Search results for: reduced differential transform method
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 23664

Search results for: reduced differential transform method

22524 Multifunctional Coating of Nylon Using Nano-Si, Nano-Ti and SiO2-TiO2 Nancomposite :Properties of Colorimetric and Flammability

Authors: E. Fereydouni, Laleh Maleknia , M. E. Olya

Abstract:

The present research, nylon fabric dyed by pressure method with nano-Si, nano-Ti particles and SiO2-TiO2 nancomposite. The influence of the amount of Si, Ti and SiO2-TiO2 on the performance of nylon fabric was investigated by the use of Fourier transform infrared spectrophotometer (FTIR), horizontal flammability apparatus (HFA), scanning electron microscope (SEM), electron dispersive X-ray spectroscope (EDX), water contact angle tester (WCA) and CIE LAB colorimetric system. The possible interactions between particles and nylon fiber were elucidated by the FTIR spectroscopy. Results indicated that the stabilized nanoparticles and nanocomposite enhances flame retardancy of nylon fabrics. Also, the prominet features of nanoparticles and nanocomposite treatment can note increase of adsorption and fixation of dye.

Keywords: nano-Si, nano- Ti, SiO2-TiO2 nancomposite, nylon fabric, flame retardant nylon

Procedia PDF Downloads 357
22523 A Neural Network Approach to Understanding Turbulent Jet Formations

Authors: Nurul Bin Ibrahim

Abstract:

Advancements in neural networks have offered valuable insights into Fluid Dynamics, notably in addressing turbulence-related challenges. In this research, we introduce multiple applications of models of neural networks, namely Feed-Forward and Recurrent Neural Networks, to explore the relationship between jet formations and stratified turbulence within stochastically excited Boussinesq systems. Using machine learning tools like TensorFlow and PyTorch, the study has created models that effectively mimic and show the underlying features of the complex patterns of jet formation and stratified turbulence. These models do more than just help us understand these patterns; they also offer a faster way to solve problems in stochastic systems, improving upon traditional numerical techniques to solve stochastic differential equations such as the Euler-Maruyama method. In addition, the research includes a thorough comparison with the Statistical State Dynamics (SSD) approach, which is a well-established method for studying chaotic systems. This comparison helps evaluate how well neural networks can help us understand the complex relationship between jet formations and stratified turbulence. The results of this study underscore the potential of neural networks in computational physics and fluid dynamics, opening up new possibilities for more efficient and accurate simulations in these fields.

Keywords: neural networks, machine learning, computational fluid dynamics, stochastic systems, simulation, stratified turbulence

Procedia PDF Downloads 61
22522 Performance Evaluation of Polyethyleneimine/Polyethylene Glycol Functionalized Reduced Graphene Oxide Membranes for Water Desalination via Forward Osmosis

Authors: Mohamed Edokali, Robert Menzel, David Harbottle, Ali Hassanpour

Abstract:

Forward osmosis (FO) process has stood out as an energy-efficient technology for water desalination and purification, although the practical application of FO for desalination still relies on RO-based Thin Film Composite (TFC) and Cellulose Triacetate (CTA) polymeric membranes which have a low performance. Recently, graphene oxide (GO) laminated membranes have been considered an ideal selection to overcome the bottleneck of the FO-polymeric membranes owing to their simple fabrication procedures, controllable thickness and pore size and high water permeability rates. However, the low stability of GO laminates in wet and harsh environments is still problematic. The recent developments of modified GO and hydrophobic reduced graphene oxide (rGO) membranes for FO desalination have demonstrated attempts to overcome the ongoing trade-off between desalination performance and stability, which is yet to be achieved prior to the practical implementation. In this study, acid-functionalized GO nanosheets cooperatively reduced and crosslinked by the hyperbranched polyethyleneimine (PEI) and polyethylene glycol (PEG) polymers, respectively, are applied for fabrication of the FO membrane, to enhance the membrane stability and performance, and compared with other functionalized rGO-FO membranes. PEI/PEG doped rGO membrane retained two compacted d-spacings (0.7 and 0.31 nm) compared to the acid-functionalized GO membrane alone (0.82 nm). Besides increasing the hydrophilicity, the coating layer of PEG onto the PEI-doped rGO membrane surface enhanced the structural integrity of the membrane chemically and mechanically. As a result of these synergetic effects, the PEI/PEG doped rGO membrane exhibited a water permeation of 7.7 LMH, salt rejection of 97.9 %, and reverse solute flux of 0.506 gMH at low flow rates in the FO desalination process.

Keywords: desalination, forward osmosis, membrane performance, polyethyleneimine, polyethylene glycol, reduced graphene oxide, stability

Procedia PDF Downloads 94
22521 Simulation of Elastic Bodies through Discrete Element Method, Coupled with a Nested Overlapping Grid Fluid Flow Solver

Authors: Paolo Sassi, Jorge Freiria, Gabriel Usera

Abstract:

In this work, a finite volume fluid flow solver is coupled with a discrete element method module for the simulation of the dynamics of free and elastic bodies in interaction with the fluid and between themselves. The open source fluid flow solver, caffa3d.MBRi, includes the capability to work with nested overlapping grids in order to easily refine the grid in the region where the bodies are moving. To do so, it is necessary to implement a recognition function able to identify the specific mesh block in which the device is moving in. The set of overlapping finer grids might be displaced along with the set of bodies being simulated. The interaction between the bodies and the fluid is computed through a two-way coupling. The velocity field of the fluid is first interpolated to determine the drag force on each object. After solving the objects displacements, subject to the elastic bonding among them, the force is applied back onto the fluid through a Gaussian smoothing considering the cells near the position of each object. The fishnet is represented as lumped masses connected by elastic lines. The internal forces are derived from the elasticity of these lines, and the external forces are due to drag, gravity, buoyancy and the load acting on each element of the system. When solving the ordinary differential equations system, that represents the motion of the elastic and flexible bodies, it was found that the Runge Kutta solver of fourth order is the best tool in terms of performance, but requires a finer grid than the fluid solver to make the system converge, which demands greater computing power. The coupled solver is demonstrated by simulating the interaction between the fluid, an elastic fishnet and a set of free bodies being captured by the net as they are dragged by the fluid. The deformation of the net, as well as the wake produced in the fluid stream are well captured by the method, without requiring the fluid solver mesh to adapt for the evolving geometry. Application of the same strategy to the simulation of elastic structures subject to the action of wind is also possible with the method presented, and one such application is currently under development.

Keywords: computational fluid dynamics, discrete element method, fishnets, nested overlapping grids

Procedia PDF Downloads 412
22520 Research on Thermal Runaway Reaction of Ammonium Nitrate with Incompatible Substances

Authors: Weic-Ting Chen, Jo-Ming Tseng

Abstract:

Ammonium nitrate (AN) has caused many accidents in the world, which have caused a large number of people’s life and serious economic losses. In this study, the safety of the AN production process was discussed deeply, and the influence of incompatible substances was estimated according to the change of their heat value by mixing them with incompatible substances by thermal analysis techniques, and their safety parameters were calculated according to their kinetic parameters. In this study, differential scanning calorimeters (DSC) were applied for the temperature rise test and adiabatic thermal analysis in combination with the Advanced Reactive System Screening Tool (ARSST). The research results could contribute to the safety of the ammonium nitrate production process. Manufacturers can better understand the possibility of chemical heat release and the operating conditions that will cause a chemical reaction to be out of control when storing or adding new substances, so safety parameters were researched for these complex reactions. The results of this study will benefit the process of AN and the relevant staff, which also have safety protection in the working environment.

Keywords: ammonium nitrate, incompatible substances, differential scanning calorimeters, advanced reactive system screening tool, safety parameters

Procedia PDF Downloads 87
22519 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 111
22518 Synergistic Effect of Carbon Nanostructures and Titanium Dioxide Nanotubes on the Piezoelectric Property of Polyvinylidene Fluoride

Authors: Deepalekshmi Ponnamma, Erturk Alper, Pradeep Sharma, Mariam Al Ali AlMaadeed

Abstract:

Integrating efficient energy harvesting materials into soft, flexible and eco-friendly substrates could yield significant breakthroughs in wearable and flexible electronics. Here we present a hybrid filler combination of titanium dioxide nanotubes and the carbon nanostructures-carbon nanotubes and reduced graphene oxide- synthesized by hydrothermal method and then introduced into a semi crystalline polymer, polyvinylidene fluoride (PVDF). Simple mixing method is adopted for the PVDF nanocomposite fabrication after ensuring a high interaction among the fillers. The films prepared were mainly tested for the piezoelectric responses and for the mechanical stretchability. The results show that the piezoelectric constant has increased while changing the total filler concentration. We propose integration of these materials in fabricating energy conversion devices useful in flexible and wearable electronics.

Keywords: dielectric property, hydrothermal growth, piezoelectricity, polymer nanocomposite

Procedia PDF Downloads 345
22517 Release of PVA from PVA/PA Compounds into Water Solutions

Authors: J. Klofac, P. Bazant, I. Kuritka

Abstract:

This work is focused on the preparation of polymeric blend composed of polyamide (PA) and polyvinyl alcohol (PVA) with the intention to explore its basic characteristics important for potential use in medicine, especially for drug delivery systems. PA brings brilliant mechanical properties to the blend while PVA is inevitable due to its water solubility. Blend with different PA/PVA ratios were prepared and the release study of PVA into the water was carried out in a time interval 0-48 hours via the gravimetric method. The weight decrease is caused by the leaching of PVA domains what can be also followed by the optical and scanning electron microscopy. In addition, the thermal properties and the miscibility of blend components were evaluated by the differential scanning calorimeter. On the bases of performed experiments, it was found that the kinetics, continuity development and micro structure features of PA/PVA blends is strongly dependent on the blend composition and miscibility of its components.

Keywords: releas study, polyvinyl alcohol, polyamide morphology, polymeric blend

Procedia PDF Downloads 388
22516 Effects of Supplementary Cementitious Materials on Early Age Thermal Properties of Cement Paste

Authors: Maryam Ghareh Chaei, Masuzyo Chilwesa, Ali Akbarnezhad, Arnaud Castel, Redmond Lloyd, Stephen Foster

Abstract:

Cement hydration is an exothermic chemical reaction generally leading to a rise in concrete’s temperature. This internal heating of concrete may, in turn, lead to a temperature difference between the hotter interior and the cooler exterior of concrete and thus differential thermal stresses in early ages which could be particularly significant in mass concrete. Such differential thermal stresses result in early age thermal cracking of concrete when exceeding the concrete’s tensile strength. The extent of temperature rise and thus early age differential thermal stresses is generally a function of hydration heat intensity, thermal properties of concrete and size of the concrete element. Both hydration heat intensity and thermal properties of concrete may vary considerably with variations in the type cementitious materials and other constituents. With this in mind, partial replacement of cement with supplementary cementitious materials including fly ash and ground granulated blast furnace slag has been investigated widely as an effective strategy to moderate the heat generation rate and thus reduce the risk of early age thermal cracking of concrete. However, there is currently a lack of adequate literature on effect of partial replacement of cement with fly ash and/or ground granulated blast furnace slag on the thermal properties of concrete. This paper presents the results of an experimental conducted to evaluate the effect of addition of varying percentages of fly ash (up to 60%) and ground granulated blast furnace slag (up to 50%) on the heat capacity and thermal conductivity of early age cement paste. The water to cementitious materials ratio is kept 0.45 for all the paste samples. The results of the experimental studies were used in a numerical analysis performed using Comsol Multiphysics to highlight the effects of variations in the thermal properties of concrete, due to variations in the type of aggregate and content of supplemenraty cementitious materials, on the risk of early age cracking of a concrete raft.

Keywords: thermal diffusivity, early age thermal cracking, concrete, supplementary cementitious materials

Procedia PDF Downloads 249
22515 Effect of Changing Iron Content and Excitation Frequency on Magnetic Particle Imaging Signal: A Comparative Study of Synomag® Nanoparticles

Authors: Kalthoum Riahi, Max T. Rietberg, Javier Perez y Perez, Corné Dijkstra, Bennie ten Haken, Lejla Alic

Abstract:

Magnetic nanoparticles (MNPs) are widely used to facilitate magnetic particle imaging (MPI) which has the potential to become the leading diagnostic instrument for biomedical imaging. This comparative study assesses the effects of changing iron content and excitation frequency on point-spread function (PSF) representing the effect of magnetization reversal. PSF is quantified by features of interest for MPI: i.e., drive field amplitude and full-width-at-half-maximum (FWHM). A superparamagnetic quantifier (SPaQ) is used to assess differential magnetic susceptibility of two commercially available MNPs: Synomag®-D50 and Synomag®-D70. For both MNPs, the signal output depends on increase in drive field frequency and amount of iron-oxide, which might be hampering the sensitivity of MPI systems that perform on higher frequencies. Nevertheless, there is a clear potential of Synomag®-D for a stable MPI resolution, especially in case of 70 nm version, that is independent of either drive field frequency or amount of iron-oxide.

Keywords: magnetic nanoparticles, MNPs, differential magnetic susceptibility, DMS, magnetic particle imaging, MPI, magnetic relaxation, Synomag®-D

Procedia PDF Downloads 136
22514 Role of Collaborative Cultural Model to Step on Cleaner Energy: A Case of Kathmandu City Core

Authors: Bindu Shrestha, Sudarshan R. Tiwari, Sushil B. Bajracharya

Abstract:

Urban household cooking fuel choice is highly influenced by human behavior and energy culture parameters such as cognitive norms, material culture and practices. Although these parameters have a leading role in Kathmandu for cleaner households, they are not incorporated in the city’s energy policy. This paper aims to identify trade-offs to transform resident behavior in cooking pattern towards cleaner technology from the questionnaire survey, observation, mapping, interview, and quantitative analysis. The analysis recommends implementing a Collaborative Cultural Model (CCM) for changing impact on the neighborhood from the policy level. The results showed that each household produces 439.56 kg of carbon emission each year and 20 percent used unclean technology due to low-income level. Residents who used liquefied petroleum gas (LPG) as their cooking fuel suffered from an energy crisis every year that has created fuel hoarding, which ultimately creates more energy demand and carbon exposure. In conclusion, the carbon emission can be reduced by improving the residents’ energy consumption culture. It recommended the city to use holistic action of changing habits as soft power of collaboration in two-way participation approach within residents, private sectors, and government to change their energy culture and behavior in policy level.

Keywords: energy consumption pattern, collaborative cultural model, energy culture, fuel stacking

Procedia PDF Downloads 130
22513 A High Efficiency Reduced Rules Neuro-Fuzzy Based Maximum Power Point Tracking Controller for Photovoltaic Array Connected to Grid

Authors: Lotfi Farah, Nadir Farah, Zaiem Kamar

Abstract:

This paper achieves a maximum power point tracking (MPPT) controller using a high-efficiency reduced rules neuro-fuzzy inference system (HE2RNF) for a 100 kW stand-alone photovoltaic (PV) system connected to the grid. The suggested HE2RNF based MPPT seeks the optimal duty cycle for the boost DC-DC converter, making the designed PV system working at the maximum power point (MPP), then transferring this power to the grid via a three levels voltage source converter (VSC). PV current variation and voltage variation are chosen as HE2RNF-based MPPT controller inputs. By using these inputs with the duty cycle as the only single output, a six rules ANFIS is generated. The high performance of the proposed HE2RNF numerically in the MATLAB/Simulink environment is shown. The 0.006% steady-state error, 0.006s of tracking time, and 0.088s of starting time prove the robustness of this six reduced rules against the widely used twenty-five ones.

