Search results for: geographic visualization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1201

Search results for: geographic visualization

61 Research on the Spatial Evolution of Tourism-Oriented Rural Settlements: Take the Xiaochanfangyu Village, Dongshuichang Village, Maojiayu Village in Jixian County, Tianjin City as Examples

Authors: Yu Zhang, Jie Wu, Li Dong

Abstract:

Rural tourism is the service industry which regards the agricultural production, rural life, rural nature and cultural landscape as the tourist attraction. It aims to meet the needs of the city tourists such as country sightseeing, vacation, and leisure. According to the difference of the tourist resources, the rural settlements can be divided into different types: The type of tourism resources, scenic spot, and peri-urban. In the past ten years, the rural tourism has promoted the industrial transformation and economic growth in rural areas of China. And it is conducive to the coordinated development of urban and rural areas and has greatly improved the ecological environment and the standard of living for farmers in rural areas. At the same time, a large number of buildings and sites are built in the countryside in order to enhance the tourist attraction and the ability of tourist reception and also to increase the travel comfort and convenience, which has significant influence on the spatial evolution of the village settlement. This article takes the XiangYing Subdistrict, which is in JinPu District of Dalian in China as the exemplification and uses the technology of Remote Sensing (RS), Geographic Information System (GIS) and the technology of Landscape Spatial Analysis to study the influence of the rural tourism development in the rural settlement spaces in four steps. First, acquiring the remote sensing image data at different times of 8 administrative villages in the XiangYing Subdistrict, by using the remote sensing application EDRAS8.6; second, vectoring basic maps of XiangYing Subdistrict including its land-use map with the application of ArcGIS 9.3, associating with social and economic attribute data of rural settlements and analyzing on the rural evolution visually; third, quantifying the comparison of these patches in rural settlements by using the landscape spatial calculation application Fragstats 3.3 and analyzing on the evolution of the spatial structure of settlement in macro and medium scale; finally, summarizing the evolution characteristics and internal reasons of tourism-oriented rural settlements. The main findings of this article include: first of all, there is difference in the evolution of the spatial structure between the developing rural settlements and undeveloped rural settlements among the eight administrative villages; secondly, the villages relying on the surrounding tourist attractions, the villages developing agricultural ecological garden and the villages with natural or historical and cultural resources have different laws of development; then, the rural settlements whose tourism development in germination period, development period and mature period have different characteristics of spatial evolution; finally, the different evolution modes of the tourism-oriented rural settlement space have different influences on the protection and inheritance of the village scene. The development of tourism has a significant impact on the spatial evolution of rural settlement. The intensive use of rural land and natural resources is the fundamental principle to protect the rural cultural landscape and ecological environment as well as the critical way to improve the attraction of rural tourism and promote the sustainable development of countryside.

Keywords: landscape pattern, rural settlement, spatial evolution, tourism-oriented, Xiangying Subdistrict

Procedia PDF Downloads 260
60 The Effectiveness of Online Learning in the Wisconsin Technical College System

Authors: Julie Furst-Bowe

Abstract:

Over the past decade, there has been significant growth in online courses and programs at all levels of education in the United States. This study explores the growth of online and blended (or hybrid) programs offered by the sixteen technical colleges in the Wisconsin Technical College System (WTCS). The WTCS provides education and training programs to more than 300,000 students each year in career clusters including agriculture, business, energy, information technology, healthcare, human services, manufacturing, and transportation. These programs range from short-term training programs that may lead to a certificate to two-year programs that lead to an associate degree. Students vary in age from high school students who are exploring career interests to employees who are seeking to gain additional skills or enter a new career. Because there is currently a shortage of skilled workers in nearly all sectors in the state of Wisconsin, it is critical that the WTCS is providing fully educated and trained graduates to fill workforce needs in a timely manner. For this study, information on online and blended programs for the past five years was collected from the WTCS, including types of programs, course and program enrollments, course completion rates, program completion rates, time to completion and graduate employment rates. The results of this study indicate that the number of online and blended courses and programs is continuing to increase each year. Online and blended programs are most commonly found in the business, human services, and information technology areas, and they are less commonly found in agriculture, healthcare, manufacturing, and transportation programs. Overall, course and program completion rates were higher for blended programs when compared to fully online programs. Students preferred the blended programs over the fully online programs. Overall, graduates were placed into related jobs at a rate of approximately 90 percent, although there was some variation in graduate placement rates by programs and by colleges. Differences in graduate employment rate appeared to be based on geography and sector as employers did not distinguish between graduates who had completed their programs via traditional, blended or fully online instruction. Recommendations include further exploration as to the reasons that blended courses and programs appear to be more effective than fully online courses and programs. It is also recommended that those program areas that are not using blended or online delivery methods, including agriculture, health, manufacturing and transportation, explore the use of these methods to make their courses and programs more accessible to students, particularly working adults. In some instances, colleges were partnering with specific companies to ensure that groups of employees were completing online coursework leading to a certificate or a degree. Those partnerships are to be encouraged in order for the state to continue to improve the skills of its workforce. Finally, it is recommended that specific colleges specialize in the delivery of specific programs using online technology since it is not bound by geographic considerations. This approach would take advantage of the strengths of the individual colleges and avoid unnecessary duplication.

Keywords: career and technical education, online learning, skills shortage, technical colleges

Procedia PDF Downloads 108
59 Impedimetric Phage-Based Sensor for the Rapid Detection of Staphylococcus aureus from Nasal Swab

Authors: Z. Yousefniayejahr, S. Bolognini, A. Bonini, C. Campobasso, N. Poma, F. Vivaldi, M. Di Luca, A. Tavanti, F. Di Francesco

Abstract:

Pathogenic bacteria represent a threat to healthcare systems and the food industry because their rapid detection remains challenging. Electrochemical biosensors are gaining prominence as a novel technology for the detection of pathogens due to intrinsic features such as low cost, rapid response time, and portability, which make them a valuable alternative to traditional methodologies. These sensors use biorecognition elements that are crucial for the identification of specific bacteria. In this context, bacteriophages are promising tools for their inherent high selectivity towards bacterial hosts, which is of fundamental importance when detecting bacterial pathogens in complex biological samples. In this study, we present the development of a low-cost and portable sensor based on the Zeno phage for the rapid detection of Staphylococcus aureus. Screen-printed gold electrodes functionalized with the Zeno phage were used, and electrochemical impedance spectroscopy was applied to evaluate the change of the charge transfer resistance (Rct) as a result of the interaction with S. aureus MRSA ATCC 43300. The phage-based biosensor showed a linear range from 101 to 104 CFU/mL with a 20-minute response time and a limit of detection (LOD) of 1.2 CFU/mL under physiological conditions. The biosensor’s ability to recognize various strains of staphylococci was also successfully demonstrated in the presence of clinical isolates collected from different geographic areas. Assays using S. epidermidis were also carried out to verify the species-specificity of the phage sensor. We only observed a remarkable change of the Rct in the presence of the target S. aureus bacteria, while no substantial binding to S. epidermidis occurred. This confirmed that the Zeno phage sensor only targets S. aureus species within the genus Staphylococcus. In addition, the biosensor's specificity with respect to other bacterial species, including gram-positive bacteria like Enterococcus faecium and the gram-negative bacterium Pseudomonas aeruginosa, was evaluated, and a non-significant impedimetric signal was observed. Notably, the biosensor successfully identified S. aureus bacterial cells in a complex matrix such as a nasal swab, opening the possibility of its use in a real-case scenario. We diluted different concentrations of S. aureus from 108 to 100 CFU/mL with a ratio of 1:10 in the nasal swap matrices collected from healthy donors. Three different sensors were applied to measure various concentrations of bacteria. Our sensor indicated high selectivity to detect S. aureus in biological matrices compared to time-consuming traditional methods, such as enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and radioimmunoassay (RIA), etc. With the aim to study the possibility to use this biosensor to address the challenge associated to pathogen detection, ongoing research is focused on the assessment of the biosensor’s analytical performances in different biological samples and the discovery of new phage bioreceptors.

