Search results for: processing individual
6629 Identification of EEG Attention Level Using Empirical Mode Decompositions for BCI Applications
Authors: Chia-Ju Peng, Shih-Jui Chen
Abstract:
This paper proposes a method to discriminate electroencephalogram (EEG) signals between different concentration states using empirical mode decomposition (EMD). Brain-computer interface (BCI), also called brain-machine interface, is a direct communication pathway between the brain and an external device without the inherent pathway such as the peripheral nervous system or skeletal muscles. Attention level is a common index as a control signal of BCI systems. The EEG signals acquired from people paying attention or in relaxation, respectively, are decomposed into a set of intrinsic mode functions (IMF) by EMD. Fast Fourier transform (FFT) analysis is then applied to each IMF to obtain the frequency spectrums. By observing power spectrums of IMFs, the proposed method has the better identification of EEG attention level than the original EEG signals between different concentration states. The band power of IMF3 is the most obvious especially in β wave, which corresponds to fully awake and generally alert. The signal processing method and results of this experiment paves a new way for BCI robotic system using the attention-level control strategy. The integrated signal processing method reveals appropriate information for discrimination of the attention and relaxation, contributing to a more enhanced BCI performance.Keywords: biomedical engineering, brain computer interface, electroencephalography, rehabilitation
Procedia PDF Downloads 3916628 Process Optimization and Microbial Quality of Provitamin A-Biofortified Amahewu, a Non-Alcoholic Maize Based Beverage
Authors: Temitope D. Awobusuyi, Eric O. Amonsou, Muthulisi Siwela, Oluwatosin A. Ijabadeniyi
Abstract:
Provitamin A-biofortified maize has been developed to alleviate Vitamin A deficiency; a major public health problem in developing countries. Amahewu, a non-alcoholic fermented maize based beverage is produced using white maize, which is deficient in Vitamin A. In this study, the suitable processing conditions for the production of amahewu using provitamin A-biofortified maize and the microbial quality of the processed products were evaluated. Provitamin A-biofortified amahewu was produced with reference to traditional processing method. Processing variables were Inoculum types (Malted provitamin A maize, Wheat bran, and lactobacillus mixed starter culture with either malted provitamin A or wheat bran) and concentration (0.5 %, 1 % and 2 %). A total of four provitamin A-biofortified amahewu products after fermentation were subjected to different storage conditions: 4ᴼC, 25ᴼC and 37ᴼC. pH and TTA were monitored throughout the storage period. Sample of provitamin A-biofortified amahewu were plated and observed every day for 5 days to assess the presence of Aerobic and Anaerobic spore formers, E.coli, Lactobacillus and Mould. The addition of starter culture substantially reduced the fermentation time (6 hour, pH 3.3) compared to those with no addition of starter culture (24 hour pH 3.5). It was observed that Lactobacillus were present from day 0 for all the storage temperatures. The presence of aerobic spore former and mould were observed on day 3. E.coli and Anaerobic spore formers were not present throughout the storage period. These microbial growth were minimal at 4ᴼC while 25ᴼC had higher counts of growth with 37ᴼC having the highest colony count. Throughout the storage period, pH of provitamin A-biofortified amahewu was stable. Provitamin A-biofortified amahewu stored under refrigerated condition (4ᴼC) had better storability compared to 25ᴼC and 37ᴼC. The production and microbial quality of provitamin A-biofortified amahewu might be important in combating Vitamin A Deficiency.Keywords: biofortification, fermentation, maize, vitamin A deficiency
Procedia PDF Downloads 4326627 Identifying Autism Spectrum Disorder Using Optimization-Based Clustering
Authors: Sharifah Mousli, Sona Taheri, Jiayuan He
Abstract:
Autism spectrum disorder (ASD) is a complex developmental condition involving persistent difficulties with social communication, restricted interests, and repetitive behavior. The challenges associated with ASD can interfere with an affected individual’s ability to function in social, academic, and employment settings. Although there is no effective medication known to treat ASD, to our best knowledge, early intervention can significantly improve an affected individual’s overall development. Hence, an accurate diagnosis of ASD at an early phase is essential. The use of machine learning approaches improves and speeds up the diagnosis of ASD. In this paper, we focus on the application of unsupervised clustering methods in ASD as a large volume of ASD data generated through hospitals, therapy centers, and mobile applications has no pre-existing labels. We conduct a comparative analysis using seven clustering approaches such as K-means, agglomerative hierarchical, model-based, fuzzy-C-means, affinity propagation, self organizing maps, linear vector quantisation – as well as the recently developed optimization-based clustering (COMSEP-Clust) approach. We evaluate the performances of the clustering methods extensively on real-world ASD datasets encompassing different age groups: toddlers, children, adolescents, and adults. Our experimental results suggest that the COMSEP-Clust approach outperforms the other seven methods in recognizing ASD with well-separated clusters.Keywords: autism spectrum disorder, clustering, optimization, unsupervised machine learning
Procedia PDF Downloads 1166626 Predicting Polyethylene Processing Properties Based on Reaction Conditions via a Coupled Kinetic, Stochastic and Rheological Modelling Approach
Authors: Kristina Pflug, Markus Busch
Abstract:
Being able to predict polymer properties and processing behavior based on the applied operating reaction conditions in one of the key challenges in modern polymer reaction engineering. Especially, for cost-intensive processes such as the high-pressure polymerization of low-density polyethylene (LDPE) with high safety-requirements, the need for simulation-based process optimization and product design is high. A multi-scale modelling approach was set-up and validated via a series of high-pressure mini-plant autoclave reactor experiments. The approach starts with the numerical modelling of the complex reaction network of the LDPE polymerization taking into consideration the actual reaction conditions. While this gives average product properties, the complex polymeric microstructure including random short- and long-chain branching is calculated via a hybrid Monte Carlo-approach. Finally, the processing behavior of LDPE -its melt flow behavior- is determined in dependence of the previously determined polymeric microstructure using the branch on branch algorithm for randomly branched polymer systems. All three steps of the multi-scale modelling approach can be independently validated against analytical data. A triple-detector GPC containing an IR, viscosimetry and multi-angle light scattering detector is applied. It serves to determine molecular weight distributions as well as chain-length dependent short- and long-chain branching frequencies. 13C-NMR measurements give average branching frequencies, and rheological measurements in shear and extension serve to characterize the polymeric flow behavior. The accordance of experimental and modelled results was found to be extraordinary, especially taking into consideration that the applied multi-scale modelling approach does not contain parameter fitting of the data. This validates the suggested approach and proves its universality at the same time. In the next step, the modelling approach can be applied to other reactor types, such as tubular reactors or industrial scale. Moreover, sensitivity analysis for systematically varying process conditions is easily feasible. The developed multi-scale modelling approach finally gives the opportunity to predict and design LDPE processing behavior simply based on process conditions such as feed streams and inlet temperatures and pressures.Keywords: low-density polyethylene, multi-scale modelling, polymer properties, reaction engineering, rheology
