipelines (Number/km ) has much larger values in liquefied grounds compared with one in shaking grounds without liquefaction according to damage statistics during past severe earthquakes, and that damages of joints and pipelines connected with manholes were remarkable. The purpose of this research is numerical study of buried pipelines under the effect of liquefaction by case study of the 2013 Dashti (Iran) earthquake. Water supply and electrical distribution systems of this township interrupted during earthquake and water transmission pipelines were damaged severely due to occurrence of liquefaction. The model consists of a polyethylene pipeline with 100 meters length and 0.8 meter diameter which is covered by light sandy soil and the depth of burial is 2.5 meters from surface. Since finite element method is used relatively successfully in order to solve geotechnical problems, we used this method for numerical analysis. For evaluating this case, some information like geotechnical information, classification of earthquakes levels, determining the effective parameters in probability of liquefaction, three dimensional numerical finite element modeling of interaction between soil and pipelines are necessary. The results of this study on buried pipelines indicate that the effect of liquefaction is function of pipe diameter, type of soil, and peak ground acceleration. There is a clear increase in percentage of damage with increasing the liquefaction severity. The results indicate that although in this form of the analysis, the damage is always associated to a certain pipe material, but the nominally defined “failures” include by failures of particular components (joints, connections, fire hydrant details, crossovers, laterals) rather than material failures. At the end, there are some retrofit suggestions in order to decrease the risk of liquefaction on buried pipelines.

Keywords: liquefaction, buried pipelines, lifelines, earthquake, finite element method

Procedia PDF Downloads 510
5711 Numerical Analysis of Shear Crack Propagation in a Concrete Beam without Transverse Reinforcement

Authors: G. A. Rombach, A. Faron

Abstract:

Crack formation and growth in reinforced concrete members are, in many cases, the cause of the collapse of technical structures. Such serious failures impair structural behavior and can also damage property and persons. An intensive investigation of the crack propagation is indispensable. Numerical methods are being developed to analyze crack growth in an element and to detect fracture failure at an early stage. For reinforced concrete components, however, further research and action are required in the analysis of shear cracks. This paper presents numerical simulations and continuum mechanical modeling of bending shear crack propagation in a three-dimensional reinforced concrete beam without transverse reinforcement. The analysis will provide a further understanding of crack growth and redistribution of inner forces in concrete members. As a numerical method to map discrete cracks, the extended finite element method (XFEM) is applied. The crack propagation is compared with the smeared crack approach using concrete damage plasticity. For validation, the crack patterns of real experiments are compared with the results of the different finite element models. The evaluation is based on single span beams under bending. With the analysis, it is possible to predict the fracture behavior of concrete members.

Keywords: concrete damage plasticity, crack propagation, extended finite element method, fracture mechanics

Procedia PDF Downloads 118
5710 Research on Placement Method of the Magnetic Flux Leakage Sensor Based on Online Detection of the Transformer Winding Deformation

Authors: Wei Zheng, Mao Ji, Zhe Hou, Meng Huang, Bo Qi

Abstract:

The transformer is the key equipment of the power system. Winding deformation is one of the main transformer defects, and timely and effective detection of the transformer winding deformation can ensure the safe and stable operation of the transformer to the maximum extent. When winding deformation occurs, the size, shape and spatial position of the winding will change, which directly leads to the change of magnetic flux leakage distribution. Therefore, it is promising to study the online detection method of the transformer winding deformation based on magnetic flux leakage characteristics, in which the key step is to study the optimal placement method of magnetic flux leakage sensors inside the transformer. In this paper, a simulation model of the transformer winding deformation is established to obtain the internal magnetic flux leakage distribution of the transformer under normal operation and different winding deformation conditions, and the law of change of magnetic flux leakage distribution due to winding deformation is analyzed. The results show that different winding deformation leads to different characteristics of the magnetic flux leakage distribution. On this basis, an optimized placement of magnetic flux leakage sensors inside the transformer is proposed to provide a basis for the online detection method of transformer winding deformation based on the magnetic flux leakage characteristics.