Keywords: electrochemical impedance spectroscopy, bacteriophage, biosensor, Staphylococcus aureus

Procedia PDF Downloads 47
58 Outdoor Thermal Comfort Strategies: The Case of Cool Facades

Authors: Noelia L. Alchapar, Cláudia C. Pezzuto, Erica N. Correa

Abstract:

Mitigating urban overheating is key to achieving the environmental and energy sustainability of cities. The management of the optical properties of the materials that make up the urban envelope -roofing, pavement, and facades- constitutes a profitable and effective tool to improve the urban microclimate and rehabilitate urban areas. Each material that makes up the urban envelope has a different capacity to reflect received solar radiation, which alters the fraction of solar radiation absorbed by the city. However, the paradigm of increasing solar reflectance in all areas of the city without distinguishing their relative position within the urban canyon can cause serious problems of overheating and discomfort among its inhabitants. The hypothesis that supports the research postulates that not all reflective technologies that contribute to urban radiative cooling favor the thermal comfort conditions of pedestrians to equal measure. The objective of this work is to determine to what degree the management of the optical properties of the facades modifies outdoor thermal comfort, given that the mitigation potential of materials with high reflectance in facades is strongly conditioned by geographical variables and by the geometric characteristics of the urban profile aspect ratio (H/W). This research was carried out under two climatic contexts, that of the city of Mendoza-Argentina and that of the city of Campinas-Brazil, according to the Köppen climate classification: BWk and Cwa, respectively. Two areas in two different climatic contexts (Mendoza - Argentina and Campinas - Brazil) were selected. Both areas have comparable urban morphology patterns. These areas are located in a region with low horizontal building density and residential zoning. The microclimatic conditions were monitored during the summer period with temperature and humidity fixed sensors inside vial channels. The microclimate model was simulated in ENVI-Met V5. A grid resolution of 3.5 x 3.5 x 3.5m was used for both cities, totaling an area of 145x145x30 grids. Based on the validated theoretical model, ten scenarios were simulated, modifying the height of buildings and the solar reflectivity of facades. The solar reflectivity façades ranges were: low (0.3) and high (0.75). The density scenarios range from 1th to the 5th level. The study scenarios' performance was assessed by comparing the air temperature, physiological equivalent temperature (PET), and thermal climate index (UTCI). As a result, it is observed that the behavior of the materials of the urban outdoor space depends on complex interactions. Many urban environmental factors influence including constructive characteristics, urban morphology, geographic locations, local climate, and so forth. The role of the vertical urban envelope is decisive for the reduction of urban overheating. One of the causes of thermal gain is the multiple reflections within the urban canyon, which affects not only the air temperature but also the pedestrian thermal comfort. One of the main findings of this work leads to the remarkable importance of considering both the urban warming and the thermal comfort aspects of pedestrians in urban mitigation strategies.

Keywords: materials facades, solar reflectivity, thermal comfort, urban cooling

Procedia PDF Downloads 75
57 Hygrothermal Interactions and Energy Consumption in Cold Climate Hospitals: Integrating Numerical Analysis and Case Studies to Investigate and Analyze the Impact of Air Leakage and Vapor Retarding

Authors: Amir E. Amirzadeh, Richard K. Strand

Abstract:

Moisture-induced problems are a significant concern for building owners, architects, construction managers, and building engineers, as they can have substantial impacts on building enclosures' durability and performance. Computational analyses, such as hygrothermal and thermal analysis, can provide valuable information and demonstrate the expected relative performance of building enclosure systems but are not grounded in absolute certainty. This paper evaluates the hygrothermal performance of common enclosure systems in hospitals in cold climates. The study aims to investigate the impact of exterior wall systems on hospitals, focusing on factors such as durability, construction deficiencies, and energy performance. The study primarily examines the impact of air leakage and vapor retarding layers relative to energy consumption. While these factors have been studied in residential and commercial buildings, there is a lack of information on their impact on hospitals in a holistic context. The study integrates various research studies and professional experience in hospital building design to achieve its objective. The methodology involves surveying and observing exterior wall assemblies, reviewing common exterior wall assemblies and details used in hospital construction, performing simulations and numerical analyses of various variables, validating the model and mechanism using available data from industry and academia, visualizing the outcomes of the analysis, and developing a mechanism to demonstrate the relative performance of exterior wall systems for hospitals under specific conditions. The data sources include case studies from real-world projects and peer-reviewed articles, industry standards, and practices. This research intends to integrate and analyze the in-situ and as-designed performance and durability of building enclosure assemblies with numerical analysis. The study's primary objective is to provide a clear and precise roadmap to better visualize and comprehend the correlation between the durability and performance of common exterior wall systems used in the construction of hospitals and the energy consumption of these buildings under certain static and dynamic conditions. As the construction of new hospitals and renovation of existing ones have grown over the last few years, it is crucial to understand the effect of poor detailing or construction deficiencies on building enclosure systems' performance and durability in healthcare buildings. This study aims to assist stakeholders involved in hospital design, construction, and maintenance in selecting durable and high-performing wall systems. It highlights the importance of early design evaluation, regular quality control during the construction of hospitals, and understanding the potential impacts of improper and inconsistent maintenance and operation practices on occupants, owner, building enclosure systems, and Heating, Ventilation, and Air Conditioning (HVAC) systems, even if they are designed to meet the project requirements.

Keywords: hygrothermal analysis, building enclosure, hospitals, energy efficiency, optimization and visualization, uncertainty and decision making

Procedia PDF Downloads 48
56 Challenges for Persons with Disabilities During COVID-19 Pandemic in Thailand

Authors: Tavee Cheausuwantavee

Abstract:

: COVID-19 pandemic significantly has impacted everyone’s life. Persons with disabilities (PWDs) in Thailand have been also effected by COVID-19 situation in many aspects of their lives, while there have been no more appropriate services of the government and providers. Research projects had been only focused on health precaution and protection. Rapid need assessments on populations and vulnerable groups were limited and conducted via social media and an online survey. However, little is known about the real problems and needs of Thai PWDs during the COVID-19 pandemic for an effective plan and integral services for those PWDs. Therefore, this study aims to explore the diverse problems and needs of Thai PWDs in the COVID -19 pandemic. Results from the study can be used by the government and other stakeholders for further effective services. Methods: This study was used a mixed-method design that consisted of both quantitative and qualitative measures. In terms of the quantitative approach, there were 744 PWDs and caregivers of all types of PWDs selected by proportional multistage stratified random sampling according to their disability classification and geographic location. Questionnaires with 59 items regarding participant characteristics, problems, and needs in health, education, employment, and other social inclusion, were distributed to all participants and some caregivers completed questionnaires when PWDs were not able to due to limited communication and/or literacy skills. Completed questionnaires were analyzed by descriptive statistics. For qualitative design, 62 key informants who were PWDs or caregivers were selected by purposive sampling. Ten focus groups, each consisting of 5-6 participants and 7 in-depth interviews from all the groups identified above, were conducted by researchers across five regions. Focus group and in-depth interview guidelines with 6 items regarding problems and needs in health, education, employment, other social inclusion, and their coping during COVID -19 pandemic. Data were analyzed using a modification of thematic content analysis. Results: Both quantitative and qualitative studies showed that PWDs and their caregivers had significant problems and needs all aspects of their life, including income and employment opportunity, daily living and social inclusion, health, and education, respectively. These problems and needs were related to each other, forming a vicious cycle. Participants also learned from negative pandemic to more positive life aspects, including their health protection, financial plan, family cohesion, and virtual technology literacy and innovation. Conclusion and implications: There have been challenges facing all life aspects of PWDs in Thailand during the COVID -19 pandemic, particularly incomes and daily living. All challenges have been the vicious cycle and complicated. There have been also a positive lesson learned of participants from the pandemic. Recommendations for government and stakeholders in the COVID-19 pandemic for PWDs are the following. First, the health protection strategy and policy of PWDs should be promoted together with other quality of life development including income generation, education and social inclusion. Second, virtual technology and alternative innovation should be enhanced for proactive service providers. Third, accessible information during the pandemic for all PWDs must be concerned. Forth, lesson learned from the pandemic should be shared and disseminated for crisis preparation and a positive mindset in the disruptive world.