Procedia PDF Downloads 1246625 The Diagnostic Utility and Sensitivity of the Xpert® MTB/RIF Assay in Diagnosing Mycobacterium tuberculosis in Bone Marrow Aspirate Specimens
Authors: Nadhiya N. Subramony, Jenifer Vaughan, Lesley E. Scott
Abstract:
In South Africa, the World Health Organisation estimated 454000 new cases of Mycobacterium tuberculosis (M.tb) infection (MTB) in 2015. Disseminated tuberculosis arises from the haematogenous spread and seeding of the bacilli in extrapulmonary sites. The gold standard for the detection of MTB in bone marrow is TB culture which has an average turnaround time of 6 weeks. Histological examinations of trephine biopsies to diagnose MTB also have a time delay owing mainly to the 5-7 day processing period prior to microscopic examination. Adding to the diagnostic delay is the non-specific nature of granulomatous inflammation which is the hallmark of MTB involvement of the bone marrow. A Ziehl-Neelson stain (which highlights acid-fast bacilli) is therefore mandatory to confirm the diagnosis but can take up to 3 days for processing and evaluation. Owing to this delay in diagnosis, many patients are lost to follow up or remain untreated whilst results are awaited, thus encouraging the spread of undiagnosed TB. The Xpert® MTB/RIF (Cepheid, Sunnyvale, CA) is the molecular test used in the South African national TB program as the initial diagnostic test for pulmonary TB. This study investigates the optimisation and performance of the Xpert® MTB/RIF on bone marrow aspirate specimens (BMA), a first since the introduction of the assay in the diagnosis of extrapulmonary TB. BMA received for immunophenotypic analysis as part of the investigation into disseminated MTB or in the evaluation of cytopenias in immunocompromised patients were used. Processing BMA on the Xpert® MTB/RIF was optimised to ensure bone marrow in EDTA and heparin did not inhibit the PCR reaction. Inactivated M.tb was spiked into the clinical bone marrow specimen and distilled water (as a control). A volume of 500mcl and an incubation time of 15 minutes with sample reagent were investigated as the processing protocol. A total of 135 BMA specimens had sufficient residual volume for Xpert® MTB/RIF testing however 22 specimens (16.3%) were not included in the final statistical analysis as an adequate trephine biopsy and/or TB culture was not available. Xpert® MTB/RIF testing was not affected by BMA material in the presence of heparin or EDTA, but the overall detection of MTB in BMA was low compared to histology and culture. Sensitivity of the Xpert® MTB/RIF compared to both histology and culture was 8.7% (95% confidence interval (CI): 1.07-28.04%) and sensitivity compared to histology only was 11.1% (95% CI: 1.38-34.7%). Specificity of the Xpert® MTB/RIF was 98.9% (95% CI: 93.9-99.7%). Although the Xpert® MTB/RIF generates a faster result than histology and TB culture and is less expensive than culture and drug susceptibility testing, the low sensitivity of the Xpert® MTB/RIF precludes its use for the diagnosis of MTB in bone marrow aspirate specimens and warrants alternative/additional testing to optimise the assay.Keywords: bone marrow aspirate , extrapulmonary TB, low sensitivity, Xpert® MTB/RIF
Procedia PDF Downloads 1726624 Production and Evaluation of Mango Pulp by Using Ohmic Heating Process
Authors: Sobhy M. Mohsen, Mohamed M. El-Nikeety, Tarek G. Mohamed, Michael Murkovic
Abstract:
The present work aimed to study the use of ohmic heating in the processing of mango pulp comparing to conventional method. Mango pulp was processed by using ohmic heating under the studied suitable conditions. Physical, chemical and microbiological properties of mango pulp were studied. The results showed that processing of mango pulp by using either ohmic heating or conventional method caused a decrease in the contents of TSS, total carbohydrates, total acidity, total sugars (reducing and non-reducing sugar) and an increase in phenol content, ascorbic acid and carotenoids compared to the conventional process. The increase in electric conductivity of mango pulp during ohmic heating was due to the addition of some electrolytes (salts) to increase the ions and enhance the process. The results also indicate that mango pulp processed by ohmic heating contained more phenols, carbohydrates and vitamin C and less HMF compared to that produced by conventional one. Total pectin and its fractions had slightly reduced by ohmic heating compared to conventional method. Enzymatic activities showed a reduction in poly phenoloxidase (PPO) and polygalacturonase (PG) activity in mango pulp processed by conventional method. However, ohmic heating completely inhibited PPO and PG activities.Keywords: ohmic heating, mango pulp, phenolic, sarotenoids
Procedia PDF Downloads 4556623 Use of the Gas Chromatography Method for Hydrocarbons' Quality Evaluation in the Offshore Fields of the Baltic Sea
Authors: Pavel Shcherban, Vlad Golovanov
Abstract:
Currently, there is an active geological exploration and development of the subsoil shelf of the Kaliningrad region. To carry out a comprehensive and accurate assessment of the volumes and degree of extraction of hydrocarbons from open deposits, it is necessary to establish not only a number of geological and lithological characteristics of the structures under study, but also to determine the oil quality, its viscosity, density, fractional composition as accurately as possible. In terms of considered works, gas chromatography is one of the most capacious methods that allow the rapid formation of a significant amount of initial data. The aspects of the application of the gas chromatography method for determining the chemical characteristics of the hydrocarbons of the Kaliningrad shelf fields are observed in the article, as well as the correlation-regression analysis of these parameters in comparison with the previously obtained chemical characteristics of hydrocarbon deposits located on the land of the region. In the process of research, a number of methods of mathematical statistics and computer processing of large data sets have been applied, which makes it possible to evaluate the identity of the deposits, to specify the amount of reserves and to make a number of assumptions about the genesis of the hydrocarbons under analysis.Keywords: computer processing of large databases, correlation-regression analysis, hydrocarbon deposits, method of gas chromatography
Procedia PDF Downloads 1576622 Virtual 3D Environments for Image-Based Navigation Algorithms
Authors: V. B. Bastos, M. P. Lima, P. R. G. Kurka
Abstract:
This paper applies to the creation of virtual 3D environments for the study and development of mobile robot image based navigation algorithms and techniques, which need to operate robustly and efficiently. The test of these algorithms can be performed in a physical way, from conducting experiments on a prototype, or by numerical simulations. Current simulation platforms for robotic applications do not have flexible and updated models for image rendering, being unable to reproduce complex light effects and materials. Thus, it is necessary to create a test platform that integrates sophisticated simulated applications of real environments for navigation, with data and image processing. This work proposes the development of a high-level platform for building 3D model’s environments and the test of image-based navigation algorithms for mobile robots. Techniques were used for applying texture and lighting effects in order to accurately represent the generation of rendered images regarding the real world version. The application will integrate image processing scripts, trajectory control, dynamic modeling and simulation techniques for physics representation and picture rendering with the open source 3D creation suite - Blender.Keywords: simulation, visual navigation, mobile robot, data visualization
