Search results for: hybrid working models
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11193

Search results for: hybrid working models

10053 New Hybrid Method to Model Extreme Rainfalls

Authors: Youness Laaroussi, Zine Elabidine Guennoun, Amine Amar

Abstract:

Modeling and forecasting dynamics of rainfall occurrences constitute one of the major topics, which have been largely treated by statisticians, hydrologists, climatologists and many other groups of scientists. In the same issue, we propose in the present paper a new hybrid method, which combines Extreme Values and fractal theories. We illustrate the use of our methodology for transformed Emberger Index series, constructed basing on data recorded in Oujda (Morocco). The index is treated at first by Peaks Over Threshold (POT) approach, to identify excess observations over an optimal threshold u. In the second step, we consider the resulting excess as a fractal object included in one dimensional space of time. We identify fractal dimension by the box counting. We discuss the prospect descriptions of rainfall data sets under Generalized Pareto Distribution, assured by Extreme Values Theory (EVT). We show that, despite of the appropriateness of return periods given by POT approach, the introduction of fractal dimension provides accurate interpretation results, which can ameliorate apprehension of rainfall occurrences.

Keywords: extreme values theory, fractals dimensions, peaks Over threshold, rainfall occurrences

Procedia PDF Downloads 361
10052 Development of Prediction Models of Day-Ahead Hourly Building Electricity Consumption and Peak Power Demand Using the Machine Learning Method

Authors: Dalin Si, Azizan Aziz, Bertrand Lasternas

Abstract:

To encourage building owners to purchase electricity at the wholesale market and reduce building peak demand, this study aims to develop models that predict day-ahead hourly electricity consumption and demand using artificial neural network (ANN) and support vector machine (SVM). All prediction models are built in Python, with tool Scikit-learn and Pybrain. The input data for both consumption and demand prediction are time stamp, outdoor dry bulb temperature, relative humidity, air handling unit (AHU), supply air temperature and solar radiation. Solar radiation, which is unavailable a day-ahead, is predicted at first, and then this estimation is used as an input to predict consumption and demand. Models to predict consumption and demand are trained in both SVM and ANN, and depend on cooling or heating, weekdays or weekends. The results show that ANN is the better option for both consumption and demand prediction. It can achieve 15.50% to 20.03% coefficient of variance of root mean square error (CVRMSE) for consumption prediction and 22.89% to 32.42% CVRMSE for demand prediction, respectively. To conclude, the presented models have potential to help building owners to purchase electricity at the wholesale market, but they are not robust when used in demand response control.

Keywords: building energy prediction, data mining, demand response, electricity market

Procedia PDF Downloads 316
10051 Exploring Time-Series Phosphoproteomic Datasets in the Context of Network Models

Authors: Sandeep Kaur, Jenny Vuong, Marcel Julliard, Sean O'Donoghue

Abstract:

Time-series data are useful for modelling as they can enable model-evaluation. However, when reconstructing models from phosphoproteomic data, often non-exact methods are utilised, as the knowledge regarding the network structure, such as, which kinases and phosphatases lead to the observed phosphorylation state, is incomplete. Thus, such reactions are often hypothesised, which gives rise to uncertainty. Here, we propose a framework, implemented via a web-based tool (as an extension to Minardo), which given time-series phosphoproteomic datasets, can generate κ models. The incompleteness and uncertainty in the generated model and reactions are clearly presented to the user via the visual method. Furthermore, we demonstrate, via a toy EGF signalling model, the use of algorithmic verification to verify κ models. Manually formulated requirements were evaluated with regards to the model, leading to the highlighting of the nodes causing unsatisfiability (i.e. error causing nodes). We aim to integrate such methods into our web-based tool and demonstrate how the identified erroneous nodes can be presented to the user via the visual method. Thus, in this research we present a framework, to enable a user to explore phosphorylation proteomic time-series data in the context of models. The observer can visualise which reactions in the model are highly uncertain, and which nodes cause incorrect simulation outputs. A tool such as this enables an end-user to determine the empirical analysis to perform, to reduce uncertainty in the presented model - thus enabling a better understanding of the underlying system.

Keywords: κ-models, model verification, time-series phosphoproteomic datasets, uncertainty and error visualisation

Procedia PDF Downloads 255
10050 High Pressure Thermophysical Properties of Complex Mixtures Relevant to Liquefied Natural Gas (LNG) Processing

Authors: Saif Al Ghafri, Thomas Hughes, Armand Karimi, Kumarini Seneviratne, Jordan Oakley, Michael Johns, Eric F. May

Abstract:

Knowledge of the thermophysical properties of complex mixtures at extreme conditions of pressure and temperature have always been essential to the Liquefied Natural Gas (LNG) industry’s evolution because of the tremendous technical challenges present at all stages in the supply chain from production to liquefaction to transport. Each stage is designed using predictions of the mixture’s properties, such as density, viscosity, surface tension, heat capacity and phase behaviour as a function of temperature, pressure, and composition. Unfortunately, currently available models lead to equipment over-designs of 15% or more. To achieve better designs that work more effectively and/or over a wider range of conditions, new fundamental property data are essential, both to resolve discrepancies in our current predictive capabilities and to extend them to the higher-pressure conditions characteristic of many new gas fields. Furthermore, innovative experimental techniques are required to measure different thermophysical properties at high pressures and over a wide range of temperatures, including near the mixture’s critical points where gas and liquid become indistinguishable and most existing predictive fluid property models used breakdown. In this work, we present a wide range of experimental measurements made for different binary and ternary mixtures relevant to LNG processing, with a particular focus on viscosity, surface tension, heat capacity, bubble-points and density. For this purpose, customized and specialized apparatus were designed and validated over the temperature range (200 to 423) K at pressures to 35 MPa. The mixtures studied were (CH4 + C3H8), (CH4 + C3H8 + CO2) and (CH4 + C3H8 + C7H16); in the last of these the heptane contents was up to 10 mol %. Viscosity was measured using a vibrating wire apparatus, while mixture densities were obtained by means of a high-pressure magnetic-suspension densimeter and an isochoric cell apparatus; the latter was also used to determine bubble-points. Surface tensions were measured using the capillary rise method in a visual cell, which also enabled the location of the mixture critical point to be determined from observations of critical opalescence. Mixture heat capacities were measured using a customised high-pressure differential scanning calorimeter (DSC). The combined standard relative uncertainties were less than 0.3% for density, 2% for viscosity, 3% for heat capacity and 3 % for surface tension. The extensive experimental data gathered in this work were compared with a variety of different advanced engineering models frequently used for predicting thermophysical properties of mixtures relevant to LNG processing. In many cases the discrepancies between the predictions of different engineering models for these mixtures was large, and the high quality data allowed erroneous but often widely-used models to be identified. The data enable the development of new or improved models, to be implemented in process simulation software, so that the fluid properties needed for equipment and process design can be predicted reliably. This in turn will enable reduced capital and operational expenditure by the LNG industry. The current work also aided the community of scientists working to advance theoretical descriptions of fluid properties by allowing to identify deficiencies in theoretical descriptions and calculations.

Keywords: LNG, thermophysical, viscosity, density, surface tension, heat capacity, bubble points, models

Procedia PDF Downloads 274
10049 Play Based Practices in Early Childhood Curriculum: The Contribution of High Scope, Modern School Movement and Pedagogy of Participation

Authors: Dalila Lino

Abstract:

The power of play for learning and development in early childhood education is beyond question. The main goal of this study is to analyse how three contemporary early childhood pedagogical approaches, the High Scope, the Modern School Movement (MEM) and the Pedagogy of Participation integrate play in their curriculum development. From this main goal the following objectives emerged: (i) to characterize how play is integrated in the daily routine of the pedagogical approaches under study; (ii) to analyse the teachers’ role during children’s playing situations; (iii) to identify the types of play that children are more often involved. The methodology used is the qualitative approach and is situated under the interpretative paradigm. Data is collected through semi-structured interviews to 30 preschool teachers and through observations of typical daily routines. The participants are 30 Portuguese preschool classrooms attending children from 3 to 6 years and working with the High Scope curriculum (10 classrooms), the MEM (10 classrooms) and the Pedagogy of Participation (10 classrooms). The qualitative method of content analysis was used to analyse the data. To ensure confidentiality, no information is disclosed without participants' consent, and the interviews were transcribed and sent to the participants for a final revision. The results show that there are differences how play is integrated and promoted in the three pedagogical approaches. The teachers’ role when children are at play varies according the pedagogical approach adopted, and also according to the teachers’ understanding about the meaning of play. The study highlights the key role that early childhood curriculum models have to promote opportunities for children to play, and therefore to be involved in meaningful learning.

Keywords: curriculum models, early childhood education, pedagogy, play

Procedia PDF Downloads 207
10048 Optical and Double Folding Analysis for 6Li+16O Elastic Scattering

Authors: Abd Elrahman Elgamala, N. Darwish, I. Bondouk, Sh. Hamada

Abstract:

Available experimental angular distributions for 6Li elastically scattered from 16O nucleus in the energy range 13.0–50.0 MeV are investigated and reanalyzed using optical model of the conventional phenomenological potential and also using double folding optical model of different interaction models: DDM3Y1, CDM3Y1, CDM3Y2, and CDM3Y3. All the involved models of interaction are of M3Y Paris except DDM3Y1 which is of M3Y Reid and the main difference between them lies in the different values for the parameters of the incorporated density distribution function F(ρ). We have extracted the renormalization factor NR for 6Li+16O nuclear system in the energy range 13.0–50.0 MeV using the aforementioned interaction models.

Keywords: elastic scattering, optical model, folding potential, density distribution

Procedia PDF Downloads 141
10047 An Interpretable Data-Driven Approach for the Stratification of the Cardiorespiratory Fitness

Authors: D.Mendes, J. Henriques, P. Carvalho, T. Rocha, S. Paredes, R. Cabiddu, R. Trimer, R. Mendes, A. Borghi-Silva, L. Kaminsky, E. Ashley, R. Arena, J. Myers

Abstract:

The continued exploration of clinically relevant predictive models continues to be an important pursuit. Cardiorespiratory fitness (CRF) portends clinical vital information and as such its accurate prediction is of high importance. Therefore, the aim of the current study was to develop a data-driven model, based on computational intelligence techniques and, in particular, clustering approaches, to predict CRF. Two prediction models were implemented and compared: 1) the traditional Wasserman/Hansen Equations; and 2) an interpretable clustering approach. Data used for this analysis were from the 'FRIEND - Fitness Registry and the Importance of Exercise: The National Data Base'; in the present study a subset of 10690 apparently healthy individuals were utilized. The accuracy of the models was performed through the computation of sensitivity, specificity, and geometric mean values. The results show the superiority of the clustering approach in the accurate estimation of CRF (i.e., maximal oxygen consumption).