Keywords: challenge, COVID-19, disability, Thailand

Procedia PDF Downloads 60
55 Distribution Routs Redesign through the Vehicle Problem Routing in Havana Distribution Center

Authors: Sonia P. Marrero Duran, Lilian Noya Dominguez, Lisandra Quintana Alvarez, Evert Martinez Perez, Ana Julia Acevedo Urquiaga

Abstract:

Cuban business and economic policy are in the constant update as well as facing a client ever more knowledgeable and demanding. For that reason become fundamental for companies competitiveness through the optimization of its processes and services. One of the Cuban’s pillars, which has been sustained since the triumph of the Cuban Revolution back in 1959, is the free health service to all those who need it. This service is offered without any charge under the concept of preserving human life, but it implied costly management processes and logistics services to be able to supply the necessary medicines to all the units who provide health services. One of the key actors on the medicine supply chain is the Havana Distribution Center (HDC), which is responsible for the delivery of medicines in the province; as well as the acquisition of medicines from national and international producers and its subsequent transport to health care units and pharmacies in time, and with the required quality. This HDC also carries for all distribution centers in the country. Given the eminent need to create an actor in the supply chain that specializes in the medicines supply, the possibility of centralizing this operation in a logistics service provider is analyzed. Based on this decision, pharmacies operate as clients of the logistic service center whose main function is to centralize all logistics operations associated with the medicine supply chain. The HDC is precisely the logistic service provider in Havana and it is the center of this research. In 2017 the pharmacies had affectations in the availability of medicine due to deficiencies in the distribution routes. This is caused by the fact that they are not based on routing studies, besides the long distribution cycle. The distribution routs are fixed, attend only one type of customer and there respond to a territorial location by the municipality. Taking into consideration the above-mentioned problem, the objective of this research is to optimize the routes system in the Havana Distribution Center. To accomplish this objective, the techniques applied were document analysis, random sampling, statistical inference and tools such as Ishikawa diagram and the computerized software’s: ArcGis, Osmand y MapIfnfo. As a result, were analyzed four distribution alternatives; the actual rout, by customer type, by the municipality and the combination of the two last. It was demonstrated that the territorial location alternative does not take full advantage of the transportation capacities or the distance of the trips, which leads to elevated costs breaking whit the current ways of distribution and the currents characteristics of the clients. The principal finding of the investigation was the optimum option distribution rout is the 4th one that is formed by hospitals and the join of pharmacies, stomatology clinics, polyclinics and maternal and elderly homes. This solution breaks the territorial location by the municipality and permits different distribution cycles in dependence of medicine consumption and transport availability.

Keywords: computerized geographic software, distribution, distribution routs, vehicle problem routing (VPR)

Procedia PDF Downloads 138
54 A Geographic Information System Mapping Method for Creating Improved Satellite Solar Radiation Dataset Over Qatar

Authors: Sachin Jain, Daniel Perez-Astudillo, Dunia A. Bachour, Antonio P. Sanfilippo

Abstract:

The future of solar energy in Qatar is evolving steadily. Hence, high-quality spatial solar radiation data is of the uttermost requirement for any planning and commissioning of solar technology. Generally, two types of solar radiation data are available: satellite data and ground observations. Satellite solar radiation data is developed by the physical and statistical model. Ground data is collected by solar radiation measurement stations. The ground data is of high quality. However, they are limited to distributed point locations with the high cost of installation and maintenance for the ground stations. On the other hand, satellite solar radiation data is continuous and available throughout geographical locations, but they are relatively less accurate than ground data. To utilize the advantage of both data, a product has been developed here which provides spatial continuity and higher accuracy than any of the data alone. The popular satellite databases: National Solar radiation Data Base, NSRDB (PSM V3 model, spatial resolution: 4 km) is chosen here for merging with ground-measured solar radiation measurement in Qatar. The spatial distribution of ground solar radiation measurement stations is comprehensive in Qatar, with a network of 13 ground stations. The monthly average of the daily total Global Horizontal Irradiation (GHI) component from ground and satellite data is used for error analysis. The normalized root means square error (NRMSE) values of 3.31%, 6.53%, and 6.63% for October, November, and December 2019 were observed respectively when comparing in-situ and NSRDB data. The method is based on the Empirical Bayesian Kriging Regression Prediction model available in ArcGIS, ESRI. The workflow of the algorithm is based on the combination of regression and kriging methods. A regression model (OLS, ordinary least square) is fitted between the ground and NSBRD data points. A semi-variogram is fitted into the experimental semi-variogram obtained from the residuals. The kriging residuals obtained after fitting the semi-variogram model were added to NSRBD data predicted values obtained from the regression model to obtain the final predicted values. The NRMSE values obtained after merging are respectively 1.84%, 1.28%, and 1.81% for October, November, and December 2019. One more explanatory variable, that is the ground elevation, has been incorporated in the regression and kriging methods to reduce the error and to provide higher spatial resolution (30 m). The final GHI maps have been created after merging, and NRMSE values of 1.24%, 1.28%, and 1.28% have been observed for October, November, and December 2019, respectively. The proposed merging method has proven as a highly accurate method. An additional method is also proposed here to generate calibrated maps by using regression and kriging model and further to use the calibrated model to generate solar radiation maps from the explanatory variable only when not enough historical ground data is available for long-term analysis. The NRMSE values obtained after the comparison of the calibrated maps with ground data are 5.60% and 5.31% for November and December 2019 month respectively.

Keywords: global horizontal irradiation, GIS, empirical bayesian kriging regression prediction, NSRDB

Procedia PDF Downloads 71
53 Development of an Artificial Neural Network to Measure Science Literacy Leveraging Neuroscience

Authors: Amanda Kavner, Richard Lamb

Abstract:

Faster growth in science and technology of other nations may make staying globally competitive more difficult without shifting focus on how science is taught in US classes. An integral part of learning science involves visual and spatial thinking since complex, and real-world phenomena are often expressed in visual, symbolic, and concrete modes. The primary barrier to spatial thinking and visual literacy in Science, Technology, Engineering, and Math (STEM) fields is representational competence, which includes the ability to generate, transform, analyze and explain representations, as opposed to generic spatial ability. Although the relationship is known between the foundational visual literacy and the domain-specific science literacy, science literacy as a function of science learning is still not well understood. Moreover, the need for a more reliable measure is necessary to design resources which enhance the fundamental visuospatial cognitive processes behind scientific literacy. To support the improvement of students’ representational competence, first visualization skills necessary to process these science representations needed to be identified, which necessitates the development of an instrument to quantitatively measure visual literacy. With such a measure, schools, teachers, and curriculum designers can target the individual skills necessary to improve students’ visual literacy, thereby increasing science achievement. This project details the development of an artificial neural network capable of measuring science literacy using functional Near-Infrared Spectroscopy (fNIR) data. This data was previously collected by Project LENS standing for Leveraging Expertise in Neurotechnologies, a Science of Learning Collaborative Network (SL-CN) of scholars of STEM Education from three US universities (NSF award 1540888), utilizing mental rotation tasks, to assess student visual literacy. Hemodynamic response data from fNIRsoft was exported as an Excel file, with 80 of both 2D Wedge and Dash models (dash) and 3D Stick and Ball models (BL). Complexity data were in an Excel workbook separated by the participant (ID), containing information for both types of tasks. After changing strings to numbers for analysis, spreadsheets with measurement data and complexity data were uploaded to RapidMiner’s TurboPrep and merged. Using RapidMiner Studio, a Gradient Boosted Trees artificial neural network (ANN) consisting of 140 trees with a maximum depth of 7 branches was developed, and 99.7% of the ANN predictions are accurate. The ANN determined the biggest predictors to a successful mental rotation are the individual problem number, the response time and fNIR optode #16, located along the right prefrontal cortex important in processing visuospatial working memory and episodic memory retrieval; both vital for science literacy. With an unbiased measurement of science literacy provided by psychophysiological measurements with an ANN for analysis, educators and curriculum designers will be able to create targeted classroom resources to help improve student visuospatial literacy, therefore improving science literacy.