Keywords: PV, MPPT, ANFIS, HE2RNF-based MPPT controller, VSC, grid connection

Procedia PDF Downloads 179
22512 Reducing Greenhouse Gass Emissions by Recyclable Material Bank Project of Universities in Central Region of Thailand

Authors: Ronbanchob Apiratikul

Abstract:

This research studied recycled waste by the Recyclable Material Bank Project of 4 universities in the central region of Thailand for the evaluation of reducing greenhouse gas emissions compared with landfilling activity during July 2012 to June 2013. The results showed that the projects collected total amount of recyclable wastes of about 911,984.80 kilograms. Office paper had the largest amount among these recycled wastes (50.68% of total recycled waste). Groups of recycled waste can be prioritized from high to low according to their amount as paper, plastic, glass, mixed recyclables, and metal, respectively. The project reduced greenhouse gas emissions equivalent to about 2814.969 metric tons of carbon dioxide. The most significant recycled waste that affects the reduction of greenhouse gas emissions is office paper which is 70.16% of total reduced greenhouse gasses emission. According to amount of reduced greenhouse gasses emission, groups of recycled waste can be prioritized from high to low significances as paper, plastic, metals, mixed recyclables, and glass, respectively.

Keywords: recycling, garbage bank, waste management, recyclable wastes, greenhouse gases

Procedia PDF Downloads 422
22511 Correlation of P53 Gene Expression With Serum Alanine Transaminase Levels and Hepatitis B Viral Load in Cirrhosis and Hepatocellular Carcinoma Patients

Authors: Umme Shahera, Saifullah Munshi, Munira Jahan, Afzalun Nessa, Shahinul Alam, Shahina Tabassum

Abstract:

The development of HCC is a multi-stage process. Several extrinsic factors, such as aflatoxin, HBV, nutrition, alcohol, and trace elements are thought to initiate or/and promote the hepatocarcinogenesis. Alteration of p53 status is an important intrinsic factor in this process as p53 is essential for preventing inappropriate cell proliferation and maintaining genome integrity following genotoxic stress. This study was designed to assess the correlation of p53 gene expression with HBV-DNA and serum Alanine transaminase (ALT) in patients with cirrhosis and HCC. The study was conducted among 60 patients. The study population were divided into four groups (15 in each groups)-HBV positive cirrhosis, HBV negative cirrhosis, HBV positive HCC and HBV negative HCC. Expression of p53 gene was observed using real time PCR. P53 gene expressions in the above mentioned groups were correlated with serum ALT level and HBV viral load. p53 gene was significantly higher in HBV-positive patients with HCC than HBV-positive cirrhosis. Similarly, the expression of p53 was significantly higher in HBV-positive HCC than HBV-negative HCC patients. However, the expression of p53 was reduced in HBV-positive cirrhosis in comparison with HBV-negative cirrhosis. P53 gene expression in liver was not correlated with the serum levels of ALT in any of the study groups. HBV- DNA load also did not correlated with p53 gene expression in HBV positive HCC and HBV positive cirrhosis patients. This study shows that there was no significant change with the expression of p53 gene in any of the study groups with ALT level or viral load, though differential expression of p53 gene were observed in cirrhosis and HCC patients.

Keywords: P53, ALT, HBV-DNA, liver cirrhosis, hepatocellular carcinoma

Procedia PDF Downloads 89
22510 Structural and Magnetic Properties of NiFe2O4 Spinel Ferrite Nanoparticles Synthesized by Starch-Assisted Sol-Gel Auto-Combustion Method

Authors: R. S. Yadav, J. Havlica, I. Kuřitka, Z. Kozakova, J. Masilko, L. Kalina, M. Hajdúchová, V. Enev, J. Wasserbauer

Abstract:

Nickel spinel ferrite NiFe2O4 nanoparticles with different particle size at different annealing temperature were synthesized using the starch-assisted sol-gel auto-combustion method. The synthesized nanoparticles were characterized by conventional powder X-ray diffraction (XRD) spectroscopy, Raman Spectroscopy, Fourier Transform Infrared Spectroscopy, Field-Emission Scanning Electron Microscopy, X-ray Photoelectron Spectroscopy and Vibrating Sample Magnetometer. The XRD patterns confirmed the formation of NiFe2O4 spinel ferrite nanoparticles. Field-Emission Scanning Electron Microscopy revealed that particles are of spherical morphology with particle size 5-20 nm at lower annealing temperature. An infrared spectroscopy study showed the presence of two principal absorption bands in the frequency range around 525 cm-1 (ν1) and around 340 cm-1 (ν2); which indicate the presence of tetrahedral and octahedral group complexes, respectively, within the spinel ferrite nanoparticles. Raman spectroscopy study also indicated the change in octahedral and tetrahedral site related Raman modes in nickel ferrite nanoparticles with change of particle size. This change in magnetic behavior with change of particle size of NiFe2O4 nanoparticles was observed.

Keywords: nickel ferrite, nanoparticles, magnetic property, NiFe2O4

Procedia PDF Downloads 374
22509 Mathematical Reconstruction of an Object Image Using X-Ray Interferometric Fourier Holography Method

Authors: M. K. Balyan

Abstract:

The main principles of X-ray Fourier interferometric holography method are discussed. The object image is reconstructed by the mathematical method of Fourier transformation. The three methods are presented – method of approximation, iteration method and step by step method. As an example the complex amplitude transmission coefficient reconstruction of a beryllium wire is considered. The results reconstructed by three presented methods are compared. The best results are obtained by means of step by step method.