Keywords: magnetic flux leakage, sensor placement method, transformer, winding deformation

Procedia PDF Downloads 194
5709 Investigating of the Fuel Consumption in Construction Machinery and Ways to Reduce Fuel Consumption

Authors: Reza Bahboodian

Abstract:

One of the most important factors in the use of construction machinery is the fuel consumption cost of this equipment. The use of diesel engines in off-road vehicles is an important source of nitrogen oxides and particulate matter. Emissions of nitrogen oxides and particulate matter 10 in off-road vehicles (construction and mining) may be high. Due to the high cost of fuel, it is necessary to minimize fuel consumption. Factors affecting the fuel consumption of these cars are very diverse. Climate changes such as changes in pressure, temperature, humidity, fuel type selection, type of gearbox used in the car are effective in fuel consumption and pollution, and engine efficiency. In this paper, methods for reducing fuel consumption and pollutants by considering valid European and European standards are examined based on new methods such as hybridization, optimal gear change, adding hydrogen to diesel fuel, determining optimal working fluids, and using oxidation catalysts.

Keywords: improve fuel consumption, construction machinery, pollutant reduction, determining the optimal working cycle

Procedia PDF Downloads 159
5708 Classic Modelled Hybrid Electric Vehicles Using The Power of Internet Of Things

Authors: Venkatesh Krishna Murthy

Abstract:

The era before government-regulated automotive designs gave us some astonishing vehicles that are well worth to keep on the road. The fact that restoring an automobile in 2015 does not mean it will perform like one designed in 2021. This is one of the reasons that manufacturers continue to turn to vintage hardware for future enhancements in their vehicles. Now we need to understand that a modern chassis could possibly allow manufacturers to give vintage performance cars a level of braking capability, compatibility with tires, chassis rigidity, suspension sophistication, and steering response, an experience only racers got until now. However, half a century of advancements in engineering can have a great impact on design in any field, and the automotive realm which holds no exception. In the current situation, a growing number of companies offer chassis and braking components to onboard manufacturers to retrofit contemporary technology for their vintage vehicles to modernize them at the foundation level. The recent question arises on performance on lithium batteries, as opposed to simply bolting upgraded components, for ex. lithium batteries with graphene as superconductive material to enhance performance, an area deeply investigated. Serving as the “bones” of the vehicle, the chassis and frame play a central role in dictating how that automobile will perform. While the desire to maintain originality is alluring for many, the benefits of a modern chassis are vast. In some situations, it also allows builders to put cars back on the road that might otherwise be too far gone. “There’s a couple of different factors at play here – one of them being that these older cars from the ’40s, ’50s, and ’60s have seen a lot of weather and a lot of road miles over the years, more often than not,” says Craig Morrison of Art Morrison Enterprises.

Keywords: hybrid electric vehicles, internet of things, lithium graphene batteries, classic car chassis

Procedia PDF Downloads 170
5707 Optimized Parameters for Simultaneous Detection of Cd²⁺, Pb²⁺ and CO²⁺ Ions in Water Using Square Wave Voltammetry on the Unmodified Glassy Carbon Electrode

Authors: K. Sruthi, Sai Snehitha Yadavalli, Swathi Gosh Acharyya

Abstract:

Water is the most crucial element for sustaining life on earth. Increasing water pollution directly or indirectly leads to harmful effects on human life. Most of the heavy metal ions are harmful in their cationic form. These heavy metal ions are released by various activities like disposing of batteries, industrial wastes, automobile emissions, and soil contamination. Ions like (Pb, Co, Cd) are carcinogenic and show many harmful effects when consumed more than certain limits proposed by WHO. The simultaneous detection of the heavy metal ions (Pb, Co, Cd), which are highly toxic, is reported in this study. There are many analytical methods for quantifying, but electrochemical techniques are given high priority because of their sensitivity and ability to detect and recognize lower concentrations. Square wave voltammetry was preferred in electrochemical methods due to the absence of background currents which is interference. Square wave voltammetry was performed on GCE for the quantitative detection of ions. Three electrode system consisting of a glassy carbon electrode as the working electrode (3 mm diameter), Ag/Agcl electrode as the reference electrode, and a platinum wire as the counter electrode was chosen for experimentation. The mechanism of detection was done by optimizing the experimental parameters, namely pH, scan rate, and temperature. Under the optimized conditions, square wave voltammetry was performed for simultaneous detection. Scan rates were varied from 5 mV/s to 100 mV/s and found that at 25 mV/s all the three ions were detected simultaneously with proper peaks at particular stripping potential. The variation of pH from 3 to 8 was done where the optimized pH was taken as pH 5 which holds good for three ions. There was a decreasing trend at starting because of hydrogen gas evolution, and after pH 5 again there was a decreasing trend that is because of hydroxide formation on the surface of the working electrode (GCE). The temperature variation from 25˚C to 45˚C was done where the optimum temperature concerning three ions was taken as 35˚C. Deposition and stripping potentials were given as +1.5 V and -1.5 V, and the resting time of 150 seconds was given. Three ions were detected at stripping potentials of Cd²⁺ at -0.84 V, Pb²⁺ at -0.54 V, and Co²⁺ at -0.44 V. The parameters of detection were optimized on a glassy carbon electrode for simultaneous detection of the ions at lower concentrations by square wave voltammetry.