Keywords: artificial intelligence, artificial neural network, machine learning, science literacy, neuroscience

Procedia PDF Downloads 104
52 Efficacy of Deep Learning for Below-Canopy Reconstruction of Satellite and Aerial Sensing Point Clouds through Fractal Tree Symmetry

Authors: Dhanuj M. Gandikota

Abstract:

Sensor-derived three-dimensional (3D) point clouds of trees are invaluable in remote sensing analysis for the accurate measurement of key structural metrics, bio-inventory values, spatial planning/visualization, and ecological modeling. Machine learning (ML) holds the potential in addressing the restrictive tradeoffs in cost, spatial coverage, resolution, and information gain that exist in current point cloud sensing methods. Terrestrial laser scanning (TLS) remains the highest fidelity source of both canopy and below-canopy structural features, but usage is limited in both coverage and cost, requiring manual deployment to map out large, forested areas. While aerial laser scanning (ALS) remains a reliable avenue of LIDAR active remote sensing, ALS is also cost-restrictive in deployment methods. Space-borne photogrammetry from high-resolution satellite constellations is an avenue of passive remote sensing with promising viability in research for the accurate construction of vegetation 3-D point clouds. It provides both the lowest comparative cost and the largest spatial coverage across remote sensing methods. However, both space-borne photogrammetry and ALS demonstrate technical limitations in the capture of valuable below-canopy point cloud data. Looking to minimize these tradeoffs, we explored a class of powerful ML algorithms called Deep Learning (DL) that show promise in recent research on 3-D point cloud reconstruction and interpolation. Our research details the efficacy of applying these DL techniques to reconstruct accurate below-canopy point clouds from space-borne and aerial remote sensing through learned patterns of tree species fractal symmetry properties and the supplementation of locally sourced bio-inventory metrics. From our dataset, consisting of tree point clouds obtained from TLS, we deconstructed the point clouds of each tree into those that would be obtained through ALS and satellite photogrammetry of varying resolutions. We fed this ALS/satellite point cloud dataset, along with the simulated local bio-inventory metrics, into the DL point cloud reconstruction architectures to generate the full 3-D tree point clouds (the truth values are denoted by the full TLS tree point clouds containing the below-canopy information). Point cloud reconstruction accuracy was validated both through the measurement of error from the original TLS point clouds as well as the error of extraction of key structural metrics, such as crown base height, diameter above root crown, and leaf/wood volume. The results of this research additionally demonstrate the supplemental performance gain of using minimum locally sourced bio-inventory metric information as an input in ML systems to reach specified accuracy thresholds of tree point cloud reconstruction. This research provides insight into methods for the rapid, cost-effective, and accurate construction of below-canopy tree 3-D point clouds, as well as the supported potential of ML and DL to learn complex, unmodeled patterns of fractal tree growth symmetry.

Keywords: deep learning, machine learning, satellite, photogrammetry, aerial laser scanning, terrestrial laser scanning, point cloud, fractal symmetry

Procedia PDF Downloads 74
51 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils

Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein

Abstract:

Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.

Keywords: air pollution, schools, pupils, congestion

Procedia PDF Downloads 100
50 Index of Suitability for Culex pipiens sl. Mosquitoes in Portugal Mainland

Authors: Maria C. Proença, Maria T. Rebelo, Marília Antunes, Maria J. Alves, Hugo Osório, Sofia Cunha, REVIVE team

Abstract:

The environment of the mosquitoes complex Culex pipiens sl. in Portugal mainland is evaluated based in its abundance, using a data set georeferenced, collected during seven years (2006-2012) from May to October. The suitability of the different regions can be delineated using the relative abundance areas; the suitablility index is directly proportional to disease transmission risk and allows focusing mitigation measures in order to avoid outbreaks of vector-borne diseases. The interest in the Culex pipiens complex is justified by its medical importance: the females bite all warm-blooded vertebrates and are involved in the circulation of several arbovirus of concern to human health, like West Nile virus, iridoviruses, rheoviruses and parvoviruses. The abundance of Culex pipiens mosquitoes were documented systematically all over the territory by the local health services, in a long duration program running since 2006. The environmental factors used to characterize the vector habitat are land use/land cover, distance to cartographed water bodies, altitude and latitude. Focus will be on the mosquito females, which gonotrophic cycle mate-bloodmeal-oviposition is responsible for the virus transmission; its abundance is the key for the planning of non-aggressive prophylactic countermeasures that may eradicate the transmission risk and simultaneously avoid chemical ambient degradation. Meteorological parameters such as: air relative humidity, air temperature (minima, maxima and mean daily temperatures) and daily total rainfall were gathered from the weather stations network for the same dates and crossed with the standardized females’ abundance in a geographic information system (GIS). Mean capture and percentage of above average captures related to each variable are used as criteria to compute a threshold for each meteorological parameter; the difference of the mean capture above/below the threshold was statistically assessed. The meteorological parameters measured at the net of weather stations all over the country are averaged by month and interpolated to produce raster maps that can be segmented according to the meaningful thresholds for each parameter. The intersection of the maps of all the parameters obtained for each month show the evolution of the suitable meteorological conditions through the mosquito season, considered as May to October, although the first and last month are less relevant. In parallel, mean and above average captures were related to the physiographic parameters – the land use/land cover classes most relevant in each month, the altitudes preferred and the most frequent distance to water bodies, a factor closely related with the mosquito biology. The maps produced with these results were crossed with the meteorological maps previously segmented, in order to get an index of suitability for the complex Culex pipiens evaluated all over the country, and its evolution from the beginning to the end of the mosquitoes season.

Keywords: suitability index, Culex pipiens, habitat evolution, GIS model

Procedia PDF Downloads 555
49 Synchrotron Based Techniques for the Characterization of Chemical Vapour Deposition Overgrowth Diamond Layers on High Pressure, High Temperature Substrates

Authors: T. N. Tran Thi, J. Morse, C. Detlefs, P. K. Cook, C. Yıldırım, A. C. Jakobsen, T. Zhou, J. Hartwig, V. Zurbig, D. Caliste, B. Fernandez, D. Eon, O. Loto, M. L. Hicks, A. Pakpour-Tabrizi, J. Baruchel

Abstract:

The ability to grow boron-doped diamond epilayers of high crystalline quality is a prerequisite for the fabrication of diamond power electronic devices, in particular high voltage diodes and metal-oxide-semiconductor (MOS) transistors. Boron and intrinsic diamond layers are homoepitaxially overgrown by microwave assisted chemical vapour deposition (MWCVD) on single crystal high pressure, high temperature (HPHT) grown bulk diamond substrates. Various epilayer thicknesses were grown, with dopant concentrations ranging from 1021 atom/cm³ at nanometer thickness in the case of 'delta doping', up 1016 atom/cm³ and 50µm thickness or high electric field drift regions. The crystalline quality of these overgrown layers as regards defects, strain, distortion… is critical for the device performance through its relation to the final electrical properties (Hall mobility, breakdown voltage...). In addition to the optimization of the epilayer growth conditions in the MWCVD reactor, other important questions related to the crystalline quality of the overgrown layer(s) are: 1) what is the dependence on the bulk quality and surface preparation methods of the HPHT diamond substrate? 2) how do defects already present in the substrate crystal propagate into the overgrown layer; 3) what types of new defects are created during overgrowth, what are their growth mechanisms, and how can these defects be avoided? 4) how can we relate in a quantitative manner parameters related to the measured crystalline quality of the boron doped layer to the electronic properties of final processed devices? We describe synchrotron-based techniques developed to address these questions. These techniques allow the visualization of local defects and crystal distortion which complements the data obtained by other well-established analysis methods such as AFM, SIMS, Hall conductivity…. We have used Grazing Incidence X-ray Diffraction (GIXRD) at the ID01 beamline of the ESRF to study lattice parameters and damage (strain, tilt and mosaic spread) both in diamond substrate near surface layers and in thick (10–50 µm) overgrown boron doped diamond epi-layers. Micro- and nano-section topography have been carried out at both the BM05 and ID06-ESRF) beamlines using rocking curve imaging techniques to study defects which have propagated from the substrate into the overgrown layer(s) and their influence on final electronic device performance. These studies were performed using various commercially sourced HPHT grown diamond substrates, with the MWCVD overgrowth carried out at the Fraunhofer IAF-Germany. The synchrotron results are in good agreement with low-temperature (5°K) cathodoluminescence spectroscopy carried out on the grown samples using an Inspect F5O FESEM fitted with an IHR spectrometer.