Procedia PDF Downloads 2556621 Deconstruction of Gender Stereotypes through Fashion
Authors: Nihan Akdemir
Abstract:
This research aims to investigate the role of fashion in the context of the deconstruction of gender stereotypes. Expectation of society and culture related to the biological structure of the individual corresponds to the gender. At this point there are some unseen rules which are given to person even from his/her childhoods according to the sex and gender, are called stereotypes. With basic example, girls should wear pink, and the boys should wear blue. Or boys do not wear skirt and the woman must behave like a woman. There are also many many stereotypes like them. But the clothing style the individual uses to express his or her gender identity may not match the expectations of the community and society. In the context of big role of the clothing, these stereotypes could be deconstructed because clothes are the visible expression of gender identity of the person. And fashion is a big part of this structure because fashion is a pioneer of what people wear in other words fashion tells to people what should they wear this season. Nowadays fashion has also meant about expressing identity independent of whether you were born male or female. Many fashion brands prepare their collections in the concept of ‘gender fluid’ by deconstructions. It means that fashion is opening the roads for being more free about the gender identity. The representations of gender fluidity through fashion help bring a sense of normality to people who are trying to find the self-confidence to express who they want to be. Maybe the voice of the streets carries this point to the catwalks firstly, and then it becomes a trend. All these items have been explained with visual images and supported by the literature investigations. And the results are showed that the numbers of collections about it are increasing and fashion sector takes this issue into consideration. And this new approach reached to the streets.Keywords: fashion, gender identity, gender stereotypes, trend
Procedia PDF Downloads 4736620 Sociocultural Context of Pain Management in Oncology and Palliative Nursing Care
Authors: Andrea Zielke-Nadkarni
Abstract:
Pain management is a question of quality of life and an indicator for nursing quality. Chronic pain which is predominant in oncology and palliative nursing situations is perceived today as a multifactorial, individual emotional experience with specific characteristics including the sociocultural dimension when dealing with migrant patients. This dimension of chronic pain is of major importance in professional nursing of migrant patients in hospices or palliative care units. Objectives of the study are: 1. To find out more about the sociocultural views on pain and nursing care, on customs and nursing practices connected with pain of both Turkish Muslim and German Christian women, 2. To improve individual and family oriented nursing practice with view to sociocultural needs of patients in severe pain in palliative care. In a qualitative-explorative comparative study 4 groups of women, Turkish Muslims immigrants (4 from the first generation, 5 from the second generation) and German Christian women of two generations (5 of each age group) of the same age groups as the Turkish women and with similar educational backgrounds were interviewed (semistructured ethnographic interviews using Spradley, 1979) on their perceptions and experiences of pain and nursing care within their families. For both target groups the presentation will demonstrate the following results in detail: Utterance of pain as well as “private” and “public” pain vary within different societies and cultures. Permitted forms of pain utterance are learned in childhood and determine attitudes and expectations in adulthood. Language, especially when metaphors and symbols are used, plays a major role for misunderstandings. The sociocultural context of illness may include specific beliefs that are important to the patients and yet seem more than far-fetched from a biomedical perspective. Pain can be an influential factor in family relationships where respect or hierarchies do not allow the direct utterance of individual needs. Specific resources are often, although not exclusively, linked to religious convictions and are significantly helpful in reducing pain. The discussion will evaluate the results of the study with view to the relevant literature and present nursing interventions and instruments beyond medication that are helpful when dealing with patients from various socio-cultural backgrounds in painful end-oflife situations.Keywords: pain management, migrants, sociocultural context, palliative care
Procedia PDF Downloads 3636619 Effect of the Deposition Time of Hydrogenated Nanocrystalline Si Grown on Porous Alumina Film on Glass Substrate by Plasma Processing Chemical Vapor Deposition
Authors: F. Laatar, S. Ktifa, H. Ezzaouia
Abstract:
Plasma Enhanced Chemical Vapor Deposition (PECVD) method is used to deposit hydrogenated nanocrystalline silicon films (nc-Si: H) on Porous Anodic Alumina Films (PAF) on glass substrate at different deposition duration. Influence of the deposition time on the physical properties of nc-Si: H grown on PAF was investigated through an extensive correlation between micro-structural and optical properties of these films. In this paper, we present an extensive study of the morphological, structural and optical properties of these films by Atomic Force Microscopy (AFM), X-Ray Diffraction (XRD) techniques and a UV-Vis-NIR spectrometer. It was found that the changes in DT can modify the films thickness, the surface roughness and eventually improve the optical properties of the composite. Optical properties (optical thicknesses, refractive indexes (n), absorption coefficients (α), extinction coefficients (k), and the values of the optical transitions EG) of this kind of samples were obtained using the data of the transmittance T and reflectance R spectra’s recorded by the UV–Vis–NIR spectrometer. We used Cauchy and Wemple–DiDomenico models for the analysis of the dispersion of the refractive index and the determination of the optical properties of these films.Keywords: hydragenated nanocrystalline silicon, plasma processing chemical vapor deposition, X-ray diffraction, optical properties
Procedia PDF Downloads 3776618 Nano-Texturing of Single Crystalline Silicon via Cu-Catalyzed Chemical Etching
Authors: A. A. Abaker Omer, H. B. Mohamed Balh, W. Liu, A. Abas, J. Yu, S. Li, W. Ma, W. El Kolaly, Y. Y. Ahmed Abuker
Abstract:
We have discovered an important technical solution that could make new approaches in the processing of wet silicon etching, especially in the production of photovoltaic cells. During its inferior light-trapping and structural properties, the inverted pyramid structure outperforms the conventional pyramid textures and black silicone. The traditional pyramid textures and black silicon can only be accomplished with more advanced lithography, laser processing, etc. Importantly, our data demonstrate the feasibility of an inverted pyramidal structure of silicon via one-step Cu-catalyzed chemical etching (CCCE) in Cu (NO3)2/HF/H2O2/H2O solutions. The effects of etching time and reaction temperature on surface geometry and light trapping were systematically investigated. The conclusion shows that the inverted pyramid structure has ultra-low reflectivity of ~4.2% in the wavelength of 300~1000 nm; introduce of Cu particles can significantly accelerate the dissolution of the silicon wafer. The etching and the inverted pyramid structure formation mechanism are discussed. Inverted pyramid structure with outstanding anti-reflectivity includes useful applications throughout the manufacture of semi-conductive industry-compatible solar cells, and can have significant impacts on industry colleagues and populations.Keywords: Cu-catalyzed chemical etching, inverted pyramid nanostructured, reflection, solar cells