Keywords: cardiorespiratory fitness, data-driven models, knowledge extraction, machine learning

Procedia PDF Downloads 286
10046 Work-Life Balance and Job Satisfaction among Female Professionals: A Study at a Government Hospital

Authors: Mohd Sarfaraz

Abstract:

The objective of this study is to investigate the work-life balance and job satisfaction among women employees in a hospital in India. It is believed that balancing a successful career with a family life or personal life can be challenging. WLB impacts on persons' satisfaction in their work and personal life roles. For this purpose, a questionnaire is developed with 22 items. The data collected from women employees who are working in a hospital in Aligarh, India. The constructs considered in this study include WLB and job satisfaction. The demographic and organisational variables considered in the study are genders, age and tenure of the job. Factors of WLB are flexible working conditions, work-life balance programs, and employee intention to change/leave a job, work pressure/stress and long working hours. This paper examines the relationship between work-family conflict, policies, and job and life satisfaction. Appropriate statistical tool using SPSS will be applied to achieve the objective. The anxiety over work-life balance is progressively becoming a common talk, especially for female employees.Increasing demands from the work and family domains represent a high strain for employees which even lead to the health problems among employees. Although it is believed that work-family role strain is more common among women employees. Therefore, the study will focus on these issues of WLB and job satisfaction among female professionals.

Keywords: work-life balance, job satisfaction, work- family conflict, health

Procedia PDF Downloads 291
10045 Using the Delphi Method to Determine the Change in Knowledge and Skills of Professional Quantity Surveyors as a Result of COVID-19 Pandemic

Authors: Veronica Kah Jo Wong, Yoke Mui Lim, Nurul Sakina Mokhtar Azizi

Abstract:

The impact on the construction industry in Malaysia is unprecedented, as the government implemented a lockdown to restrict human movement in an effort to stop COVID-19 from spreading. Quantity surveyor (QS), as one of the key construction professionals, found that the working practices and environments for quantity surveyors today have changed due to the current pandemic. The QS profession must deal not only with changes in project issues but also with a different working environment in which most people are required to work from home and follow the standard operating procedures. Therefore, QS should be flexible, agile, and have the capability to adapt to the current working practices by strengthening their competencies. Adapting to the current and recovering environment of COVID-19 may result in the emergence of a new competence such as skill and knowledge for QS in order to maintain the quality of performance in the delivery of their professional services. Thus, this paper's objective is to investigate the changes in knowledge and skills in quantity surveyors. The data will be collected through interviews with registered professional QS to gain better insights that are specific in this industry, and the findings will be verified using the Delphi method. It is hoped that new knowledge and skill will be found from the study and will not only contribute to the betterment of the professional QS but also in guiding higher learning institutions to incorporate the new competencies into their curriculum.

Keywords: competency, COVID-19 pandemic, Malaysia, quantity surveying

Procedia PDF Downloads 129
10044 Sentiment Analysis of Ensemble-Based Classifiers for E-Mail Data

Authors: Muthukumarasamy Govindarajan

Abstract:

Detection of unwanted, unsolicited mails called spam from email is an interesting area of research. It is necessary to evaluate the performance of any new spam classifier using standard data sets. Recently, ensemble-based classifiers have gained popularity in this domain. In this research work, an efficient email filtering approach based on ensemble methods is addressed for developing an accurate and sensitive spam classifier. The proposed approach employs Naive Bayes (NB), Support Vector Machine (SVM) and Genetic Algorithm (GA) as base classifiers along with different ensemble methods. The experimental results show that the ensemble classifier was performing with accuracy greater than individual classifiers, and also hybrid model results are found to be better than the combined models for the e-mail dataset. The proposed ensemble-based classifiers turn out to be good in terms of classification accuracy, which is considered to be an important criterion for building a robust spam classifier.

Keywords: accuracy, arcing, bagging, genetic algorithm, Naive Bayes, sentiment mining, support vector machine

Procedia PDF Downloads 142
10043 Improving the Analytical Power of Dynamic DEA Models, by the Consideration of the Shape of the Distribution of Inputs/Outputs Data: A Linear Piecewise Decomposition Approach

Authors: Elias K. Maragos, Petros E. Maravelakis

Abstract:

In Dynamic Data Envelopment Analysis (DDEA), which is a subfield of Data Envelopment Analysis (DEA), the productivity of Decision Making Units (DMUs) is considered in relation to time. In this case, as it is accepted by the most of the researchers, there are outputs, which are produced by a DMU to be used as inputs in a future time. Those outputs are known as intermediates. The common models, in DDEA, do not take into account the shape of the distribution of those inputs, outputs or intermediates data, assuming that the distribution of the virtual value of them does not deviate from linearity. This weakness causes the limitation of the accuracy of the analytical power of the traditional DDEA models. In this paper, the authors, using the concept of piecewise linear inputs and outputs, propose an extended DDEA model. The proposed model increases the flexibility of the traditional DDEA models and improves the measurement of the dynamic performance of DMUs.

Keywords: Dynamic Data Envelopment Analysis, DDEA, piecewise linear inputs, piecewise linear outputs

Procedia PDF Downloads 161
10042 Models of Copyrights System

Authors: A. G. Matveev

Abstract:

The copyrights system is a combination of different elements. The number, content and the correlation of these elements are different for different legal orders. The models of copyrights systems display this system in terms of the interaction of economic and author's moral rights. Monistic and dualistic models are the most popular ones. The article deals with different points of view on the monism and dualism in copyright system. A specific model of the copyright in Switzerland in the XXth century is analyzed. The evolution of a French dualistic model of copyright is shown. The author believes that one should talk not about one, but rather about a number of dualism forms of copyright system.