Keywords: synchrotron X-ray diffaction, crystalline quality, defects, diamond overgrowth, rocking curve imaging

Procedia PDF Downloads 243
48 qPCR Method for Detection of Halal Food Adulteration

Authors: Gabriela Borilova, Monika Petrakova, Petr Kralik

Abstract:

Nowadays, European producers are increasingly interested in the production of halal meat products. Halal meat has been increasingly appearing in the EU's market network and meat products from European producers are being exported to Islamic countries. Halal criteria are mainly related to the origin of muscle used in production, and also to the way products are obtained and processed. Although the EU has legislatively addressed the question of food authenticity, the circumstances of previous years when products with undeclared horse or poultry meat content appeared on EU markets raised the question of the effectiveness of control mechanisms. Replacement of expensive or not-available types of meat for low-priced meat has been on a global scale for a long time. Likewise, halal products may be contaminated (falsified) by pork or food components obtained from pigs. These components include collagen, offal, pork fat, mechanically separated pork, emulsifier, blood, dried blood, dried blood plasma, gelatin, and others. These substances can influence sensory properties of the meat products - color, aroma, flavor, consistency and texture or they are added for preservation and stabilization. Food manufacturers sometimes access these substances mainly due to their dense availability and low prices. However, the use of these substances is not always declared on the product packaging. Verification of the presence of declared ingredients, including the detection of undeclared ingredients, are among the basic control procedures for determining the authenticity of food. Molecular biology methods, based on DNA analysis, offer rapid and sensitive testing. The PCR method and its modification can be successfully used to identify animal species in single- and multi-ingredient raw and processed foods and qPCR is the first choice for food analysis. Like all PCR-based methods, it is simple to implement and its greatest advantage is the absence of post-PCR visualization by electrophoresis. qPCR allows detection of trace amounts of nucleic acids, and by comparing an unknown sample with a calibration curve, it can also provide information on the absolute quantity of individual components in the sample. Our study addresses a problem that is related to the fact that the molecular biological approach of most of the work associated with the identification and quantification of animal species is based on the construction of specific primers amplifying the selected section of the mitochondrial genome. In addition, the sections amplified in conventional PCR are relatively long (hundreds of bp) and unsuitable for use in qPCR, because in DNA fragmentation, amplification of long target sequences is quite limited. Our study focuses on finding a suitable genomic DNA target and optimizing qPCR to reduce variability and distortion of results, which is necessary for the correct interpretation of quantification results. In halal products, the impact of falsification of meat products by the addition of components derived from pigs is all the greater that it is not just about the economic aspect but above all about the religious and social aspect. This work was supported by the Ministry of Agriculture of the Czech Republic (QJ1530107).

Keywords: food fraud, halal food, pork, qPCR

Procedia PDF Downloads 230
47 Regional Barriers and Opportunities for Developing Innovation Networks in the New Media Industry: A Comparison between Beijing and Bangalore Regional Innovation Systems

Authors: Cristina Chaminade, Mandar Kulkarni, Balaji Parthasarathy, Monica Plechero

Abstract:

The characteristics of a regional innovation system (RIS) and the specificity of the knowledge base of an industry may contribute to create peculiar paths for innovation and development of firms’ geographic extended innovation networks. However, the relative empirical evidence in emerging economies remains underexplored. The paper aims to fill the research gap by means of some recent qualitative research conducted in 2016 in Beijing (China) and Bangalore (India). It analyzes cases studies of firms in the new media industry, a sector that merges different IT competences with competences from other knowledge domains and that is emerging in those RIS. The results show that while in Beijing the new media sector results to be more in line with the existing institutional setting and governmental goals aimed at targeting specific social aspects and social problems of the population, in Bangalore it remains a more spontaneous firms-led process. In Beijing what matters for the development of innovation networks is the governmental setting and the national and regional strategies to promote science and technology in this sector, internet and mass innovation. The peculiarities of recent governmental policies aligned to the domestic goals may provide good possibilities for start-ups to develop innovation networks. However, due to the specificities of those policies targeting the Chinese market, networking outside the domestic market are not so promoted. Moreover, while some institutional peculiarities, such as a culture of collaboration in the region, may be favorable for local networking, regulations related to Internet censorship may limit the use of global networks particularly when based on virtual spaces. Mainly firms with already some foreign experiences and contact take advantage of global networks. In Bangalore, the role of government in pushing networking for the new media industry at the present stage is quite absent at all geographical levels. Indeed there is no particular strategic planning or prioritizing in the region toward the new media industry, albeit one industrial organization has emerged to represent the animation industry interests. This results in a lack of initiatives for sustaining the integration of complementary knowledge into the local portfolio of IT specialization. Firms actually involved in the new media industry face institutional constrains related to a poor level of local trust and cooperation, something that does not allow for full exploitation of local linkages. Moreover, knowledge-provider organizations in Bangalore remain still a solid base for the IT domain, but not for other domains. Initiatives to link to international networks seem therefore more the result of individual entrepreneurial actions aimed at acquiring complementary knowledge and competencies from different domains and exploiting potentiality in different markets. From those cases, it emerges that role of government, soft institutions and organizations in the two RIS differ substantially in the creation of barriers and opportunities for the development of innovation networks and their specific aim.

Keywords: regional innovation system, emerging economies, innovation network, institutions, organizations, Bangalore, Beijing

Procedia PDF Downloads 293
46 Predictive Maintenance: Machine Condition Real-Time Monitoring and Failure Prediction

Authors: Yan Zhang

Abstract:

Predictive maintenance is a technique to predict when an in-service machine will fail so that maintenance can be planned in advance. Analytics-driven predictive maintenance is gaining increasing attention in many industries such as manufacturing, utilities, aerospace, etc., along with the emerging demand of Internet of Things (IoT) applications and the maturity of technologies that support Big Data storage and processing. This study aims to build an end-to-end analytics solution that includes both real-time machine condition monitoring and machine learning based predictive analytics capabilities. The goal is to showcase a general predictive maintenance solution architecture, which suggests how the data generated from field machines can be collected, transmitted, stored, and analyzed. We use a publicly available aircraft engine run-to-failure dataset to illustrate the streaming analytics component and the batch failure prediction component. We outline the contributions of this study from four aspects. First, we compare the predictive maintenance problems from the view of the traditional reliability centered maintenance field, and from the view of the IoT applications. When evolving to the IoT era, predictive maintenance has shifted its focus from ensuring reliable machine operations to improve production/maintenance efficiency via any maintenance related tasks. It covers a variety of topics, including but not limited to: failure prediction, fault forecasting, failure detection and diagnosis, and recommendation of maintenance actions after failure. Second, we review the state-of-art technologies that enable a machine/device to transmit data all the way through the Cloud for storage and advanced analytics. These technologies vary drastically mainly based on the power source and functionality of the devices. For example, a consumer machine such as an elevator uses completely different data transmission protocols comparing to the sensor units in an environmental sensor network. The former may transfer data into the Cloud via WiFi directly. The latter usually uses radio communication inherent the network, and the data is stored in a staging data node before it can be transmitted into the Cloud when necessary. Third, we illustrate show to formulate a machine learning problem to predict machine fault/failures. By showing a step-by-step process of data labeling, feature engineering, model construction and evaluation, we share following experiences: (1) what are the specific data quality issues that have crucial impact on predictive maintenance use cases; (2) how to train and evaluate a model when training data contains inter-dependent records. Four, we review the tools available to build such a data pipeline that digests the data and produce insights. We show the tools we use including data injection, streaming data processing, machine learning model training, and the tool that coordinates/schedules different jobs. In addition, we show the visualization tool that creates rich data visualizations for both real-time insights and prediction results. To conclude, there are two key takeaways from this study. (1) It summarizes the landscape and challenges of predictive maintenance applications. (2) It takes an example in aerospace with publicly available data to illustrate each component in the proposed data pipeline and showcases how the solution can be deployed as a live demo.