Keywords: dynamical diffraction, hologram, object image, X-ray holography

Procedia PDF Downloads 389
22508 Modified Approximation Methods for Finding an Optimal Solution for the Transportation Problem

Authors: N. Guruprasad

Abstract:

This paper presents a modification of approximation method for transportation problems. The initial basic feasible solution can be computed using either Russel's or Vogel's approximation methods. Russell’s approximation method provides another excellent criterion that is still quick to implement on a computer (not manually) In most cases Russel's method yields a better initial solution, though it takes longer than Vogel's method (finding the next entering variable in Russel's method is in O(n1*n2), and in O(n1+n2) for Vogel's method). However, Russel's method normally has a lesser total running time because less pivots are required to reach the optimum for all but small problem sizes (n1+n2=~20). With this motivation behind we have incorporated a variation of the same – what we have proposed it has TMC (Total Modified Cost) to obtain fast and efficient solutions.

Keywords: computation, efficiency, modified cost, Russell’s approximation method, transportation, Vogel’s approximation method

Procedia PDF Downloads 529
22507 Effect of Dose-Dependent Gamma Irradiation on the Fatty Acid Profile of Mud Crab, Scylla Serrata: A GC-FID Study

Authors: Keethadath Arshad, Kappalli Sudha

Abstract:

Mud crab, Scylla Serrata, a commercially important shellfish with high global demand appears to be the rich source of dietary fatty acids. Its increased production through aquaculture and highly perishable nature would necessitate improved techniques for their proper preservation. Optimized irradiation has been identified as an effective method to facilitate safety and extended shelf life for a broad range of the perishable food items including finfishes and shellfishes. The present study analyzed the effects of dose-dependent gamma irradiation on the fatty acid profile of the muscle derived from the candidate species (S. serrata) at both qualitative and quantitative levels. Wild grown, average sized, intermolt male S. Serrata were gamma irradiated (^60C, 3.8kGy/ hour) at the dosage of 0.5kGy, 1.0kGy and 2.0kGy using gamma chamber. Total lipid extracted by Folch method, after methylation, were analyzed for the presence fatty acids adopting Gas Chromatograph equipped with flame ionization detector by comparing with the authentic FAME reference standards. The tissue from non-irradiated S. serrata showed the presence of 12 SFA, 6 MUFA, 8PUFA and 2 TF; PUFA includes medicinally important ω-3 FA such as C18:3, C20:5 and C22:6 and ω-6 FA such as γ- C18:3 and C20:2. Dose-dependent gamma irradiation reduced the number of detectable fatty acids (10, 8 and 8 SFA, 6, 6 and 5MUFA, 7, 7, and 6 PUFA and 1, 1, and 0 TF in 0.5kGy, 1.0kGy and 2kGy irradiated samples respectively). Major fatty acids detected in both irradiated and non-irradiated samples were as follows: SFA- C16:0, C18:0, C22:0 and C14:0; MUFA - C18:1 and C16:1and PUFA- C18:2, C20:5, C20:2 and C22:6. Irradiation doses ranging from 1-2kGy substantially reduced the ω-6 C18:3 and ω-3 C18:3. However, the omega fatty acids such as C20:5, C22:6 and C20:2 could survive even after 2kGy irradiation. Significantly, trans fat like C18:2T and C18:1T were completely disappeared upon 2kGy irradiation. From the overall observations made from the present study, it is suggested that irradiation dose up to 1kGy is optimum to maintain the fatty acid profile and eradicate the trans fat of the muscle derived from S. serrata.

Keywords: fatty acid profile, food preservation, gamma irradiation, scylla serrata

Procedia PDF Downloads 269
22506 Forest Fire Burnt Area Assessment in a Part of West Himalayan Region Using Burnt Ratio Index and Neural Network Approach

Authors: Sunil Chandra, Himanshu Rawat, Vikas Gusain, Triparna Barman

Abstract:

Forest fires are a recurrent phenomenon in the Himalayan region owing to the presence of vulnerable forest types, topographical gradients, climatic weather conditions, and anthropogenic pressure. The present study focuses on the identification of forest fire-affected areas in a small part of the West Himalayan region using a differential normalized burnt ratio method and spectral unmixing methods. The study area has a rugged terrain with the presence of sub-tropical pine forest, montane temperate forest, and sub-alpine forest and scrub. The major reason for fires in this region is anthropogenic in nature, with the practice of human-induced fires for getting fresh leaves, scaring wild animals to protect agricultural crops, grazing practices within reserved forests, and igniting fires for cooking and other reasons. The fires caused by the above reasons affect a large area on the ground, necessitating its precise estimation for further management and policy making. In the present study, two approaches have been used for carrying out a burnt area analysis. The first approach followed for burnt area analysis uses a differential burnt normalized ratio index (dNBR) approach that uses the burnt ratio values generated using the Short Wave Infra Red (SWIR) band and Near Infra Red (NIR) bands of the Sentinel-2A image. The results of the dNBR have been compared with the outputs of the spectral mixing methods. It has been found that the dNBR is able to create good results in fire-affected areas having homogenous forest stratum and with slope degree <5 degrees. However, in a rugged terrain where the landscape is largely influenced by the topographical variations, vegetation types, tree density, the results may be largely influenced by the effects of topography, complexity in tree composition, fuel load composition, and soil moisture. Hence, such variations in the factors influencing burnt area assessment may not be effectively carried out using a dNBR approach which is commonly followed for burnt area assessment over a large area. Hence, another approach that has been attempted in the present study utilizes a spectral mixing method where the individual pixel is tested before assigning an information class to it. The method uses a neural network approach utilizing Sentinel 2A bands. The training and testing data are generated from the sentinel-2A data and the national field inventory, which is further used for generating outputs using ML tools. The analysis of the results indicates that the fire affected regions and their severity can be better estimated using spectral unmixing methods which have the capability to resolve the noise in the data and can classify the individual pixel to the precise burnt/unburnt class.