Keywords: cadmium, cobalt, lead, glassy carbon electrode, square wave anodic stripping voltammetry

Procedia PDF Downloads 115
5706 Barnard Feature Point Detector for Low-Contractperiapical Radiography Image

Authors: Chih-Yi Ho, Tzu-Fang Chang, Chih-Chia Huang, Chia-Yen Lee

Abstract:

In dental clinics, the dentists use the periapical radiography image to assess the effectiveness of endodontic treatment of teeth with chronic apical periodontitis. Periapical radiography images are taken at different times to assess alveolar bone variation before and after the root canal treatment, and furthermore to judge whether the treatment was successful. Current clinical assessment of apical tissue recovery relies only on dentist personal experience. It is difficult to have the same standard and objective interpretations due to the dentist or radiologist personal background and knowledge. If periapical radiography images at the different time could be registered well, the endodontic treatment could be evaluated. In the image registration area, it is necessary to assign representative control points to the transformation model for good performances of registration results. However, detection of representative control points (feature points) on periapical radiography images is generally very difficult. Regardless of which traditional detection methods are practiced, sufficient feature points may not be detected due to the low-contrast characteristics of the x-ray image. Barnard detector is an algorithm for feature point detection based on grayscale value gradients, which can obtain sufficient feature points in the case of gray-scale contrast is not obvious. However, the Barnard detector would detect too many feature points, and they would be too clustered. This study uses the local extrema of clustering feature points and the suppression radius to overcome the problem, and compared different feature point detection methods. In the preliminary result, the feature points could be detected as representative control points by the proposed method.

Keywords: feature detection, Barnard detector, registration, periapical radiography image, endodontic treatment

Procedia PDF Downloads 441
5705 1-D Convolutional Neural Network Approach for Wheel Flat Detection for Freight Wagons

Authors: Dachuan Shi, M. Hecht, Y. Ye

Abstract:

With the trend of digitalization in railway freight transport, a large number of freight wagons in Germany have been equipped with telematics devices, commonly placed on the wagon body. A telematics device contains a GPS module for tracking and a 3-axis accelerometer for shock detection. Besides these basic functions, it is desired to use the integrated accelerometer for condition monitoring without any additional sensors. Wheel flats as a common type of failure on wheel tread cause large impacts on wagons and infrastructure as well as impulsive noise. A large wheel flat may even cause safety issues such as derailments. In this sense, this paper proposes a machine learning approach for wheel flat detection by using car body accelerations. Due to suspension systems, impulsive signals caused by wheel flats are damped significantly and thus could be buried in signal noise and disturbances. Therefore, it is very challenging to detect wheel flats using car body accelerations. The proposed algorithm considers the envelope spectrum of car body accelerations to eliminate the effect of noise and disturbances. Subsequently, a 1-D convolutional neural network (CNN), which is well known as a deep learning method, is constructed to automatically extract features in the envelope-frequency domain and conduct classification. The constructed CNN is trained and tested on field test data, which are measured on the underframe of a tank wagon with a wheel flat of 20 mm length in the operational condition. The test results demonstrate the good performance of the proposed algorithm for real-time fault detection.