Keywords: copyright, exclusive copyright, economic rights, author's moral rights, rights of personality, monistic model, dualistic model

Procedia PDF Downloads 420
10041 Rising Prevalence of Diabetes among Elderly People in Kerala: Evidence from NSS Data

Authors: Narendra Kumar

Abstract:

In developing countries, the majority of people with diabetes are in the age range of 45-64 years and more women than men. As in many areas of the India, non-insulin dependent diabetes mellitus has become major problems. Now it is spreading among the middle class and poor at an alarming stage in India and Kerala is turning to be the world capital of diabetes. This study uses two round NSS data from the ‘National Sample Survey Organization, India’ to investigate the predictors of diabetes in Kerala. The overall estimates for diabetes prevalence among elderly show that higher in men than women, but there are more women with diabetes than men. Education of respondent has been found a significant characteristics, further respondent working status, caste/tribe have substantial impact on diabetes in Kerala. The disease is more common for people who are mostly physically inactive. This whole picture is very much prominent in the urban areas compared with the rural ones. Not working elderly have significantly higher with diabetes than for those working in elderly. Socioeconomic status was inversely associated with diabetes prevalence. For men and women, the prevalence of diabetes and hypertension were significantly higher in the urban population while smoking, smokeless tobacco consumption was more prevalent in the rural population. High alcohol intake increases diabetes risk among elderly. Finally these findings specified that an increase improve health care services and changing life style of elderly which should in turn raise diabetes patient survival and should decrease comorbidities due to diabetes in Kerala.

Keywords: elderly, diabetes, prevalence, Kerala

Procedia PDF Downloads 310
10040 Semantic Textual Similarity on Contracts: Exploring Multiple Negative Ranking Losses for Sentence Transformers

Authors: Yogendra Sisodia

Abstract:

Researchers are becoming more interested in extracting useful information from legal documents thanks to the development of large-scale language models in natural language processing (NLP), and deep learning has accelerated the creation of powerful text mining models. Legal fields like contracts benefit greatly from semantic text search since it makes it quick and easy to find related clauses. After collecting sentence embeddings, it is relatively simple to locate sentences with a comparable meaning throughout the entire legal corpus. The author of this research investigated two pre-trained language models for this task: MiniLM and Roberta, and further fine-tuned them on Legal Contracts. The author used Multiple Negative Ranking Loss for the creation of sentence transformers. The fine-tuned language models and sentence transformers showed promising results.

Keywords: legal contracts, multiple negative ranking loss, natural language inference, sentence transformers, semantic textual similarity

Procedia PDF Downloads 108
10039 Pilot Induced Oscillations Adaptive Suppression in Fly-By-Wire Systems

Authors: Herlandson C. Moura, Jorge H. Bidinotto, Eduardo M. Belo

Abstract:

The present work proposes the development of an adaptive control system which enables the suppression of Pilot Induced Oscillations (PIO) in Digital Fly-By-Wire (DFBW) aircrafts. The proposed system consists of a Modified Model Reference Adaptive Control (M-MRAC) integrated with the Gain Scheduling technique. The PIO oscillations are detected using a Real Time Oscillation Verifier (ROVER) algorithm, which then enables the system to switch between two reference models; one in PIO condition, with low proneness to the phenomenon and another one in normal condition, with high (or medium) proneness. The reference models are defined in a closed loop condition using the Linear Quadratic Regulator (LQR) control methodology for Multiple-Input-Multiple-Output (MIMO) systems. The implemented algorithms are simulated in software implementations with state space models and commercial flight simulators as the controlled elements and with pilot dynamics models. A sequence of pitch angles is considered as the reference signal, named as Synthetic Task (Syntask), which must be tracked by the pilot models. The initial outcomes show that the proposed system can detect and suppress (or mitigate) the PIO oscillations in real time before it reaches high amplitudes.

Keywords: adaptive control, digital Fly-By-Wire, oscillations suppression, PIO

Procedia PDF Downloads 134
10038 The Use of AI to Measure Gross National Happiness

Authors: Riona Dighe

Abstract:

This research attempts to identify an alternative approach to the measurement of Gross National Happiness (GNH). It uses artificial intelligence (AI), incorporating natural language processing (NLP) and sentiment analysis to measure GNH. We use ‘off the shelf’ NLP models responsible for the sentiment analysis of a sentence as a building block for this research. We constructed an algorithm using NLP models to derive a sentiment analysis score against sentences. This was then tested against a sample of 20 respondents to derive a sentiment analysis score. The scores generated resembled human responses. By utilising the MLP classifier, decision tree, linear model, and K-nearest neighbors, we were able to obtain a test accuracy of 89.97%, 54.63%, 52.13%, and 47.9%, respectively. This gave us the confidence to use the NLP models against sentences in websites to measure the GNH of a country.