Keywords: categorical data, multilayer perceptron, neural network, shifting cultivation

Procedia PDF Downloads 28
22505 Steepest Descent Method with New Step Sizes

Authors: Bib Paruhum Silalahi, Djihad Wungguli, Sugi Guritman

Abstract:

Steepest descent method is a simple gradient method for optimization. This method has a slow convergence in heading to the optimal solution, which occurs because of the zigzag form of the steps. Barzilai and Borwein modified this algorithm so that it performs well for problems with large dimensions. Barzilai and Borwein method results have sparked a lot of research on the method of steepest descent, including alternate minimization gradient method and Yuan method. Inspired by previous works, we modified the step size of the steepest descent method. We then compare the modification results against the Barzilai and Borwein method, alternate minimization gradient method and Yuan method for quadratic function cases in terms of the iterations number and the running time. The average results indicate that the steepest descent method with the new step sizes provide good results for small dimensions and able to compete with the results of Barzilai and Borwein method and the alternate minimization gradient method for large dimensions. The new step sizes have faster convergence compared to the other methods, especially for cases with large dimensions.

Keywords: steepest descent, line search, iteration, running time, unconstrained optimization, convergence

Procedia PDF Downloads 537
22504 Blood Flow in Stenosed Arteries: Analytical and Numerical Study

Authors: Shashi Sharma, Uaday Singh, V. K. Katiyar

Abstract:

Blood flow through a stenosed tube, which is of great interest to mechanical engineers as well as medical researchers. If stenosis exists in an artery, normal blood flow is disturbed. The deposition of fatty substances, cholesterol, cellular waste products in the inner lining of an artery results to plaque formation .The present study deals with a mathematical model for blood flow in constricted arteries. Blood is considered as a Newtonian, incompressible, unsteady and laminar fluid flowing in a cylindrical rigid tube along the axial direction. A time varying pressure gradient is applied in the axial direction. An analytical solution is obtained using the numerical inversion method for Laplace Transform for calculating the velocity profile of fluid as well as particles.

Keywords: blood flow, stenosis, Newtonian fluid, medical biology and genetics

Procedia PDF Downloads 512
22503 Review on Quaternion Gradient Operator with Marginal and Vector Approaches for Colour Edge Detection

Authors: Nadia Ben Youssef, Aicha Bouzid

Abstract:

Gradient estimation is one of the most fundamental tasks in the field of image processing in general, and more particularly for color images since that the research in color image gradient remains limited. The widely used gradient method is Di Zenzo’s gradient operator, which is based on the measure of squared local contrast of color images. The proposed gradient mechanism, presented in this paper, is based on the principle of the Di Zenzo’s approach using quaternion representation. This edge detector is compared to a marginal approach based on multiscale product of wavelet transform and another vector approach based on quaternion convolution and vector gradient approach. The experimental results indicate that the proposed color gradient operator outperforms marginal approach, however, it is less efficient then the second vector approach.

Keywords: gradient, edge detection, color image, quaternion

Procedia PDF Downloads 228
22502 Response of Chickpea (Cicer arietinum L.) Genotypes to Drought Stress at Different Growth Stages

Authors: Ali. Marjani, M. Farsi, M. Rahimizadeh

Abstract:

Chickpea (Cicer arietinum L.) is one of the important grain legume crops in the world. However, drought stress is a serious threat to chickpea production, and development of drought-resistant varieties is a necessity. Field experiments were conducted to evaluate the response of 8 chickpea genotypes (MCC* 696, 537, 80, 283, 392, 361, 252, 397) and drought stress (S1: non-stress, S2: stress at vegetative growth stage, S3: stress at early bloom, S4: stress at early pod visible) at different growth stages. Experiment was arranged in split plot design with four replications. Difference among the drought stress time was found to be significant for investigated traits except biological yield. Differences were observed for genotypes in flowering time, pod information time, physiological maturation time and yield. Plant height reduced due to drought stress in vegetative growth stage. Stem dry weight reduced due to drought stress in pod visibly. Flowering time, maturation time, pod number, number of seed per plant and yield cause of drought stress in flowering was also reduced. The correlation between yield and number of seed per plant and biological yield was positive. The MCC283 and MCC696 were the high-tolerance genotypes. These results demonstrated that drought stress delayed phonological growth in chickpea and that flowering stage is sensitive.