Keywords: fault detection, wheel flat, convolutional neural network, machine learning

Procedia PDF Downloads 130
5704 A DNA-Based Nano-biosensor for the Rapid Detection of the Dengue Virus in Mosquito

Authors: Lilia M. Fernando, Matthew K. Vasher, Evangelyn C. Alocilja

Abstract:

This paper describes the development of a DNA-based nanobiosensor to detect the dengue virus in mosquito using electrically active magnetic (EAM) nanoparticles as the concentrator and electrochemical transducer. The biosensor detection encompasses two sets of oligonucleotide probes that are specific to the dengue virus: the detector probe labeled with the EAM nanoparticles and the biotinylated capture probe. The DNA targets are double hybridized to the detector and the capture probes and concentrated from nonspecific DNA fragments by applying a magnetic field. Subsequently, the DNA sandwiched targets (EAM-detector probe–DNA target–capture probe-biotin) are captured on streptavidin modified screen printed carbon electrodes through the biotinylated capture probes. Detection is achieved electrochemically by measuring the oxidation–reduction signal of the EAM nanoparticles. Results indicate that the biosensor is able to detect the redox signal of the EAM nanoparticles at dengue DNA concentrations as low as 10 ng/ul.

Keywords: dengue, magnetic nanoparticles, mosquito, nanobiosensor

Procedia PDF Downloads 365
5703 Detection of Micro-Unmanned Ariel Vehicles Using a Multiple-Input Multiple-Output Digital Array Radar

Authors: Tareq AlNuaim, Mubashir Alam, Abdulrazaq Aldowesh

Abstract:

The usage of micro-Unmanned Ariel Vehicles (UAVs) has witnessed an enormous increase recently. Detection of such drones became a necessity nowadays to prevent any harmful activities. Typically, such targets have low velocity and low Radar Cross Section (RCS), making them indistinguishable from clutter and phase noise. Multiple-Input Multiple-Output (MIMO) Radars have many potentials; it increases the degrees of freedom on both transmit and receive ends. Such architecture allows for flexibility in operation, through utilizing the direct access to every element in the transmit/ receive array. MIMO systems allow for several array processing techniques, permitting the system to stare at targets for longer times, which improves the Doppler resolution. In this paper, a 2×2 MIMO radar prototype is developed using Software Defined Radio (SDR) technology, and its performance is evaluated against a slow-moving low radar cross section micro-UAV used by hobbyists. Radar cross section simulations were carried out using FEKO simulator, achieving an average of -14.42 dBsm at S-band. The developed prototype was experimentally evaluated achieving more than 300 meters of detection range for a DJI Mavic pro-drone

Keywords: digital beamforming, drone detection, micro-UAV, MIMO, phased array

Procedia PDF Downloads 138
5702 Comparison of Direction of Arrival Estimation Method for Drone Based on Phased Microphone Array

Authors: Jiwon Lee, Yeong-Ju Go, Jong-Soo Choi

Abstract:

Drones were first developed for military use and were used in World War 1. But recently drones have been used in a variety of fields. Several companies actively utilize drone technology to strengthen their services, and in agriculture, drones are used for crop monitoring and sowing. Other people use drones for hobby activities such as photography. However, as the range of use of drones expands rapidly, problems caused by drones such as improperly flying, privacy and terrorism are also increasing. As the need for monitoring and tracking of drones increases, researches are progressing accordingly. The drone detection system estimates the position of the drone using the physical phenomena that occur when the drones fly. The drone detection system measures being developed utilize many approaches, such as radar, infrared camera, and acoustic detection systems. Among the various drone detection system, the acoustic detection system is advantageous in that the microphone array system is small, inexpensive, and easy to operate than other systems. In this paper, the acoustic signal is acquired by using minimum microphone when drone is flying, and direction of drone is estimated. When estimating the Direction of Arrival(DOA), there is a method of calculating the DOA based on the Time Difference of Arrival(TDOA) and a method of calculating the DOA based on the beamforming. The TDOA technique requires less number of microphones than the beamforming technique, but is weak in noisy environments and can only estimate the DOA of a single source. The beamforming technique requires more microphones than the TDOA technique. However, it is strong against the noisy environment and it is possible to simultaneously estimate the DOA of several drones. When estimating the DOA using acoustic signals emitted from the drone, it is impossible to measure the position of the drone, and only the direction can be estimated. To overcome this problem, in this work we show how to estimate the position of drones by arranging multiple microphone arrays. The microphone array used in the experiments was four tetrahedral microphones. We simulated the performance of each DOA algorithm and demonstrated the simulation results through experiments.