Keywords: Internet of Things, machine learning, predictive maintenance, streaming data

Procedia PDF Downloads 364
45 Health and Greenhouse Gas Emission Implications of Reducing Meat Intakes in Hong Kong

Authors: Cynthia Sau Chun Yip, Richard Fielding

Abstract:

High meat and especially red meat intakes are significantly and positively associated with a multiple burden of diseases and also high greenhouse gas (GHG) emissions. This study investigated population meat intake patterns in Hong Kong. It quantified the burden of disease and GHG emission outcomes by modeling to adjust Hong Kong population meat intakes to recommended healthy levels. It compared age- and sex-specific population meat, fruit and vegetable intakes obtained from a population survey among adults aged 20 years and over in Hong Kong in 2005-2007, against intake recommendations suggested in the Modelling System to Inform the Revision of the Australian Guide to Healthy Eating (AGHE-2011-MS) technical document. This study found that meat and meat alternatives, especially red meat intakes among Hong Kong males aged 20+ years and over are significantly higher than recommended. Red meat intakes among females aged 50-69 years and other meat and alternatives intakes among aged 20-59 years are also higher than recommended. Taking the 2005-07 age- and sex-specific population meat intake as baselines, three counterfactual scenarios of adjusting Hong Kong adult population meat intakes to AGHE-2011-MS and Pre-2011 AGHE recommendations by the year 2030 were established. Consequent energy intake gaps were substituted with additional legume, fruit and vegetable intakes. To quantify the consequent GHG emission outcomes associated with Hong Kong meat intakes, Cradle-to-ready-to-eat lifecycle assessment emission outcome modelling was used. Comparative risk assessment of burden of disease model was used to quantify the health outcomes. This study found adjusting meat intakes to recommended levels could reduce Hong Kong GHG emission by 17%-44% when compared against baseline meat intake emissions, and prevent 2,519 to 7,012 premature deaths in males and 53 to 1,342 in females, as well as multiple burden of diseases when compared to the baseline meat intake scenario. Comparing lump sum meat intake reduction and outcome measures across the entire population, and using emission factors, and relative risks from individual studies in previous co-benefit studies, this study used age- and sex-specific input and output measures, emission factors and relative risks obtained from high quality meta-analysis and meta-review respectively, and has taken government dietary recommendations into account. Hence evaluations in this study are of better quality and more reflective of real life practices. Further to previous co-benefit studies, this study pinpointed age- and sex-specific population and meat-type-specific intervention points and leverages. When compared with similar studies in Australia, this study also showed that intervention points and leverages among populations in different geographic and cultural background could be different, and that globalization also globalizes meat consumption emission effects. More regional and cultural specific evaluations are recommended to promote more sustainable meat consumption and enhance global food security.

Keywords: burden of diseases, greenhouse gas emissions, Hong Kong diet, sustainable meat consumption

Procedia PDF Downloads 293
44 Exposing The Invisible

Authors: Kimberley Adamek

Abstract:

According to the Council on Tall Buildings, there has been a rapid increase in the construction of tall or “megatall” buildings over the past two decades. Simultaneously, the New England Journal of Medicine has reported that there has been a steady increase in climate related natural disasters since the 1970s; the eastern expansion of the USA's infamous Tornado Alley being just one of many current issues. In the future, this could mean that tall buildings, which already guide high speed winds down to pedestrian levels would have to withstand stronger forces and protect pedestrians in more extreme ways. Although many projects are required to be verified within wind tunnels and a handful of cities such as San Francisco have included wind testing within building code standards, there are still many examples where wind is only considered for basic loading. This typically results in and an increase of structural expense and unwanted mitigation strategies that are proposed late within a project. When building cities, architects rarely consider how each building alters the invisible patterns of wind and how these alterations effect other areas in different ways later on. It is not until these forces move, overpower and even destroy cities that people take notice. For example, towers have caused winds to blow objects into people (Walkie-Talkie Tower, Leeds, England), cause building parts to vibrate and produce loud humming noises (Beetham Tower, Manchester), caused wind tunnels in streets as well as many other issues. Alternatively, there exist towers which have used their form to naturally draw in air and ventilate entire facilities in order to eliminate the needs for costly HVAC systems (The Met, Thailand) and used their form to increase wind speeds to generate electricity (Bahrain Tower, Dubai). Wind and weather exist and effect all parts of the world in ways such as: Science, health, war, infrastructure, catastrophes, tourism, shopping, media and materials. Working in partnership with a leading wind engineering company RWDI, a series of tests, images and animations documenting discovered interactions of different building forms with wind will be collected to emphasize the possibilities for wind use to architects. A site within San Francisco (due to its increasing tower development, consistently wind conditions and existing strict wind comfort criteria) will host a final design. Iterations of this design will be tested within the wind tunnel and computational fluid dynamic systems which will expose, utilize and manipulate wind flows to create new forms, technologies and experiences. Ultimately, this thesis aims to question the amount which the environment is allowed to permeate building enclosures, uncover new programmatic possibilities for wind in buildings, and push the boundaries of working with the wind to ensure the development and safety of future cities. This investigation will improve and expand upon the traditional understanding of wind in order to give architects, wind engineers as well as the general public the ability to broaden their scope in order to productively utilize this living phenomenon that everyone constantly feels but cannot see.

Keywords: wind engineering, climate, visualization, architectural aerodynamics

Procedia PDF Downloads 347
43 Abortion Care Education in U.S. Accreditation Commission for Midwifery Education Certified Nurse Midwifery Programs: A Call For Expansion

Authors: Maggie Hall, Haley O'Neill

Abstract:

The U.S. faces a severe shortage of abortion providers, exacerbated by the June 2022 Dobbs v. Jackson Women’s Health Organization decision. Midwives, especially certified nurse midwives, are well-positioned to fill this gap in abortion care. However, a lack of clinical education and training prevents midwives from exercising their full scope of practice. National and international organizations that set obstetrics and midwifery education standards, including the International Confederation of Midwives, American College of Obstetricians and Gynecologists, and American Public Health Association, call for expansion of midwifery-managed abortion care through the first trimester. In the U.S., midwifery programs are accredited based on compliance with ACME standards and compliance is a prerequisite for the American Midwifery Certification Board exams. We conducted a literature review of studies in the last five years regarding abortion didactic and clinical education barriers via CINAHL, EBSCO and PubMed database reviews. We gave preference for primary sources within the last five years; however, due to the rapid changes in abortion education and access, we also included literature from 2012-2022. We evaluated ACME-accredited programs in relation to their geography within abortion-protected or restricted states and assessed state-specific barriers to abortion care education and provision as clinical students. There are 43 AMCB-accredited midwifery schools in 28 states across the U.S. Twenty schools (47%) are in the 15 states in which advanced practice clinicians can provide non-surgical abortion care, such as medication abortion and MVA procedures. Twenty-four schools (56%) are in the 16 states in which abortion care provision is restricted to Licensed Physicians and cannot offer in-state clinical training opportunities for midwifery students. Six schools are in the five states in which abortion is completely banned and are geographically concentrated in the southernmost region of the U.S., including Alabama, Kentucky, Louisiana, Tennessee, and Texas. Subsequently, these programs cannot offer in-state clinical training opportunities for midwifery students. Notably, there are seven ACME programs in six states that do not restrict abortion access by gestational age, including Colorado, Connecticut, Washington, D.C., New Jersey, New Mexico, and Oregon. These programs may be uniquely positioned for midwifery involvement in abortion care beyond the first trimester. While the following states don’t house ACME programs, abortion care can be provided by advanced practice clinicians in Rhode Island, Delaware, Hawaii, Maine, Maryland, Montana, New Hampshire, and Vermont, offering clinical placement and/or new ACME program development opportunities. We identify existing barriers to clinical education and training opportunities for midwifery-managed abortion care, which are both geographic and institutional in nature. We recommend expansion and standardization of clinical education and training opportunities for midwifery-managed abortion care in ACME-accredited programs to improve access to abortion care. Midwifery programs and teaching hospitals need to expand education, training, and residency opportunities for midwifery students to strengthen access to midwife-managed abortion care. ACNM and ACME should re-evaluate accreditation criteria and the implications of ACME programs in states where students are not able to learn abortion care in clinical contexts due to state-specific abortion restrictions.

Keywords: midwifery education, abortion, abortion education, abortion access

Procedia PDF Downloads 57
42 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico

Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón

Abstract:

The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.