Keywords: chickpea, drought stress, growth stage, tolerance

Procedia PDF Downloads 255
22501 Preparation and Characterization of Bioplastic from Sorghum Husks

Authors: Hannatu Abubakar Sani, Abubakar Umar Birnin Yauri, Aliyu Muhammad, Mujahid Salau, Aminu Musa, Hadiza Adamu Kwazo

Abstract:

The increase in the global population and advances in technology have made plastic materials to have wide applications in every aspect of life. However, the non-biodegradability of these petrochemical-based materials and their increasing accumulation in the environment has been a threat to the planet and has been a source of environmental concerns and hence, the driving force in the search for ‘green’ alternatives for which agricultural waste remains the front liner. Sorghum husk, an agricultural waste with potentials as a raw material in the production of bioplastic, was used in this research to prepare bioplastic using sulphuric acid-catalyzed acetylation process. The prepared bioplastic was characterized by X-ray diffraction and Fourier transform infrared spectroscopy (FTIR), and the structure of the prepared bioplastic was confirmed. The Fourier transform infrared spectroscopy (FTIR) spectra of the product displayed the presence of OH, C-H, C=O, and C-O absorption peaks. The bioplastic obtained is biodegradable and is affected by acid, salt, and alkali to a lesser extent. Other tests like solubility and swelling studies were carried out to ensure the commercial properties of these bioplastic materials. Therefore, this revealed that new bioplastics with better environmental and sustainable properties could be produced from agricultural waste, which may have applications in many industries.

Keywords: agricultural waste, bioplastic, characterization, Sorghum Husk

Procedia PDF Downloads 148
22500 Separation of Composites for Recycling: Measurement of Electrostatic Charge of Carbon and Glass Fiber Particles

Authors: J. Thirunavukkarasu, M. Poulet, T. Turner, S. Pickering

Abstract:

Composite waste from manufacturing can consist of different fiber materials, including blends of different fiber. Commercially, the recycling of composite waste is currently limited to carbon fiber waste and recycling glass fiber waste is currently not economically viable due to the low cost of virgin glass fiber and the reduced mechanical properties of the recovered fibers. For this reason, the recycling of hybrid fiber materials, where carbon fiber is combined with a proportion of glass fiber, cannot be processed economically. Therefore, a separation method is required to remove the glass fiber materials during the recycling process. An electrostatic separation method is chosen for this work because of the significant difference between carbon and glass fiber electrical properties. In this study, an experimental rig has been developed to measure the electrostatic charge achievable as the materials are passed through a tube. A range of particle lengths (80-100 µm, 6 mm and 12 mm), surface state conditions (0%SA, 2%SA and 6%SA), and several tube wall materials have been studied. A polytetrafluoroethylene (PTFE) tube and recycled without sizing agent was identified as the most suitable parameters for the electrical separation method. It was also found that shorter fiber lengths helped to encourage particle flow and attain higher charge values. These findings can be used to develop a separation process to enable the cost-effective recycling of hybrid fiber composite waste.

Keywords: electrostatic charging, hybrid fiber composites, recycling, short fiber composites

Procedia PDF Downloads 121
22499 Applying Computer Simulation Methods to a Molecular Understanding of Flaviviruses Proteins towards Differential Serological Diagnostics and Therapeutic Intervention

Authors: Sergio Alejandro Cuevas, Catherine Etchebest, Fernando Luis Barroso Da Silva

Abstract:

The flavivirus genus has several organisms responsible for generating various diseases in humans. Special in Brazil, Zika (ZIKV), Dengue (DENV) and Yellow Fever (YFV) viruses have raised great health concerns due to the high number of cases affecting the area during the last years. Diagnostic is still a difficult issue since the clinical symptoms are highly similar. The understanding of their common structural/dynamical and biomolecular interactions features and differences might suggest alternative strategies towards differential serological diagnostics and therapeutic intervention. Due to their immunogenicity, the primary focus of this study was on the ZIKV, DENV and YFV non-structural proteins 1 (NS1) protein. By means of computational studies, we calculated the main physical chemical properties of this protein from different strains that are directly responsible for the biomolecular interactions and, therefore, can be related to the differential infectivity of the strains. We also mapped the electrostatic differences at both the sequence and structural levels for the strains from Uganda to Brazil that could suggest possible molecular mechanisms for the increase of the virulence of ZIKV. It is interesting to note that despite the small changes in the protein sequence due to the high sequence identity among the studied strains, the electrostatic properties are strongly impacted by the pH which also impact on their biomolecular interactions with partners and, consequently, the molecular viral biology. African and Asian strains are distinguishable. Exploring the interfaces used by NS1 to self-associate in different oligomeric states, and to interact with membranes and the antibody, we could map the strategy used by the ZIKV during its evolutionary process. This indicates possible molecular mechanisms that can explain the different immunological response. By the comparison with the known antibody structure available for the West Nile virus, we demonstrated that the antibody would have difficulties to neutralize the NS1 from the Brazilian strain. The present study also opens up perspectives to computationally design high specificity antibodies.

Keywords: zika, biomolecular interactions, electrostatic interactions, molecular mechanisms

Procedia PDF Downloads 125
22498 Natural Frequency Analysis of Spinning Functionally Graded Cylindrical Shells Subjected to Thermal Loads

Authors: Esmaeil Bahmyari

Abstract:

The natural frequency analysis of the functionally graded (FG) rotating cylindrical shells subjected to thermal loads is studied based on the three-dimensional elasticity theory. The temperature-dependent assumption of the material properties is graded in the thickness direction, which varies based on the simple power law distribution. The governing equations and the appropriate boundary conditions, which include the effects of initial thermal stresses, are derived employing Hamilton’s principle. The initial thermo-mechanical stresses are obtained by the thermo-elastic equilibrium equation’s solution. As an efficient and accurate numerical tool, the differential quadrature method (DQM) is adopted to solve the thermo-elastic equilibrium equations, free vibration equations and natural frequencies are obtained. The high accuracy of the method is demonstrated by comparison studies with those existing solutions in the literature. Ultimately, the parametric studies are performed to demonstrate the effects of boundary conditions, temperature rise, material graded index, the thickness-to-length and the aspect ratios for the rotating cylindrical shells on the natural frequency.