Procedia PDF Downloads 1546617 Exploring Behavioural Biases among Indian Investors: A Qualitative Inquiry
Authors: Satish Kumar, Nisha Goyal
Abstract:
In the stock market, individual investors exhibit different kinds of behaviour. Traditional finance is built on the notion of 'homo economics', which states that humans always make perfectly rational choices to maximize their wealth and minimize risk. That is, traditional finance has concern for how investors should behave rather than how actual investors are behaving. Behavioural finance provides the explanation for this phenomenon. Although finance has been studied for thousands of years, behavioural finance is an emerging field that combines the behavioural or psychological aspects with conventional economic and financial theories to provide explanations on how emotions and cognitive factors influence investors’ behaviours. These emotions and cognitive factors are known as behavioural biases. Because of these biases, investors make irrational investment decisions. Besides, the emotional and cognitive factors, the social influence of media as well as friends, relatives and colleagues also affect investment decisions. Psychological factors influence individual investors’ investment decision making, but few studies have used qualitative methods to understand these factors. The aim of this study is to explore the behavioural factors or biases that affect individuals’ investment decision making. For the purpose of this exploratory study, an in-depth interview method was used because it provides much more exhaustive information and a relaxed atmosphere in which people feel more comfortable to provide information. Twenty investment advisors having a minimum 5 years’ experience in securities firms were interviewed. In this study, thematic content analysis was used to analyse interview transcripts. Thematic content analysis process involves analysis of transcripts, coding and identification of themes from data. Based on the analysis we categorized the statements of advisors into various themes. Past market returns and volatility; preference for safe returns; tendency to believe they are better than others; tendency to divide their money into different accounts/assets; tendency to hold on to loss-making assets; preference to invest in familiar securities; tendency to believe that past events were predictable; tendency to rely on the reference point; tendency to rely on other sources of information; tendency to have regret for making past decisions; tendency to have more sensitivity towards losses than gains; tendency to rely on own skills; tendency to buy rising stocks with the expectation that this rise will continue etc. are some of the major concerns showed by experts about investors. The findings of the study revealed 13 biases such as overconfidence bias, disposition effect, familiarity bias, framing effect, anchoring bias, availability bias, self-attribution bias, representativeness, mental accounting, hindsight bias, regret aversion, loss aversion and herding bias/media biases present in Indian investors. These biases have a negative connotation because they produce a distortion in the calculation of an outcome. These biases are classified under three categories such as cognitive errors, emotional biases and social interaction. The findings of this study may assist both financial service providers and researchers to understand the various psychological biases of individual investors in investment decision making. Additionally, individual investors will also be aware of the behavioural biases that will aid them to make sensible and efficient investment decisions.Keywords: financial advisors, individual investors, investment decisions, psychological biases, qualitative thematic content analysis
Procedia PDF Downloads 1696616 Sarcasm Recognition System Using Hybrid Tone-Word Spotting Audio Mining Technique
Authors: Sandhya Baskaran, Hari Kumar Nagabushanam
Abstract:
Sarcasm sentiment recognition is an area of natural language processing that is being probed into in the recent times. Even with the advancements in NLP, typical translations of words, sentences in its context fail to provide the exact information on a sentiment or emotion of a user. For example, if something bad happens, the statement ‘That's just what I need, great! Terrific!’ is expressed in a sarcastic tone which could be misread as a positive sign by any text-based analyzer. In this paper, we are presenting a unique real time ‘word with its tone’ spotting technique which would provide the sentiment analysis for a tone or pitch of a voice in combination with the words being expressed. This hybrid approach increases the probability for identification of special sentiment like sarcasm much closer to the real world than by mining text or speech individually. The system uses a tone analyzer such as YIN-FFT which extracts pitch segment-wise that would be used in parallel with a speech recognition system. The clustered data is classified for sentiments and sarcasm score for each of it determined. Our Simulations demonstrates the improvement in f-measure of around 12% compared to existing detection techniques with increased precision and recall.Keywords: sarcasm recognition, tone-word spotting, natural language processing, pitch analyzer
Procedia PDF Downloads 2936615 Building an Ontology for Researchers: An Application of Topic Maps and Social Information
Authors: Yu Hung Chiang, Hei Chia Wang
Abstract:
In the academic area, it is important for research to find proper research domain. Many researchers may refer to conference issues to find their interesting or new topics. Furthermore, conferences issues can help researchers realize current research trends in their field and learn about cutting-edge developments in their specialty. However, online published conference information may widely be distributed; it is not easy to be concluded. Many researchers use search engine of journals or conference issues to filter information in order to get what they want. However, this search engine has its limitation. There will still be some issues should be considered; i.e. researchers cannot find the associated topics which may be useful information for them. Hence, use Knowledge Management (KM) could be a way to resolve these issues. In KM, ontology is widely adopted; but most existed ontology construction methods do not consider social information between target users. To effective in academic KM, this study proposes a method of constructing research Topic Maps using Open Directory Project (ODP) and Social Information Processing (SIP). Through catching of social information in conference website: i.e. the information of co-authorship or collaborator, research topics can be associated among related researchers. Finally, the experiments show Topic Maps successfully help researchers to find the information they need more easily and quickly as well as construct associations between research topics.Keywords: knowledge management, topic map, social information processing, ontology extraction
Procedia PDF Downloads 2936614 Data-Driven Performance Evaluation of Surgical Doctors Based on Fuzzy Analytic Hierarchy Processes
Authors: Yuguang Gao, Qiang Yang, Yanpeng Zhang, Mingtao Deng
Abstract:
To enhance the safety, quality and efficiency of healthcare services provided by surgical doctors, we propose a comprehensive approach to the performance evaluation of individual doctors by incorporating insights from performance data as well as views of different stakeholders in the hospital. Exploratory factor analysis was first performed on collective multidimensional performance data of surgical doctors, where key factors were extracted that encompass assessment of professional experience and service performance. A two-level indicator system was then constructed, for which we developed a weighted interval-valued spherical fuzzy analytic hierarchy process to analyze the relative importance of the indicators while handling subjectivity and disparity in the decision-making of multiple parties involved. Our analytical results reveal that, for the key factors identified as instrumental for evaluating surgical doctors’ performance, the overall importance of clinical workload and complexity of service are valued more than capacity of service and professional experience, while the efficiency of resource consumption ranks comparatively the lowest in importance. We also provide a retrospective case study to illustrate the effectiveness and robustness of our quantitative evaluation model by assigning meaningful performance ratings to individual doctors based on the weights developed through our approach.Keywords: analytic hierarchy processes, factor analysis, fuzzy logic, performance evaluation
Procedia PDF Downloads 586613 Techno-Economic Analysis (TEA) of Circular Economy Approach in the Valorisation of Pig Meat Processing Wastes
Authors: Ribeiro A., Vilarinho C., Luisa A., Carvalho J
Abstract:
The pig meat industry generates large volumes of by- and co-products like blood, bones, skin, trimmings, organs, viscera, and skulls, among others, during slaughtering and meat processing and must be treated and disposed of ecologically. The yield of these by-products has been reported to account for about 10% to 15% of the value of the live animal in developed countries, although animal by-products account for about two-thirds of the animal after slaughter. It was selected for further valorization of the principal wastes produced throughout the value chain of pig meat production: Pig Manure, Pig Bones, Fats, Skins, Pig Hair, Wastewater, Wastewater sludges, and other animal subproducts type III. According to the potential valorization options, these wastes will be converted into Biomethane, Fertilizers (phosphorus and digestate), Hydroxyapatite, and protein hydrolysates (Keratin and Collagen). This work includes comprehensive technical and economic analyses (TEA) for each valorization route or applied technology. Metrics such as Net Present Value (NPV), Internal Rate of Return (IRR), and payback periods were used to evaluate economic feasibility. From this analysis, it can be concluded that, for Biogas Production, the scenarios using pig manure, wastewater sludges and mixed grass and leguminous wastes presented a remarkably high economic feasibility. Scenarios showed high economic feasibility with a positive payback period, NPV, and IRR. The optimal scenario combining pig manure with mixed grass and leguminous wastes had a payback period of 1.2 years and produced 427,6269 m³ of biomethane annually. Regarding the Chemical Extraction of Phosphorous and Nitrogen, results proved that the process is economically unviable due to negative cash flows despite high recovery rates. The TEA of Hydrolysis and Extraction of Keratin Hydrolysates indicate that a unit processing and valorizing 10 tons of pig hair per year for the production of keratin hydrolysate has an NPV of 907,940 €, an IRR of 13.07%, and a Payback period of 5.41 years. All of these indicators suggest a highly potential project to explore in the future. On the opposite, the results of Hydrolysis and Extraction of Collagen Hydrolysates showed a process economically unviable with negative cash flows in all scenarios due to the high-fat content in raw materials. In fact, the results from the valorization of 10 tons of pig skin had a negative cash flow of 453 743,88 €. TEA results of Extraction and purification of Hydroxyapatite from Pig Bones with Pyrolysis indicate that unit processing and valorizing 10 tons of pig bones per year for the production of hydroxyapatite has an NPV of 1 274 819,00 €, an IRR of 65.43%, and a Payback period of 1,5 years over a timeline of 10 years with a discount rate of 10%. These valorization routes, circular economy and bio-refinery approach offer significant contributions to sustainable bio-based operations within the agri-food industry. This approach transforms waste into valuable resources, enhancing both environmental and economic outcomes and contributing to a more sustainable and circular bioeconomy.Keywords: techno-economic analysis (TEA), pig meat processing wastes, circular economy, bio-refinery
Procedia PDF Downloads 156612 FLIME - Fast Low Light Image Enhancement for Real-Time Video
Authors: Vinay P., Srinivas K. S.
Abstract:
Low Light Image Enhancement is of utmost impor- tance in computer vision based tasks. Applications include vision systems for autonomous driving, night vision devices for defence systems, low light object detection tasks. Many of the existing deep learning methods are resource intensive during the inference step and take considerable time for processing. The algorithm should take considerably less than 41 milliseconds in order to process a real-time video feed with 24 frames per second and should be even less for a video with 30 or 60 frames per second. The paper presents a fast and efficient solution which has two main advantages, it has the potential to be used for a real-time video feed, and it can be used in low compute environments because of the lightweight nature. The proposed solution is a pipeline of three steps, the first one is the use of a simple function to map input RGB values to output RGB values, the second is to balance the colors and the final step is to adjust the contrast of the image. Hence a custom dataset is carefully prepared using images taken in low and bright lighting conditions. The preparation of the dataset, the proposed model, the processing time are discussed in detail and the quality of the enhanced images using different methods is shown.Keywords: low light image enhancement, real-time video, computer vision, machine learning
Procedia PDF Downloads 2066611 Image Processing-Based Maize Disease Detection Using Mobile Application
Authors: Nathenal Thomas
Abstract:
In the food chain and in many other agricultural products, corn, also known as maize, which goes by the scientific name Zea mays subsp, is a widely produced agricultural product. Corn has the highest adaptability. It comes in many different types, is employed in many different industrial processes, and is more adaptable to different agro-climatic situations. In Ethiopia, maize is among the most widely grown crop. Small-scale corn farming may be a household's only source of food in developing nations like Ethiopia. The aforementioned data demonstrates that the country's requirement for this crop is excessively high, and conversely, the crop's productivity is very low for a variety of reasons. The most damaging disease that greatly contributes to this imbalance between the crop's supply and demand is the corn disease. The failure to diagnose diseases in maize plant until they are too late is one of the most important factors influencing crop output in Ethiopia. This study will aid in the early detection of such diseases and support farmers during the cultivation process, directly affecting the amount of maize produced. The diseases in maize plants, such as northern leaf blight and cercospora leaf spot, have distinct symptoms that are visible. This study aims to detect the most frequent and degrading maize diseases using the most efficiently used subset of machine learning technology, deep learning so, called Image Processing. Deep learning uses networks that can be trained from unlabeled data without supervision (unsupervised). It is a feature that simulates the exercises the human brain goes through when digesting data. Its applications include speech recognition, language translation, object classification, and decision-making. Convolutional Neural Network (CNN) for Image Processing, also known as convent, is a deep learning class that is widely used for image classification, image detection, face recognition, and other problems. it will also use this algorithm as the state-of-the-art for my research to detect maize diseases by photographing maize leaves using a mobile phone.Keywords: CNN, zea mays subsp, leaf blight, cercospora leaf spot