Keywords: acoustic sensing, direction of arrival, drone detection, microphone array

Procedia PDF Downloads 158
5701 The Effect of Hesperidin on Troponin's Serum Level Changes as a Heart Tissue Damage Biomarker Due to Gamma Irradiation of Rat's Mediastinum

Authors: G. H. Haddadi, S. Sajadi, R. Fardid, Z. Haddadi

Abstract:

The heart is a radiosensitive organ, and its damage is a dose-limiting factor in radiotherapy. Different side effects including vascular plaque and heart fibrosis occur in patients with thorax irradiation. The present study aimed to evaluate the radioprotective efficacy of Hesperidin (HES), a naturally occurring citrus flavanoglycone, against γ-radiation induced tissue damage in the heart of male rats. Sixty-eight rats were divided into four groups. The rats in group 1 received PBS, and those in group 2 received HES. Also, the rats in group 3 received PBS and underwent γ-irradiation, and those in group 4 received HES and underwent γ-irradiation. They were exposed to 20 Gy γ-radiation using a single fraction cobalt-60 unit, and the dose of Hesperidin was (100 mg/kg/d, orally) for 7 days prior irradiation. Each group was divided into two subgroups. Samplings of rats in subgroup A was done 4-6 hours after irradiation. The samples were sent to laboratory for determination of Troponin’s I (TnI) serum level changes as a cardiac biomarker. The remaining animals (subgroups B) were sacrificed 8 weeks after radiotherapy for histopathological evaluation. In group 3, TnI obviously increased in comparison with group 1 (p < 0.05). The comparison of groups 1 and 4 showed no significant difference. Evaluation of histopathological parameters in subgroup B showed significant differences between groups 1 and 3 in some of the cases. Inflammation (p=0.008), pericardial effusion (p=0.001) and vascular plaque (p=0.001) increased in the rats exposed to 20 Gy γ-irradiation. Using oral administration of HES significantly decreased all the above factors when compared to group 4 (P > 0.016). Administration of 100 mg/kg/day Hesperidin for 7 days resulted in decreased Troponin I and radiation heart injury. This agent may have protective effects against radiation-induced heart damage.

Keywords: hesperidin, radioprotector, troponin I, cardiac inflammation, vascular plaque

Procedia PDF Downloads 252
5700 Machine Learning Approach for Automating Electronic Component Error Classification and Detection

Authors: Monica Racha, Siva Chandrasekaran, Alex Stojcevski

Abstract:

The engineering programs focus on promoting students' personal and professional development by ensuring that students acquire technical and professional competencies during four-year studies. The traditional engineering laboratory provides an opportunity for students to "practice by doing," and laboratory facilities aid them in obtaining insight and understanding of their discipline. Due to rapid technological advancements and the current COVID-19 outbreak, the traditional labs were transforming into virtual learning environments. Aim: To better understand the limitations of the physical laboratory, this research study aims to use a Machine Learning (ML) algorithm that interfaces with the Augmented Reality HoloLens and predicts the image behavior to classify and detect the electronic components. The automated electronic components error classification and detection automatically detect and classify the position of all components on a breadboard by using the ML algorithm. This research will assist first-year undergraduate engineering students in conducting laboratory practices without any supervision. With the help of HoloLens, and ML algorithm, students will reduce component placement error on a breadboard and increase the efficiency of simple laboratory practices virtually. Method: The images of breadboards, resistors, capacitors, transistors, and other electrical components will be collected using HoloLens 2 and stored in a database. The collected image dataset will then be used for training a machine learning model. The raw images will be cleaned, processed, and labeled to facilitate further analysis of components error classification and detection. For instance, when students conduct laboratory experiments, the HoloLens captures images of students placing different components on a breadboard. The images are forwarded to the server for detection in the background. A hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm will be used to train the dataset for object recognition and classification. The convolution layer extracts image features, which are then classified using Support Vector Machine (SVM). By adequately labeling the training data and classifying, the model will predict, categorize, and assess students in placing components correctly. As a result, the data acquired through HoloLens includes images of students assembling electronic components. It constantly checks to see if students appropriately position components in the breadboard and connect the components to function. When students misplace any components, the HoloLens predicts the error before the user places the components in the incorrect proportion and fosters students to correct their mistakes. This hybrid Convolutional Neural Networks (CNNs) and Support Vector Machines (SVMs) algorithm automating electronic component error classification and detection approach eliminates component connection problems and minimizes the risk of component damage. Conclusion: These augmented reality smart glasses powered by machine learning provide a wide range of benefits to supervisors, professionals, and students. It helps customize the learning experience, which is particularly beneficial in large classes with limited time. It determines the accuracy with which machine learning algorithms can forecast whether students are making the correct decisions and completing their laboratory tasks.