Keywords: free vibration, DQM, elasticity theory, FG shell, rotating cylindrical shell

Procedia PDF Downloads 82
22497 Statistical Data Analysis of Migration Impact on the Spread of HIV Epidemic Model Using Markov Monte Carlo Method

Authors: Ofosuhene O. Apenteng, Noor Azina Ismail

Abstract:

Over the last several years, concern has developed over how to minimize the spread of HIV/AIDS epidemic in many countries. AIDS epidemic has tremendously stimulated the development of mathematical models of infectious diseases. The transmission dynamics of HIV infection that eventually developed AIDS has taken a pivotal role of much on building mathematical models. From the initial HIV and AIDS models introduced in the 80s, various improvements have been taken into account as how to model HIV/AIDS frameworks. In this paper, we present the impact of migration on the spread of HIV/AIDS. Epidemic model is considered by a system of nonlinear differential equations to supplement the statistical method approach. The model is calibrated using HIV incidence data from Malaysia between 1986 and 2011. Bayesian inference based on Markov Chain Monte Carlo is used to validate the model by fitting it to the data and to estimate the unknown parameters for the model. The results suggest that the migrants stay for a long time contributes to the spread of HIV. The model also indicates that susceptible individual becomes infected and moved to HIV compartment at a rate that is more significant than the removal rate from HIV compartment to AIDS compartment. The disease-free steady state is unstable since the basic reproduction number is 1.627309. This is a big concern and not a good indicator from the public heath point of view since the aim is to stabilize the epidemic at the disease equilibrium.

Keywords: epidemic model, HIV, MCMC, parameter estimation

Procedia PDF Downloads 592
22496 Effects of Computer-Mediated Dictionaries on Reading Comprehension and Vocabulary Acquisition

Authors: Mohamed Amin Mekheimer

Abstract:

This study aimed to investigate the effects of paper-based monolingual, pop-up and type-in electronic dictionaries on improving reading comprehension and incidental vocabulary acquisition and retention in an EFL context. It tapped into how computer-mediated dictionaries may have facilitated/impeded reading comprehension and vocabulary acquisition. Findings showed differential effects produced by the three treatments compared with the control group. Specifically, it revealed that the pop-up dictionary condition had the shortest average vocabulary searching time, vocabulary and text reading time, yet with less than the type-in dictionary group but more than the book dictionary group in terms of frequent dictionary 'look-ups' (p<.0001). In addition, ANOVA analyses also showed that text reading time differed significantly across all four treatments, and so did reading comprehension. Vocabulary acquisition was reported as enhanced in the three treatments rather than in the control group, but still with insignificant differences across the three treatments, yet with more differential effects in favour of the pop-up condition. Data also assert that participants preferred the pop-up e-dictionary more than the type-in and paper-based groups. Explanations of the findings vis-à-vis the cognitive load theory were presented. Pedagogical implications and suggestions for further research were forwarded at the end.

Keywords: computer-mediated dictionaries, type-in dictionaries, pop-up dictionaries, reading comprehension, vocabulary acquisition

Procedia PDF Downloads 430
22495 Adaption of the Design Thinking Method for Production Planning in the Meat Industry Using Machine Learning Algorithms

Authors: Alica Höpken, Hergen Pargmann

Abstract:

The resource-efficient planning of the complex production planning processes in the meat industry and the reduction of food waste is a permanent challenge. The complexity of the production planning process occurs in every part of the supply chain, from agriculture to the end consumer. It arises from long and uncertain planning phases. Uncertainties such as stochastic yields, fluctuations in demand, and resource variability are part of this process. In the meat industry, waste mainly relates to incorrect storage, technical causes in production, or overproduction. The high amount of food waste along the complex supply chain in the meat industry could not be reduced by simple solutions until now. Therefore, resource-efficient production planning by conventional methods is currently only partially feasible. The realization of intelligent, automated production planning is basically possible through the application of machine learning algorithms, such as those of reinforcement learning. By applying the adapted design thinking method, machine learning methods (especially reinforcement learning algorithms) are used for the complex production planning process in the meat industry. This method represents a concretization to the application area. A resource-efficient production planning process is made available by adapting the design thinking method. In addition, the complex processes can be planned efficiently by using this method, since this standardized approach offers new possibilities in order to challenge the complexity and the high time consumption. It represents a tool to support the efficient production planning in the meat industry. This paper shows an elegant adaption of the design thinking method to apply the reinforcement learning method for a resource-efficient production planning process in the meat industry. Following, the steps that are necessary to introduce machine learning algorithms into the production planning of the food industry are determined. This is achieved based on a case study which is part of the research project ”REIF - Resource Efficient, Economic and Intelligent Food Chain” supported by the German Federal Ministry for Economic Affairs and Climate Action of Germany and the German Aerospace Center. Through this structured approach, significantly better planning results are achieved, which would be too complex or very time consuming using conventional methods.

Keywords: change management, design thinking method, machine learning, meat industry, reinforcement learning, resource-efficient production planning

Procedia PDF Downloads 120