Keywords: artificial intelligence, NLP, sentiment analysis, gross national happiness

Procedia PDF Downloads 119
10037 Deep Learning for Renewable Power Forecasting: An Approach Using LSTM Neural Networks

Authors: Fazıl Gökgöz, Fahrettin Filiz

Abstract:

Load forecasting has become crucial in recent years and become popular in forecasting area. Many different power forecasting models have been tried out for this purpose. Electricity load forecasting is necessary for energy policies, healthy and reliable grid systems. Effective power forecasting of renewable energy load leads the decision makers to minimize the costs of electric utilities and power plants. Forecasting tools are required that can be used to predict how much renewable energy can be utilized. The purpose of this study is to explore the effectiveness of LSTM-based neural networks for estimating renewable energy loads. In this study, we present models for predicting renewable energy loads based on deep neural networks, especially the Long Term Memory (LSTM) algorithms. Deep learning allows multiple layers of models to learn representation of data. LSTM algorithms are able to store information for long periods of time. Deep learning models have recently been used to forecast the renewable energy sources such as predicting wind and solar energy power. Historical load and weather information represent the most important variables for the inputs within the power forecasting models. The dataset contained power consumption measurements are gathered between January 2016 and December 2017 with one-hour resolution. Models use publicly available data from the Turkish Renewable Energy Resources Support Mechanism. Forecasting studies have been carried out with these data via deep neural networks approach including LSTM technique for Turkish electricity markets. 432 different models are created by changing layers cell count and dropout. The adaptive moment estimation (ADAM) algorithm is used for training as a gradient-based optimizer instead of SGD (stochastic gradient). ADAM performed better than SGD in terms of faster convergence and lower error rates. Models performance is compared according to MAE (Mean Absolute Error) and MSE (Mean Squared Error). Best five MAE results out of 432 tested models are 0.66, 0.74, 0.85 and 1.09. The forecasting performance of the proposed LSTM models gives successful results compared to literature searches.

Keywords: deep learning, long short term memory, energy, renewable energy load forecasting

Procedia PDF Downloads 266
10036 Ground Motion Modeling Using the Least Absolute Shrinkage and Selection Operator

Authors: Yildiz Stella Dak, Jale Tezcan

Abstract:

Ground motion models that relate a strong motion parameter of interest to a set of predictive seismological variables describing the earthquake source, the propagation path of the seismic wave, and the local site conditions constitute a critical component of seismic hazard analyses. When a sufficient number of strong motion records are available, ground motion relations are developed using statistical analysis of the recorded ground motion data. In regions lacking a sufficient number of recordings, a synthetic database is developed using stochastic, theoretical or hybrid approaches. Regardless of the manner the database was developed, ground motion relations are developed using regression analysis. Development of a ground motion relation is a challenging process which inevitably requires the modeler to make subjective decisions regarding the inclusion criteria of the recordings, the functional form of the model and the set of seismological variables to be included in the model. Because these decisions are critically important to the validity and the applicability of the model, there is a continuous interest on procedures that will facilitate the development of ground motion models. This paper proposes the use of the Least Absolute Shrinkage and Selection Operator (LASSO) in selecting the set predictive seismological variables to be used in developing a ground motion relation. The LASSO can be described as a penalized regression technique with a built-in capability of variable selection. Similar to the ridge regression, the LASSO is based on the idea of shrinking the regression coefficients to reduce the variance of the model. Unlike ridge regression, where the coefficients are shrunk but never set equal to zero, the LASSO sets some of the coefficients exactly to zero, effectively performing variable selection. Given a set of candidate input variables and the output variable of interest, LASSO allows ranking the input variables in terms of their relative importance, thereby facilitating the selection of the set of variables to be included in the model. Because the risk of overfitting increases as the ratio of the number of predictors to the number of recordings increases, selection of a compact set of variables is important in cases where a small number of recordings are available. In addition, identification of a small set of variables can improve the interpretability of the resulting model, especially when there is a large number of candidate predictors. A practical application of the proposed approach is presented, using more than 600 recordings from the National Geospatial-Intelligence Agency (NGA) database, where the effect of a set of seismological predictors on the 5% damped maximum direction spectral acceleration is investigated. The set of candidate predictors considered are Magnitude, Rrup, Vs30. Using LASSO, the relative importance of the candidate predictors has been ranked. Regression models with increasing levels of complexity were constructed using one, two, three, and four best predictors, and the models’ ability to explain the observed variance in the target variable have been compared. The bias-variance trade-off in the context of model selection is discussed.

Keywords: ground motion modeling, least absolute shrinkage and selection operator, penalized regression, variable selection

Procedia PDF Downloads 330
10035 Predict Suspended Sediment Concentration Using Artificial Neural Networks Technique: Case Study Oued El Abiod Watershed, Algeria

Authors: Adel Bougamouza, Boualam Remini, Abd El Hadi Ammari, Feteh Sakhraoui

Abstract:

The assessment of sediments being carried by a river is importance for planning and designing of various water resources projects. In this study, Artificial Neural Network Techniques are used to estimate the daily suspended sediment concentration for the corresponding daily discharge flow in the upstream of Foum El Gherza dam, Biskra, Algeria. The FFNN, GRNN, and RBNN models are established for estimating current suspended sediment values. Some statistics involving RMSE and R2 were used to evaluate the performance of applied models. The comparison of three AI models showed that the RBNN model performed better than the FFNN and GRNN models with R2 = 0.967 and RMSE= 5.313 mg/l. Therefore, the ANN model had capability to improve nonlinear relationships between discharge flow and suspended sediment with reasonable precision.

Keywords: artificial neural network, Oued Abiod watershed, feedforward network, generalized regression network, radial basis network, sediment concentration

Procedia PDF Downloads 418
10034 Kinetic Façade Design Using 3D Scanning to Convert Physical Models into Digital Models

Authors: Do-Jin Jang, Sung-Ah Kim

Abstract:

In designing a kinetic façade, it is hard for the designer to make digital models due to its complex geometry with motion. This paper aims to present a methodology of converting a point cloud of a physical model into a single digital model with a certain topology and motion. The method uses a Microsoft Kinect sensor, and color markers were defined and applied to three paper folding-inspired designs. Although the resulted digital model cannot represent the whole folding range of the physical model, the method supports the designer to conduct a performance-oriented design process with the rough physical model in the reduced folding range.