Keywords: interaction, political communication, social network analysis, Twitter

Procedia PDF Downloads 201
41 Phytoplankton Structure and Invasive Cyanobacterial Species of Polish Temperate Lakes: Their Associations with Environmental Parameters and Findings About Their Toxic Properties

Authors: Tumer Orhun Aykut, Robin Michael Crucitti-Thoo, Agnieszka Rudak, Iwona Jasser

Abstract:

Due to eutrophication connected to the growing human population, intensive agriculture, industrialization, and reinforcement of global warming, freshwater resources are changing negatively in every region of the World. This change also concerns the replacement of native species by invasive ones that can spread in many ways. Biological invasions are a developing problem to ecosystem continuity and their presence is mostly common in freshwater bodies. The occurrence and potential invasion of the species depends on associations between abiotic and biotic variables. Due to climate change, many species can extend their range from low to high latitudes and differ in their geographic ranges. In addition, the hydrological issues strongly influence the physicochemical parameters and biological processes, especially the growth rates of species and bloom formation of Cyanobacteria. Among tropical invasive species noted in temperate Europe, Raphidiopsis raciborskii, Chrysosporum bergii, and Sphaerospermopsis aphanizomenoides are considered a serious threat. R. raciborskii being the most important one as it is already known as a highly invasive species in almost all around the World, is a freshwater, planktonic, filamentous, potentially toxic, and nitrogen-fixing Cyanobacteria. This study aimed to investigate the presence of invasive cyanobacterial species in temperate lakes in Northeastern Poland, reveal the composition of phytoplankton communities, determine the effect of environmental variables, and identify the toxic properties of invasive Cyanobacteria and other phytoplankton groups. Our study was conducted in twenty-five lakes in August 2023. The lakes represent a geographical gradient from central Poland to the Northeast and have different depths, sizes, and trophic statuses. According to performed analyses, the presence of R. raciborskii was recorded in five lakes: Szczęśliwickie (Warsaw), Mikołajskie, Rekąty, Sztynorckie (Masurian Lakeland), and further East, in Pobondzie (Suwałki Lakeland). On the other hand, C. bergii was found in three lakes: Rekąty (Masurian Lakeland), Żabinki, and Pobondzie (Suwałki Lakeland), while S. aphanizomenoides only in Pobondzie (Suwałki Lakeland). Maximum phytoplankton diversity was found in Lake Rekąty, a small and shallow lake mentioned above. The highest phytoplankton biomass was detected in highly eutrophic Lake Suskie, followed by Lake Sztynorckie. In this last lake, which is also strongly eutrophic, the highest biomass of R. raciborskii was found. Cyanophyceae had the highest biovolume and was followed by Chlorophyceae in the entire study. Numerous environmental parameters, including nutrients, were studied, and their relationships with the invasive species and the whole phytoplankton community will be presented. In addition, toxic properties of environmental DNA results from each lake will also be shown. In conclusion, investigated invasive cyanobacterial species were found in a few Northeastern Polish temperate lakes, but the number of individuals was quite low, so the biomass was quite low. It has been observed that the structure of phytoplankton changed based on lakes and environmental parameters.

Keywords: biological invasion, cyanobacteria, cyanotoxins, phytoplankton ecology, sanger sequencing

Procedia PDF Downloads 12
40 Multi-Criteria Geographic Information System Analysis of the Costs and Environmental Impacts of Improved Overland Tourist Access to Kaieteur National Park, Guyana

Authors: Mark R. Leipnik, Dahlia Durga, Linda Johnson-Bhola

Abstract:

Kaieteur is the most iconic National Park in the rainforest-clad nation of Guyana in South America. However, the magnificent 226-meter-high waterfall at its center is virtually inaccessible by surface transportation, and the occasional charter flights to the small airstrip in the park are too expensive for many tourists and residents. Thus, the largest waterfall in all of Amazonia, where the Potaro River plunges over a single free drop twice as high as Victoria Falls, remains preserved in splendid isolation inside a 57,000-hectare National Park established by the British in 1929, in the deepest recesses of a remote jungle canyon. Kaieteur Falls are largely unseen firsthand, but images of the falls are depicted on the Guyanese twenty dollar note, in every Guyanese tourist promotion, and on many items in the national capital of Georgetown. Georgetown is only 223-241 kilometers away from the falls. The lack of a single mileage figure demonstrates there is no single overland route. Any journey, except by air, involves changes of vehicles, a ferry ride, and a boat ride up a jungle river. It also entails hiking for many hours to view the falls. Surface access from Georgetown (or any city) is thus a 3-5 day-long adventure; even in the dry season, during the two wet seasons, travel is a particularly sticky proposition. This journey was made overland by the paper's co-author Dahlia Durga. This paper focuses on potential ways to improve overland tourist access to Kaieteur National Park from Georgetown. This is primarily a GIS-based analysis, using multiple criteria to determine the least cost means of creating all-weather road access to the area near the base of the falls while minimizing distance and elevation changes. Critically, it also involves minimizing the number of new bridges required to be built while utilizing the one existing ferry crossings of a major river. Cost estimates are based on data from road and bridge construction engineers operating currently in the interior of Guyana. The paper contains original maps generated with ArcGIS of the potential routes for such an overland connection, including the one deemed optimal. Other factors, such as the impact on endangered species habitats and Indigenous populations, are considered. This proposed infrastructure development is taking place at a time when Guyana is undergoing the largest boom in its history due to revenues from offshore oil and gas development. Thus, better access to the most important tourist attraction in the country is likely to happen eventually in some manner. But the questions of the most environmentally sustainable and least costly alternatives for such access remain. This paper addresses those questions and others related to access to this magnificent natural treasure and the tradeoffs such access will have on the preservation of the currently pristine natural environment of Kaieteur Falls.

Keywords: nature tourism, GIS, Amazonia, national parks

Procedia PDF Downloads 132
39 Worldwide GIS Based Earthquake Information System/Alarming System for Microzonation/Liquefaction and It’s Application for Infrastructure Development

Authors: Rajinder Kumar Gupta, Rajni Kant Agrawal, Jaganniwas

Abstract:

One of the most frightening phenomena of nature is the occurrence of earthquake as it has terrible and disastrous effects. Many earthquakes occur every day worldwide. There is need to have knowledge regarding the trends in earthquake occurrence worldwide. The recoding and interpretation of data obtained from the establishment of the worldwide system of seismological stations made this possible. From the analysis of recorded earthquake data, the earthquake parameters and source parameters can be computed and the earthquake catalogues can be prepared. These catalogues provide information on origin, time, epicenter locations (in term of latitude and longitudes) focal depths, magnitude and other related details of the recorded earthquakes. Theses catalogues are used for seismic hazard estimation. Manual interpretation and analysis of these data is tedious and time consuming. A geographical information system is a computer based system designed to store, analyzes and display geographic information. The implementation of integrated GIS technology provides an approach which permits rapid evaluation of complex inventor database under a variety of earthquake scenario and allows the user to interactively view results almost immediately. GIS technology provides a powerful tool for displaying outputs and permit to users to see graphical distribution of impacts of different earthquake scenarios and assumptions. An endeavor has been made in present study to compile the earthquake data for the whole world in visual Basic on ARC GIS Plate form so that it can be used easily for further analysis to be carried out by earthquake engineers. The basic data on time of occurrence, location and size of earthquake has been compiled for further querying based on various parameters. A preliminary analysis tool is also provided in the user interface to interpret the earthquake recurrence in region. The user interface also includes the seismic hazard information already worked out under GHSAP program. The seismic hazard in terms of probability of exceedance in definite return periods is provided for the world. The seismic zones of the Indian region are included in the user interface from IS 1893-2002 code on earthquake resistant design of buildings. The City wise satellite images has been inserted in Map and based on actual data the following information could be extracted in real time: • Analysis of soil parameters and its effect • Microzonation information • Seismic hazard and strong ground motion • Soil liquefaction and its effect in surrounding area • Impacts of liquefaction on buildings and infrastructure • Occurrence of earthquake in future and effect on existing soil • Propagation of earth vibration due of occurrence of Earthquake GIS based earthquake information system has been prepared for whole world in Visual Basic on ARC GIS Plate form and further extended micro level based on actual soil parameters. Individual tools has been developed for liquefaction, earthquake frequency etc. All information could be used for development of infrastructure i.e. multi story structure, Irrigation Dam & Its components, Hydro-power etc in real time for present and future.