Keywords: augmented reality, machine learning, object recognition, virtual laboratories

Procedia PDF Downloads 134
5699 Numerical Investigation for Ductile Fracture of an Aluminium Alloy 6061 T-6: Assessment of Critical J-Integral

Authors: R. Bensaada, M. Almansba, M. Ould Ouali, R. Ferhoum, N. E. Hannachi

Abstract:

The aim of this work is to simulate the ductile fracture of SEN specimens in aluminium alloy. The assessment of fracture toughness is performed with the calculation of Jc (the critical value of J-Integral) through the resistance curves. The study is done using finite element code calculation ABAQUSTM including an elastic plastic with damage model of material’s behaviour. The procedure involves specimens of four different thicknesses and four ligament sizes for every thickness. The material of study is an aluminium alloy 6061-T6 for which the necessary parameters to complete the study are given. We found the same results for the same specimen’s thickness and for different ligament sizes when the fracture criterion is evaluated.

Keywords: j-integral, critical-j, damage, fracture toughness

Procedia PDF Downloads 357
5698 Biosensor Technologies in Neurotransmitters Detection

Authors: Joanna Cabaj, Sylwia Baluta, Karol Malecha

Abstract:

Catecholamines are vital neurotransmitters that mediate a variety of central nervous system functions, such as motor control, cognition, emotion, memory processing, and endocrine modulation. Dysfunctions in catecholamine neurotransmission are induced in some neurologic and neuropsychiatric diseases. Changeable neurotransmitters level in biological fluids can be a marker of several neurological disorders. Because of its significance in analytical techniques and diagnostics, sensitive and selective detection of neurotransmitters is increasingly attracting a lot of attention in different areas of bio-analysis or biomedical research. Recently, optical techniques for the detection of catecholamines have attracted interests due to their reasonable cost, convenient control, as well as maneuverability in biological environments. Nevertheless, with the observed need for a sensitive and selective catecholamines sensor, the development of a convenient method for this neurotransmitter is still at its basic level. The manipulation of nanostructured materials in conjunction with biological molecules has led to the development of a new class of hybrid-modified enzymatic sensors in which both enhancement of charge transport and biological activity preservation may be obtained. Immobilization of biomaterials on electrode surfaces is the crucial step in fabricating electrochemical as well as optical biosensors and bioelectronic devices. Continuing systematic investigation in manufacturing of enzyme–conducting sensitive systems, here is presented a convenient fluorescence as well as electrochemical sensing strategy for catecholamines detection.

Keywords: biosensors, catecholamines, fluorescence, enzymes

Procedia PDF Downloads 109
5697 Comparison of Hydrogen and Electrification Perspectives in Decarbonizing the Transport Sector

Authors: Matteo Nicoli, Gianvito Colucci, Valeria Di Cosmo, Daniele Lerede, Laura Savoldi

Abstract:

The transport sector is currently responsible for approximately 1/3 of greenhouse gas emissions in Europe. In the wider context of achieving carbon neutrality of the global energy system, different alternatives are available to decarbonizethe transport sector. In particular, while electricity is already the most consumed energy commodity in rail transport, battery electric vehicles are one of the zero-emissions options on the market for road transportation. On the other hand, hydrogen-based fuel cell vehicles are available for road and non-road vehicles. The European Commission is strongly pushing toward the integration of hydrogen in the energy systems of European countries and its widespread adoption as an energy vector to achieve the Green Deal targets. Furthermore, the Italian government is defining hydrogen-related objectives with the publication of a dedicated Hydrogen Strategy. The adoption of energy system optimization models to study the possible penetration of alternative zero-emitting transport technologies gives the opportunity to perform an overall analysis of the effects that the development of innovative technologies has on the entire energy system and on the supply-side, devoted to the production of energy carriers such as hydrogen and electricity. Using an open-source modeling framework such as TEMOA, this work aims to compare the role of hydrogen and electric vehicles in the decarbonization of the transport sector. The analysis investigates the advantages and disadvantages of adopting the two options, from the economic point of view (costs associated with the two options) and the environmental one (looking at the emissions reduction perspectives). Moreover, an analysis on the profitability of the investments in hydrogen and electric vehicles will be performed. The study investigates the evolution of energy consumption and greenhouse gas emissions in different transportation modes (road, rail, navigation, and aviation) by detailed analysis of the full range of vehicles included in the techno-economic database used in the TEMOA model instance adopted for this work. The transparency of the analysis is guaranteed by the accessibility of the TEMOA models, based on an open-access source code and databases.