Keywords: design media, kinetic facades, tangible user interface, 3D scanning

Procedia PDF Downloads 413
10033 Animal Modes of Surgical or Other External Causes of Trauma Wound Infection

Authors: Ojoniyi Oluwafeyekikunmi Okiki

Abstract:

Notwithstanding advances in disturbing wound care and control, infections remain a main motive of mortality, morbidity, and financial disruption in tens of millions of wound sufferers around the sector. Animal models have become popular gear for analyzing a big selection of outside worrying wound infections and trying out new antimicrobial techniques. This evaluation covers experimental infections in animal models of surgical wounds, pores and skin abrasions, burns, lacerations, excisional wounds, and open fractures. Animal modes of external stressful wound infections stated via extraordinary investigators vary in animal species used, microorganism traces, the quantity of microorganisms carried out, the dimensions of the wounds, and, for burn infections, the period of time the heated object or liquid is in contact with the skin. As antibiotic resistance continues to grow, new antimicrobial procedures are urgently needed. Those have to be examined using popular protocols for infections in external stressful wounds in animal models.

Keywords: surgical wounds, animals, wound infections, burns, wound models, colony-forming gadgets, lacerated wounds

Procedia PDF Downloads 8
10032 A Framework for Auditing Multilevel Models Using Explainability Methods

Authors: Debarati Bhaumik, Diptish Dey

Abstract:

Multilevel models, increasingly deployed in industries such as insurance, food production, and entertainment within functions such as marketing and supply chain management, need to be transparent and ethical. Applications usually result in binary classification within groups or hierarchies based on a set of input features. Using open-source datasets, we demonstrate that popular explainability methods, such as SHAP and LIME, consistently underperform inaccuracy when interpreting these models. They fail to predict the order of feature importance, the magnitudes, and occasionally even the nature of the feature contribution (negative versus positive contribution to the outcome). Besides accuracy, the computational intractability of SHAP for binomial classification is a cause of concern. For transparent and ethical applications of these hierarchical statistical models, sound audit frameworks need to be developed. In this paper, we propose an audit framework for technical assessment of multilevel regression models focusing on three aspects: (i) model assumptions & statistical properties, (ii) model transparency using different explainability methods, and (iii) discrimination assessment. To this end, we undertake a quantitative approach and compare intrinsic model methods with SHAP and LIME. The framework comprises a shortlist of KPIs, such as PoCE (Percentage of Correct Explanations) and MDG (Mean Discriminatory Gap) per feature, for each of these three aspects. A traffic light risk assessment method is furthermore coupled to these KPIs. The audit framework will assist regulatory bodies in performing conformity assessments of AI systems using multilevel binomial classification models at businesses. It will also benefit businesses deploying multilevel models to be future-proof and aligned with the European Commission’s proposed Regulation on Artificial Intelligence.

Keywords: audit, multilevel model, model transparency, model explainability, discrimination, ethics

Procedia PDF Downloads 94
10031 Computational Fluid Dynamics (CFD) Calculations of the Wind Turbine with an Adjustable Working Surface

Authors: Zdzislaw Kaminski, Zbigniew Czyz, Krzysztof Skiba

Abstract:

This paper discusses the CFD simulation of a flow around a rotor of a Vertical Axis Wind Turbine. Numerical simulation, unlike experiments, enables us to validate project assumptions when it is designed and avoid a costly preparation of a model or a prototype for a bench test. CFD simulation enables us to compare characteristics of aerodynamic forces acting on rotor working surfaces and define operational parameters like torque or power generated by a turbine assembly. This research focused on the rotor with the blades capable of modifying their working surfaces, i.e. absorbing wind kinetic energy. The operation of this rotor is based on adjusting angular aperture α of the top and bottom parts of the blades mounted on an axis. If this angular aperture α increases, the working surface which absorbs wind kinetic energy also increases. The operation of turbines is characterized by parameters like the angular aperture of blades, power, torque, speed for a given wind speed. These parameters have an impact on the efficiency of assemblies. The distribution of forces acting on the working surfaces in our turbine changes according to the angular velocity of the rotor. Moreover, the resultant force from the force acting on an advancing blade and retreating blade should be as high as possible. This paper is part of the research to improve an efficiency of a rotor assembly. Therefore, using simulation, the courses of the above parameters were studied in three full rotations individually for each of the blades for three angular apertures of blade working surfaces, i.e. 30 °, 60 °, 90 °, at three wind speeds, i.e. 4 m / s, 6 m / s, 8 m / s and rotor speeds ranging from 100 to 500 rpm. Finally, there were created the characteristics of torque coefficients and power as a function of time for each blade separately and for the entire rotor. Accordingly, the correlation between the turbine rotor power as a function of wind speed for varied values of rotor rotational speed. By processing this data, the correlation between the power of the turbine rotor and its rotational speed for each of the angular aperture of the working surfaces was specified. Finally, the optimal values, i.e. of the highest output power for given wind speeds were read. The research results in receiving the basic characteristics of turbine rotor power as a function of wind speed for the three angular apertures of the blades. Given the nature of rotor operation, the growth in the output turbine can be estimated if angular aperture of the blades increases. The controlled adjustment of angle α enables a smooth adjustment of power generated by a turbine rotor. If wind speed is significant, this type of adjustment enables this output power to remain at the same level (by reducing angle α) with no risk of damaging a construction. This work has been financed by the Polish Ministry of Science and Higher Education.