Procedia PDF Downloads 746610 Railway Process Automation to Ensure Human Safety with the Aid of IoT and Image Processing
Authors: K. S. Vedasingha, K. K. M. T. Perera, K. I. Hathurusinghe, H. W. I. Akalanka, Nelum Chathuranga Amarasena, Nalaka R. Dissanayake
Abstract:
Railways provide the most convenient and economically beneficial mode of transportation, and it has been the most popular transportation method among all. According to the past analyzed data, it reveals a considerable number of accidents which occurred at railways and caused damages to not only precious lives but also to the economy of the countries. There are some major issues which need to be addressed in railways of South Asian countries since they fall under the developing category. The goal of this research is to minimize the influencing aspect of railway level crossing accidents by developing the “railway process automation system”, as there are high-risk areas that are prone to accidents, and safety at these places is of utmost significance. This paper describes the implementation methodology and the success of the study. The main purpose of the system is to ensure human safety by using the Internet of Things (IoT) and image processing techniques. The system can detect the current location of the train and close the railway gate automatically. And it is possible to do the above-mentioned process through a decision-making system by using past data. The specialty is both processes working parallel. As usual, if the system fails to close the railway gate due to technical or a network failure, the proposed system can identify the current location and close the railway gate through a decision-making system, which is a revolutionary feature. The proposed system introduces further two features to reduce the causes of railway accidents. Railway track crack detection and motion detection are those features which play a significant role in reducing the risk of railway accidents. Moreover, the system is capable of detecting rule violations at a level crossing by using sensors. The proposed system is implemented through a prototype, and it is tested with real-world scenarios to gain the above 90% of accuracy.Keywords: crack detection, decision-making, image processing, Internet of Things, motion detection, prototype, sensors
Procedia PDF Downloads 1776609 Noninvasive Brain-Machine Interface to Control Both Mecha TE Robotic Hands Using Emotiv EEG Neuroheadset
Authors: Adrienne Kline, Jaydip Desai
Abstract:
Electroencephalogram (EEG) is a noninvasive technique that registers signals originating from the firing of neurons in the brain. The Emotiv EEG Neuroheadset is a consumer product comprised of 14 EEG channels and was used to record the reactions of the neurons within the brain to two forms of stimuli in 10 participants. These stimuli consisted of auditory and visual formats that provided directions of ‘right’ or ‘left.’ Participants were instructed to raise their right or left arm in accordance with the instruction given. A scenario in OpenViBE was generated to both stimulate the participants while recording their data. In OpenViBE, the Graz Motor BCI Stimulator algorithm was configured to govern the duration and number of visual stimuli. Utilizing EEGLAB under the cross platform MATLAB®, the electrodes most stimulated during the study were defined. Data outputs from EEGLAB were analyzed using IBM SPSS Statistics® Version 20. This aided in determining the electrodes to use in the development of a brain-machine interface (BMI) using real-time EEG signals from the Emotiv EEG Neuroheadset. Signal processing and feature extraction were accomplished via the Simulink® signal processing toolbox. An Arduino™ Duemilanove microcontroller was used to link the Emotiv EEG Neuroheadset and the right and left Mecha TE™ Hands.Keywords: brain-machine interface, EEGLAB, emotiv EEG neuroheadset, OpenViBE, simulink
Procedia PDF Downloads 5026608 E4D-MP: Time-Lapse Multiphysics Simulation and Joint Inversion Toolset for Large-Scale Subsurface Imaging
Authors: Zhuanfang Fred Zhang, Tim C. Johnson, Yilin Fang, Chris E. Strickland
Abstract:
A variety of geophysical techniques are available to image the opaque subsurface with little or no contact with the soil. It is common to conduct time-lapse surveys of different types for a given site for improved results of subsurface imaging. Regardless of the chosen survey methods, it is often a challenge to process the massive amount of survey data. The currently available software applications are generally based on the one-dimensional assumption for a desktop personal computer. Hence, they are usually incapable of imaging the three-dimensional (3D) processes/variables in the subsurface of reasonable spatial scales; the maximum amount of data that can be inverted simultaneously is often very small due to the capability limitation of personal computers. Presently, high-performance or integrating software that enables real-time integration of multi-process geophysical methods is needed. E4D-MP enables the integration and inversion of time-lapsed large-scale data surveys from geophysical methods. Using the supercomputing capability and parallel computation algorithm, E4D-MP is capable of processing data across vast spatiotemporal scales and in near real time. The main code and the modules of E4D-MP for inverting individual or combined data sets of time-lapse 3D electrical resistivity, spectral induced polarization, and gravity surveys have been developed and demonstrated for sub-surface imaging. E4D-MP provides capability of imaging the processes (e.g., liquid or gas flow, solute transport, cavity development) and subsurface properties (e.g., rock/soil density, conductivity) critical for successful control of environmental engineering related efforts such as environmental remediation, carbon sequestration, geothermal exploration, and mine land reclamation, among others.Keywords: gravity survey, high-performance computing, sub-surface monitoring, electrical resistivity tomography
Procedia PDF Downloads 1576607 Effect of Experience on Evacuation of Mice in Emergency Conditions
Authors: Teng Zhang, Shenshi Huang, Gang Xu, Xuelin Zhang, Shouxiang Lu
Abstract:
With the acceleration of urbanization and the increasing of the population in the city, the evacuation of pedestrians suffering from disaster environments such as fire in a room or other limited space becomes a vital issue in modern society. Mice have been used in experimental crowd evacuation in recent years for its good similarities to human in physical structure and stress reaction. In this study, the effect of experience or memory on the collective behavior of mice was explored. To help mice familiarize themselves with the design of the space and the stimulus caused by smoke, we trained them repeatedly for 2 days so that they can escape from the emergency conditions as soon as possible. The escape pattern, trajectories, walking speed, turning angle and mean individual escape time of mice in each training trail were analyzed. We found that mice can build memory quickly after the first trial on the first day. On the second day, the evacuation of mice was maintained in a stable and efficient state. Meanwhile, the group with size of 30 (G30) had a shorter mean individual escape time compared with G12. Furthermore, we tested the experience of evacuation skill of mice after several days. The results showed that the mice can hold the experience or memory over 3 weeks. We proposed the importance of experience of evacuation skill and the research of training methods in experimental evacuation of mice. The results can deepen our understanding of collective behavior of mice and conduce to the establishment of animal models in the study of pedestrian crowd dynamics in emergency conditions.Keywords: experience, evacuation, mice, group size, behavior