Keywords: battery electric vehicles, decarbonization, energy system optimization models, fuel cell vehicles, hydrogen, open-source modeling, TEMOA, transport

Procedia PDF Downloads 110
5696 Repair of Thermoplastic Composites for Structural Applications

Authors: Philippe Castaing, Thomas Jollivet

Abstract:

As a result of their advantages, i.e. recyclability, weld-ability, environmental compatibility, long (continuous) fiber thermoplastic composites (LFTPC) are increasingly used in many industrial sectors (mainly automotive and aeronautic) for structural applications. Indeed, in the next ten years, the environmental rules will put the pressure on the use of new structural materials like composites. In aerospace, more than 50% of the damage are due to stress impact and 85% of damage are repaired on the fuselage (fuselage skin panels and around doors). With the arrival of airplanes mainly of composite materials, replacement of sections or panels seems difficult economically speaking and repair becomes essential. The objective of the present study is to propose a solution of repair to prevent the replacement the damaged part in thermoplastic composites in order to recover the initial mechanical properties. The classification of impact damage is not so not easy : talking about low energy impact (less than 35 J) can be totally wrong when high speed or weak thicknesses as well as thermoplastic resins are considered. Crash and perforation with higher energy create important damages and the structures are replaced without repairing, so we just consider here damages due to impacts at low energy that are as follows for laminates : − Transverse cracking; − Delamination; − Fiber rupture. At low energy, the damages are barely visible but can nevertheless reduce significantly the mechanical strength of the part due to resin cracks while few fiber rupture is observed. The patch repair solution remains the standard one but may lead to the rupture of fibers and consequently creates more damages. That is the reason why we investigate the repair of thermoplastic composites impacted at low energy. Indeed, thermoplastic resins are interesting as they absorb impact energy through plastic strain. The methodology is as follows: - impact tests at low energy on thermoplastic composites; - identification of the damage by micrographic observations; - evaluation of the harmfulness of the damage; - repair by reconsolidation according to the extent of the damage ; -validation of the repair by mechanical characterization (compression). In this study, the impacts tests are performed at various levels of energy on thermoplastic composites (PA/C, PEEK/C and PPS/C woven 50/50 and unidirectional) to determine the level of impact energy creating damages in the resin without fiber rupture. We identify the extent of the damage by US inspection and micrographic observations in the plane part thickness. The samples were in addition characterized in compression to evaluate the loss of mechanical properties. Then the strategy of repair consists in reconsolidating the damaged parts by thermoforming, and after reconsolidation the laminates are characterized in compression for validation. To conclude, the study demonstrates the feasibility of the repair for low energy impact on thermoplastic composites as the samples recover their properties. At a first step of the study, the “repair” is made by reconsolidation on a thermoforming press but we could imagine a process in situ to reconsolidate the damaged parts.

Keywords: aerospace, automotive, composites, compression, damages, repair, structural applications, thermoplastic

Procedia PDF Downloads 303
5695 Application on Metastable Measurement with Wide Range High Resolution VDL Circuit

Authors: Po-Hui Yang, Jing-Min Chen, Po-Yu Kuo, Chia-Chun Wu

Abstract:

This paper proposed a high resolution Vernier Delay Line (VDL) measurement circuit with coarse and fine detection mechanism, which improved the trade-off problem between high resolution and less delay cells in traditional VDL circuits. And the measuring time of proposed measurement circuit is also under the high resolution requests. At first, the testing range of input signal which proposed high resolution delay line is detected by coarse detection VDL. Moreover, the delayed input signal is transmitted to fine detection VDL for measuring value with better accuracy. This paper is implemented at 0.18μm process, operating frequency is 100 MHz, and the resolution achieved 2.0 ps with only 16-stage delay cells. The test range is 170ps wide, and 17% stages saved compare with traditional single delay line circuit.

Keywords: vernier delay line, D-type flip-flop, DFF, metastable phenomenon

Procedia PDF Downloads 595