Keywords: computational fluid dynamics, numerical analysis, renewable energy, wind turbine

Procedia PDF Downloads 217
10030 Advance Hybrid Manufacturing Supply Chain System to Get Benefits of Push and Pull Systems

Authors: Akhtar Nawaz, Sahar Noor, Iftikhar Hussain

Abstract:

This paper considers advanced hybrid manufacturing planning both push and pull system in which each customer order has a due date by demand forecast and customer orders. We present a tool for model for tool development that requires an absolute due dates and customer orders in a manufacturing supply chain. It is vital for the manufacturing companies to face the problem of variations in demands, increase in varieties by maintaining safety stock and to minimize components obsolescence and uselessness. High inventory cost and low delivery lead time is expected in push type of system and on contrary high delivery lead time and low inventory cost is predicted in the pull type. For this tool for model we need an MRP system for the push and pull environment and control of inventories in push parts and lead time in the pull part. To retain process data quickly, completely and to improve responsiveness and minimize inventory cost, a tool is required to deal with the high product variance and short cycle parts. In practice, planning and scheduling are interrelated and should be solved simultaneously with supply chain to ensure that the due dates of customer orders are met. The proposed tool for model considers alternative process plans for job types, with precedence constraints for job operations. Such a tool for model has not been treated in the literature. To solve the model, tool was developed, so a new technique was required to deal with the issue of high product variance and short life cycles in assemble to order.

Keywords: hybrid manufacturing system, supply chain system, make to order, make to stock, assemble to order

Procedia PDF Downloads 564
10029 Probabilistic Models to Evaluate Seismic Liquefaction In Gravelly Soil Using Dynamic Penetration Test and Shear Wave Velocity

Authors: Nima Pirhadi, Shao Yong Bo, Xusheng Wan, Jianguo Lu, Jilei Hu

Abstract:

Although gravels and gravelly soils are assumed to be non-liquefiable because of high conductivity and small modulus; however, the occurrence of this phenomenon in some historical earthquakes, especially recently earthquakes during 2008 Wenchuan, Mw= 7.9, 2014 Cephalonia, Greece, Mw= 6.1 and 2016, Kaikoura, New Zealand, Mw = 7.8, has been promoted the essential consideration to evaluate risk assessment and hazard analysis of seismic gravelly soil liquefaction. Due to the limitation in sampling and laboratory testing of this type of soil, in situ tests and site exploration of case histories are the most accepted procedures. Of all in situ tests, dynamic penetration test (DPT), Which is well known as the Chinese dynamic penetration test, and shear wave velocity (Vs) test, have been demonstrated high performance to evaluate seismic gravelly soil liquefaction. However, the lack of a sufficient number of case histories provides an essential limitation for developing new models. This study at first investigates recent earthquakes that caused liquefaction in gravelly soils to collect new data. Then, it adds these data to the available literature’s dataset to extend them and finally develops new models to assess seismic gravelly soil liquefaction. To validate the presented models, their results are compared to extra available models. The results show the reasonable performance of the proposed models and the critical effect of gravel content (GC)% on the assessment.

Keywords: liquefaction, gravel, dynamic penetration test, shear wave velocity

Procedia PDF Downloads 201
10028 Tuning Fractional Order Proportional-Integral-Derivative Controller Using Hybrid Genetic Algorithm Particle Swarm and Differential Evolution Optimization Methods for Automatic Voltage Regulator System

Authors: Fouzi Aboura

Abstract:

The fractional order proportional-integral-derivative (FOPID) controller or fractional order (PIλDµ) is a proportional-integral-derivative (PID) controller where integral order (λ) and derivative order (µ) are fractional, one of the important application of classical PID is the Automatic Voltage Regulator (AVR).The FOPID controller needs five parameters optimization while the design of conventional PID controller needs only three parameters to be optimized. In our paper we have proposed a comparison between algorithms Differential Evolution (DE) and Hybrid Genetic Algorithm Particle Swarm Optimization (HGAPSO) ,we have studied theirs characteristics and performance analysis to find an optimum parameters of the FOPID controller, a new objective function is also proposed to take into account the relation between the performance criteria’s.

Keywords: FOPID controller, fractional order, AVR system, objective function, optimization, GA, PSO, HGAPSO

Procedia PDF Downloads 90
10027 Predictive Models for Compressive Strength of High Performance Fly Ash Cement Concrete for Pavements

Authors: S. M. Gupta, Vanita Aggarwal, Som Nath Sachdeva

Abstract:

The work reported through this paper is an experimental work conducted on High Performance Concrete (HPC) with super plasticizer with the aim to develop some models suitable for prediction of compressive strength of HPC mixes. In this study, the effect of varying proportions of fly ash (0% to 50% at 10% increment) on compressive strength of high performance concrete has been evaluated. The mix designs studied were M30, M40 and M50 to compare the effect of fly ash addition on the properties of these concrete mixes. In all eighteen concrete mixes have been designed, three as conventional concretes for three grades under discussion and fifteen as HPC with fly ash with varying percentages of fly ash. The concrete mix designing has been done in accordance with Indian standard recommended guidelines i.e. IS: 10262. All the concrete mixes have been studied in terms of compressive strength at 7 days, 28 days, 90 days and 365 days. All the materials used have been kept same throughout the study to get a perfect comparison of values of results. The models for compressive strength prediction have been developed using Linear Regression method (LR), Artificial Neural Network (ANN) and Leave One Out Validation (LOOV) methods.