Procedia PDF Downloads 2686606 Enhancing Health Information Management with Smart Rings
Authors: Bhavishya Ramchandani
Abstract:
A little electronic device that is worn on the finger is called a smart ring. It incorporates mobile technology and has features that make it simple to use the device. These gadgets, which resemble conventional rings and are usually made to fit on the finger, are outfitted with features including access management, gesture control, mobile payment processing, and activity tracking. A poor sleep pattern, an irregular schedule, and bad eating habits are all part of the problems with health that a lot of people today are facing. Diets lacking fruits, vegetables, legumes, nuts, and whole grains are common. Individuals in India also experience metabolic issues. In the medical field, smart rings will help patients with problems relating to stomach illnesses and the incapacity to consume meals that are tailored to their bodies' needs. The smart ring tracks all bodily functions, including blood sugar and glucose levels, and presents the information instantly. Based on this data, the ring generates what the body will find to be perfect insights and a workable site layout. In addition, we conducted focus groups and individual interviews as part of our core approach and discussed the difficulties they're having maintaining the right diet, as well as whether or not the smart ring will be beneficial to them. However, everyone was very enthusiastic about and supportive of the concept of using smart rings in healthcare, and they believed that these rings may assist them in maintaining their health and having a well-balanced diet plan. This response came from the primary data, and also working on the Emerging Technology Canvas Analysis of smart rings in healthcare has led to a significant improvement in our understanding of the technology's application in the medical field. It is believed that there will be a growing demand for smart health care as people become more conscious of their health. The majority of individuals will finally utilize this ring after three to four years when demand for it will have increased. Their daily lives will be significantly impacted by it.Keywords: smart ring, healthcare, electronic wearable, emerging technology
Procedia PDF Downloads 646605 New Formulation of FFS3 Layered Blown Films Containing Toughened Polypropylene and Plastomer with Superior Properties
Authors: S. Talebnezhad, S. Pourmahdian, D. Soudbar, M. Khosravani, J. Merasi
Abstract:
Adding toughened polypropylene and plastomer in FFS 3 layered blown film formulation resulted in superior dart impact and MD tear resistance along with acceptable tensile properties in TD and MD. The optimum loading of toughened polypropylene and plastomer in each layer depends on miscibility of polypropylene in polyethylene medium, mechanical properties, welding characteristics in bags top and bottoms and friction coefficient of film surfaces. Film property tests and efficiency of FFS machinery during processing in industrial scale showed that about 4% loading of plastomer and 16% of toughened polypropylene (reactor grade) in middle layer and loading of 0-1% plastomer and 5-19% of toughened polypropylene in other layers results optimum characteristics in the formulation based on 1-butene LLDPE grade with MFR of 0.9 and LDPE grade with MFI of 0.3. Both the plastomer and toughened polypropylene had the MFI of blow 1 and the TiO2 and processing aid masterbatches loading was 2%. The friction coefficient test results also represented the anti-block masterbatch could be omitted from formulation with adding toughened polypropylene due to partial miscibility of PP in PE which makes the surface of films somewhat bristly.Keywords: FFS 3 layered blown film, toughened polypropylene, plastomer, dart impact, tear resistance
Procedia PDF Downloads 4106604 Food Insecurity and Other Correlates of Individual Components of Metabolic Syndrome in Women Living with HIV (WLWH) in the United States
Authors: E. Wairimu Mwangi, Daniel Sarpong
Abstract:
Background: Access to effective antiretroviral therapy in the United States has resulted in the rise in longevity in people living with HIV (PLHIV). Despite the progress, women living with HIV (WLWH) experience increasing rates of cardiometabolic disorders compared with their HIV-negative counterparts. Studies focusing on the predictors of metabolic disorders in this population have largely focused on the composite measure of metabolic syndrome (METs). This study seeks to identify the predictors of composite and individual METs factors in a nationally representative sample of WLWH. In particular, the study also examines the role of food security in predicting METs. Methods: The study comprised 1800 women, a subset of participants from the Women’s Interagency HIV Study (WIHS). The primary exposure variable, food security, was measured using the U.S. 10-item Household Food Security Survey Module. The outcome measures are the five metabolic syndrome indicators (elevated blood pressure [systolic BP > 130 mmHg and diastolic BP ≥ 85 mmHg], elevated fasting glucose [≥ 110 mg/dL], elevated fasting triglyceride [≥ 150 mg/dL], reduced HDL cholesterol [< 50 mg/dL], and waist circumference > 88 cm) and the composite measure - Metabolic Syndrome (METs) Status. Each metabolic syndrome indicator was coded one if yes and 0 otherwise. The values of the five indicators were summed, and participants with a total score of 3 or greater were classified as having metabolic syndrome. Participants classified as having metabolic syndrome were assigned a code of 1 and 0 otherwise for analysis. The covariates accounted for in this study fell into sociodemographic factors and behavioral and health characteristics. Results: The participants' mean (SD) age was 47.1 (9.1) years, with 71.4% Blacks and 10.9% Whites. About a third (33.1%) had less than a high school (HS) diploma, 60.4% were married, 32.8% were employed, and 53.7% were low-income. The prevalence of worst dietary diversity, low, moderate, and high food security were 24.1%, 26.6%, 17.0%, and 56.4%, respectively. The correlate profile of the five individual METs factors plus the composite measure of METs differ significantly, with METs based on HDL having the most correlates (Age, Education, Drinking Status, Low Income, Body Mass Index, and Health Perception). Additionally, metabolic syndrome based on waist circumference was the only metabolic factor where food security was significantly correlated (Food Security, Age, and Body Mass Index). Age was a significant predictor of all five individual METs factors plus the composite METs measure. Except for METs based on Fasting Triglycerides, body mass index (BMI) was a significant correlate of the various measures of metabolic syndrome. Conclusion: High-density Lipoprotein (HDL) cholesterol significantly correlated with most predictors. BMI was a significant predictor of all METs factors except Fasting Triglycerides. Food insecurity, the primary predictor, was only significantly associated with waist circumference.Keywords: blood pressure, food insecurity, fasting glucose, fasting triglyceride, high-density lipoprotein, metabolic syndrome, waist circumference, women living with HIV
Procedia PDF Downloads 586603 Evaluation and Provenance Studies of Heavy Mineral Deposits in Recent Sediment of Ologe Lagoon, South Western, Nigeria
Authors: Mayowa Philips Ibitola, Akinade-Solomon Olorunfemi, Abe Oluwaseun Banji
Abstract:
Heavy minerals studies were carried out on eighteen sediment samples from Ologe lagoon located at Lagos Barrier complex, with the aim of evaluating the heavy mineral deposits and determining the provenance of the sediments. The samples were subjected to grain analysis techniques in order to collect the finest grain size. Separation of heavy minerals from the samples was done with the aid of bromoform to enable petrographic analyses of the heavy mineral suite, under the polarising microscope. The data obtained from the heavy mineral analysis were used in preparing histograms and pie chart, from which the individual heavy mineral percentage distribution and ZTR index were derived. The percentage composition of the individual heavy mineral analyzed are opaque mineral 63.92%, Zircon 12.43%, Tourmaline 5.79%, Rutile 13.44%, Garnet 1.74% and Staurolite 3.52%. The calculated zircon, tourmaline, rutile index in percentage (ZTR) varied between 76.13 -92.15%, average garnet-zircon index (GZI), average rutile-zircon index (RuZI) and average staurolite-zircon index values in all the stations are 16.18%, 54.33%, 25.11% respectively. The mean ZTR index percentage value is 85.17% indicates that the sediments within the lagoon are mineralogically matured. The high percentage of zircon, rutile, and tourmaline indicates an acid igneous rock source for the sediments. However, the low percentage of staurolite, rutile and garnet occurrence indicates sediment of metamorphic rock source input.Keywords: lagoon, provenance, heavy mineral, ZTR index
Procedia PDF Downloads 1746602 Theoretical-Methodological Model to Study Vulnerability of Death in the Past from a Bioarchaeological Approach
Authors: Geraldine G. Granados Vazquez
Abstract:
Every human being is exposed to the risk of dying; wherein some of them are more susceptible than others depending on the cause. Therefore, the cause could be the hazard to die that a group or individual has, making this irreversible damage the condition of vulnerability. Risk is a dynamic concept; which means that it depends on the environmental, social, economic and political conditions. Thus vulnerability may only be evaluated in terms of relative parameters. This research is focusing specifically on building a model that evaluate the risk or propensity of death in past urban societies in connection with the everyday life of individuals, considering that death can be a consequence of two coexisting issues: hazard and the deterioration of the resistance to destruction. One of the most important discussions in bioarchaeology refers to health and life conditions in ancient groups; the researchers are looking for more flexible models that evaluate these topics. In that way, this research proposes a theoretical-methodological model that assess the vulnerability of death in past urban groups. This model pretends to be useful to evaluate the risk of death, considering their sociohistorical context, and their intrinsic biological features. This theoretical and methodological model, propose four areas to assess vulnerability. The first three areas use statistical methods or quantitative analysis. While the last and fourth area, which corresponds to the embodiment, is based on qualitative analysis. The four areas and their techniques proposed are a) Demographic dynamics. From the distribution of age at the time of death, the analysis of mortality will be performed using life tables. From here, four aspects may be inferred: population structure, fertility, mortality-survival, and productivity-migration, b) Frailty. Selective mortality and heterogeneity in frailty can be assessed through the relationship between characteristics and the age at death. There are two indicators used in contemporary populations to evaluate stress: height and linear enamel hypoplasias. Height estimates may account for the individual’s nutrition and health history in specific groups; while enamel hypoplasias are an account of the individual’s first years of life, c) Inequality. Space reflects various sectors of society, also in ancient cities. In general terms, the spatial analysis uses measures of association to show the relationship between frail variables and space, d) Embodiment. The story of everyone leaves some evidence on the body, even in the bones. That led us to think about the dynamic individual's relations in terms of time and space; consequently, the micro analysis of persons will assess vulnerability from the everyday life, where the symbolic meaning also plays a major role. In sum, using some Mesoamerica examples, as study cases, this research demonstrates that not only the intrinsic characteristics related to the age and sex of individuals are conducive to vulnerability, but also the social and historical context that determines their state of frailty before death. An attenuating factor for past groups is that some basic aspects –such as the role they played in everyday life– escape our comprehension, and are still under discussion.Keywords: bioarchaeology, frailty, Mesoamerica, vulnerability
Procedia PDF Downloads 2256601 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition
Authors: Anes Enakoa, Yawei Liang
Abstract:
Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment
Procedia PDF Downloads 1456600 An Integrated Water Resources Management Approach to Evaluate Effects of Transportation Projects in Urbanized Territories
Authors: Berna Çalışkan
Abstract:
The integrated water management is a colloborative approach to planning that brings together institutions that influence all elements of the water cycle, waterways, watershed characteristics, wetlands, ponds, lakes, floodplain areas, stream channel structure. It encourages collaboration where it will be beneficial and links between water planning and other planning processes that contribute to improving sustainable urban development and liveability. Hydraulic considerations can influence the selection of a highway corridor and the alternate routes within the corridor. widening a roadway, replacing a culvert, or repairing a bridge. Because of this, the type and amount of data needed for planning studies can vary widely depending on such elements as environmental considerations, class of the proposed highway, state of land use development, and individual site conditions. The extraction of drainage networks provide helpful preliminary drainage data from the digital elevation model (DEM). A case study was carried out using the Arc Hydro extension within ArcGIS in the study area. It provides the means for processing and presenting spatially-referenced Stream Model. Study area’s flow routing, stream levels, segmentation, drainage point processing can be obtained using DEM as the 'Input surface raster'. These processes integrate the fields of hydrologic, engineering research, and environmental modeling in a multi-disciplinary program designed to provide decision makers with a science-based understanding, and innovative tools for, the development of interdisciplinary and multi-level approach. This research helps to manage transport project planning and construction phases to analyze the surficial water flow, high-level streams, wetland sites for development of transportation infrastructure planning, implementing, maintenance, monitoring and long-term evaluations to better face the challenges and solutions associated with effective management and enhancement to deal with Low, Medium, High levels of impact. Transport projects are frequently perceived as critical to the ‘success’ of major urban, metropolitan, regional and/or national development because of their potential to affect significant socio-economic and territorial change. In this context, sustaining and development of economic and social activities depend on having sufficient Water Resources Management. The results of our research provides a workflow to build a stream network how can classify suitability map according to stream levels. Transportation projects establish, develop, incorporate and deliver effectively by selecting best location for reducing construction maintenance costs, cost-effective solutions for drainage, landslide, flood control. According to model findings, field study should be done for filling gaps and checking for errors. In future researches, this study can be extended for determining and preventing possible damage of Sensitive Areas and Vulnerable Zones supported with field investigations.Keywords: water resources management, hydro tool, water protection, transportation
Procedia PDF Downloads 56