Keywords: high performance concrete, fly ash, concrete mixes, compressive strength, strength prediction models, linear regression, ANN

Procedia PDF Downloads 445
10026 Evaluation of Urban Transportation Systems: Comparing and Selecting the Most Efficient Transportation Solutions

Authors: E. Azizi Asiyabar

Abstract:

The phenomenon of migration to larger cities has brought about a range of consequences, including increased travel demand and the necessity for smooth traffic flow to expedite transportation. Regrettably, insufficient urban transportation infrastructure has given rise to various issues, including air pollution, heightened fuel consumption, and wasted time. To address traffic-related problems and the economic, social, and environmental challenges that ensue, a well-equipped, efficient, fast, cost-effective, and high-capacity transportation system is imperative, with a focus on reliability. This study undertakes a comprehensive examination of rail transportation systems and subsequently compares their advantages and limitations. The findings of this investigation reveal that hybrid monorails exhibit lower maintenance requirements and associated costs when compared to other types of monorails, standard trains, and urban light rail systems. Given their favorable attributes in terms of pollution reduction, increased transportation speed, and enhanced quality of service, hybrid monorails emerge as a highly recommended and suitable option.

Keywords: comparing, most efficient, selecting, urban transportation

Procedia PDF Downloads 81
10025 Evaluating the Suitability and Performance of Dynamic Modulus Predictive Models for North Dakota’s Asphalt Mixtures

Authors: Duncan Oteki, Andebut Yeneneh, Daba Gedafa, Nabil Suleiman

Abstract:

Most agencies lack the equipment required to measure the dynamic modulus (|E*|) of asphalt mixtures, necessitating the need to use predictive models. This study compared measured |E*| values for nine North Dakota asphalt mixes using the original Witczak, modified Witczak, and Hirsch models. The influence of temperature on the |E*| models was investigated, and Pavement ME simulations were conducted using measured |E*| and predictions from the most accurate |E*| model. The results revealed that the original Witczak model yielded the lowest Se/Sy and highest R² values, indicating the lowest bias and highest accuracy, while the poorest overall performance was exhibited by the Hirsch model. Using predicted |E*| as inputs in the Pavement ME generated conservative distress predictions compared to using measured |E*|. The original Witczak model was recommended for predicting |E*| for low-reliability pavements in North Dakota.

Keywords: asphalt mixture, binder, dynamic modulus, MEPDG, pavement ME, performance, prediction

Procedia PDF Downloads 48
10024 Characteristics of Bio-hybrid Hydrogel Materials with Prolonged Release of the Model Active Substance as Potential Wound Dressings

Authors: Katarzyna Bialik-Wąs, Klaudia Pluta, Dagmara Malina, Małgorzata Miastkowska

Abstract:

In recent years, biocompatible hydrogels have been used more and more in medical applications, especially as modern dressings and drug delivery systems. The main goal of this research was the characteristics of bio-hybrid hydrogel materials incorporated with the nanocarrier-drug system, which enable the release in a gradual and prolonged manner, up to 7 days. Therefore, the use of such a combination will provide protection against mechanical damage and adequate hydration. The proposed bio-hybrid hydrogels are characterized by: transparency, biocompatibility, good mechanical strength, and the dual release system, which allows for gradual delivery of the active substance, even up to 7 days. Bio-hybrid hydrogels based on sodium alginate (SA), poly(vinyl alcohol) (PVA), glycerine, and Aloe vera solution (AV) were obtained through the chemical crosslinking method using poly(ethylene glycol) diacrylate as a crosslinking agent. Additionally, a nanocarrier-drug system was incorporated into SA/PVA/AV hydrogel matrix. Here, studies were focused on the release profiles of active substances from bio-hybrid hydrogels using the USP4 method (DZF II Flow-Through System, Erweka GmbH, Langen, Germany). The equipment incorporated seven in-line flow-through diffusion cells. The membrane was placed over support with an orifice of 1,5 cm in diameter (diffusional area, 1.766 cm²). All the cells were placed in a cell warmer connected with the Erweka heater DH 2000i and the Erweka piston pump HKP 720. The piston pump transports the receptor fluid via seven channels to the flow-through cells and automatically adapts the setting of the flow rate. All volumes were measured by gravimetric methods by filling the chambers with Milli-Q water and assuming a density of 1 g/ml. All the determinations were made in triplicate for each cell. The release study of the model active substance was carried out using a regenerated cellulose membrane Spectra/Por®Dialysis Membrane MWCO 6-8,000 Carl Roth® Company. These tests were conducted in buffer solutions – PBS at pH 7.4. A flow rate of receptor fluid of about 4 ml /1 min was selected. The experiments were carried out for 7 days at a temperature of 37°C. The released concentration of the model drug in the receptor solution was analyzed using UV-Vis spectroscopy (Perkin Elmer Company). Additionally, the following properties of the modified materials were studied: physicochemical, structural (FT-IR analysis), morphological (SEM analysis). Finally, the cytotoxicity tests using in vitro method were conducted. The obtained results exhibited that the dual release system allows for the gradual and prolonged delivery of the active substances, even up to 7 days.

Keywords: wound dressings, SA/PVA hydrogels, nanocarrier-drug system, USP4 method

Procedia PDF Downloads 147