Keywords: GIS based earthquake information system, microzonation, analysis and real time information about liquefaction, infrastructure development

Procedia PDF Downloads 298
38 Geographic Mapping of Tourism in Rural Areas: A Case Study of Cumbria, United Kingdom

Authors: Emma Pope, Demos Parapanos

Abstract:

Rural tourism has become more obvious and prevalent, with tourists’ increasingly seeking authentic experiences. This movement accelerated post-Covid, putting destinations in danger of reaching levels of saturation called ‘overtourism’. Whereas the phenomenon of overtourism has been frequently discussed in the urban context by academics and practitioners over recent years, it has hardly been referred to in the context of rural tourism, where perhaps it is even more difficult to manage. Rural tourism was historically considered small-scale, marked by its traditional character and by having little impact on nature and rural society. The increasing number of rural areas experiencing overtourism, however, demonstrates the need for new approaches, especially as the impacts and enablers of overtourism are context specific. Cumbria, with approximately 47 million visitors each year, and 23,000 operational enterprises, is one of these rural areas experiencing overtourism in the UK. Using the county of Cumbria as an example, this paper aims to explore better planning and management in rural destinations by clustering the area into rural and ‘urban-rural’ tourism zones. To achieve the aim, this study uses secondary data from a variety of sources to identify variables relating to visitor economy development and demand. These data include census data relating to population and employment, tourism industry-specific data including tourism revenue, visitor activities, and accommodation stock, and big data sources such as Trip Advisor and All Trails. The combination of these data sources provides a breadth of tourism-related variables. The subsequent analysis of this data draws upon various validated models. For example, tourism and hospitality employment density, territorial tourism pressure, and accommodation density. In addition to these statistical calculations, other data are utilized to further understand the context of these zones, for example, tourist services, attractions, and activities. The data was imported into ARCGIS where the density of the different variables is visualized on maps. This study aims to provide an understanding of the geographical context of visitor economy development and tourist behavior in rural areas. The findings contribute to an understanding of the spatial dynamics of tourism within the region of Cumbria through the creation of thematized maps. Different zones of tourism industry clusters are identified, which include elements relating to attractions, enterprises, infrastructure, tourism employment and economic impact. These maps visualize hot and cold spots relating to a variety of tourism contexts. It is believed that the strategy used to provide a visual overview of tourism development and demand in Cumbria could provide a strategic tool for rural areas to better plan marketing opportunities and avoid overtourism. These findings can inform future sustainability policy and destination management strategies within the areas through an understanding of the processes behind the emergence of both hot and cold spots. It may mean that attract and disperse needs to be reviewed in terms of a strategic option. In other words, to use sector or zonal policies for the individual hot or cold areas with transitional zones dependent upon local economic, social and environmental factors.

Keywords: overtourism, rural tourism, sustainable tourism, tourism planning, tourism zones

Procedia PDF Downloads 58
37 Religious Government Interaction in Urban Settings

Authors: Rebecca Sager, Gary Adler, Damon Mayrl, Jonathan Cooley

Abstract:

The United States’ unique constitutional structure and religious roots have fostered the flourishing of local communities through the close interaction of church and state. Today, these local relationships play out in these circumstances, including increased religious diversity and changing jurisprudence to more accommodating church-state interaction. This project seeks to understand the meanings of church-state interaction among diverse religious leaders in a variety of local settings. Using data from interviews with over 200 religious leaders in six states in the US, we examine how religious groups interact with various non-elected and elected government officials. We have interviewed local religious actors in eight communities characterized by the difference in location and religious homogeneity. These include a small city within a major metropolitan area, several religiously diverse cities in various areas across the country, a small college town with religious diversity set in a religiously-homogenous rural area, and a small farming community with minimal religious diversity. We identified three types of religious actors in each of our geographic areas: congregations, religious non-profit organizations, and clergy coalitions. Given the well-known difficulties in identifying religious organizations, we used the following to construct a local population list from which to sample: the Association of Religion Data Archives ProPublica’s Nonprofit Explorer, Guidestar, and the Internal Revenue Service Exempt Business Master File. Our sample for selecting interviewees were stratified by three criteria: religious tradition (Christian v. non-Christian), sectarian orientation (Mainline/Catholic v. Evangelical Protestant), and organizational form (congregation vs. other). Each interview included the elicitation of local church-state interactions experienced by the organization and organizational members, the enumeration of information sources for navigating church-state interactions, and the personal and community background of interviewees. We coded interviews to identify the cognitive schema of “church” and “state,” the models of legitimate relations between the two, and discretion rules for managing interaction and avoiding conflict. We also enumerate arenas in which and issues for which local state officials are engaged. In this paper, we focus on Korean religious groups and examine how their interactions differ from other congregations, including other immigrant congregations. These churches were particularly common in one large metropolitan area. We find that Korean churches are much more likely to be concerned about any governmental interactions and have fewer connections than non-Korean churches leading to more disconnection from their communities. We argue that due to their status as new immigrant churches without a lot of community ties for many members and being in a large city, Korean churches were particularly concerned about too much interaction with any type of government officials, even ones that could be potentially helpful. While other immigrant churches were somewhat willing to work with government groups, such as Latino-based Catholic groups, Korean churches were the least likely to want to create these connections. Understanding these churches and how immigrant church identity varies and creates different types of interaction is crucial to understanding how church/state interaction can be more meaningful over space and place.

Keywords: religion, congregations, government, politics

Procedia PDF Downloads 70
36 SkyCar Rapid Transit System: An Integrated Approach of Modern Transportation Solutions in the New Queen Elizabeth Quay, Perth, Western Australia

Authors: Arfanara Najnin, Michael W. Roach, Jr., Dr. Jianhong Cecilia Xia

Abstract:

The SkyCar Rapid Transit System (SRT) is an innovative intelligent transport system for the sustainable urban transport system. This system will increase the urban area network connectivity and decrease urban area traffic congestion. The SRT system is designed as a suspended Personal Rapid Transit (PRT) system that travels under a guideway 5m above the ground. A driver-less passenger is via pod-cars that hang from slender beams supported by columns that replace existing lamp posts. The beams are setup in a series of interconnecting loops providing non-stop travel from beginning to end to assure journey time. The SRT forward movement is effected by magnetic motors built into the guideway. Passenger stops are at either at line level 5m above the ground or ground level via a spur guideway that curves off the main thoroughfare. The main objective of this paper is to propose an integrated Automated Transit Network (ATN) technology for the future intelligent transport system in the urban built environment. To fulfil the objective a 4D simulated model in the urban built environment has been proposed by using the concept of SRT-ATN system. The methodology for the design, construction and testing parameters of a Technology Demonstrator (TD) for proof of concept and a Simulator (S) has been demonstrated. The completed TD and S will provide an excellent proving ground for the next development stage, the SRT Prototype (PT) and Pilot System (PS). This paper covered by a 4D simulated model in the virtual built environment is to effectively show how the SRT-ATN system works. OpenSim software has been used to develop the model in a virtual environment, and the scenario has been simulated to understand and visualize the proposed SkyCar Rapid Transit Network model. The SkyCar system will be fabricated in a modular form which is easily transported. The system would be installed in increasingly congested city centers throughout the world, as well as in airports, tourist resorts, race tracks and other special purpose for the urban community. This paper shares the lessons learnt from the proposed innovation and provides recommendations on how to improve the future transport system in urban built environment. Safety and security of passengers are prime factors to be considered for this transit system. Design requirements to meet the safety needs to be part of the research and development phase of the project. Operational safety aspects would also be developed during this period. The vehicles, the track and beam systems and stations are the main components that need to be examined in detail for safety and security of patrons. Measures will also be required to protect columns adjoining intersections from errant vehicles in vehicular traffic collisions. The SkyCar Rapid Transit takes advantage of all current disruptive technologies; batteries, sensors and 4G/5G communication and solar energy technologies which will continue to reduce the costs and make the systems more profitable. SkyCar's energy consumption is extremely low compared to other transport systems.

Keywords: SkyCar, rapid transit, Intelligent Transport System (ITS), Automated Transit Network (ATN), urban built environment, 4D Visualization, smart city

Procedia PDF Downloads 198
35 Improved Anatomy Teaching by the 3D Slicer Platform

Authors: Ahmedou Moulaye Idriss, Yahya Tfeil

Abstract:

Medical imaging technology has become an indispensable tool in many branches of the biomedical, health area, and research and is vitally important for the training of professionals in these fields. It is not only about the tools, technologies, and knowledge provided but also about the community that this training project proposes. In order to be able to raise the level of anatomy teaching in the medical school of Nouakchott in Mauritania, it is necessary and even urgent to facilitate access to modern technology for African countries. The role of technology as a key driver of justifiable development has long been recognized. Anatomy is an essential discipline for the training of medical students; it is a key element for the training of medical specialists. The quality and results of the work of a young surgeon depend on his better knowledge of anatomical structures. The teaching of anatomy is difficult as the discipline is being neglected by medical students in many academic institutions. However, anatomy remains a vital part of any medical education program. When anatomy is presented in various planes medical students approve of difficulties in understanding. They do not increase their ability to visualize and mentally manipulate 3D structures. They are sometimes not able to correctly identify neighbouring or associated structures. This is the case when they have to make the identification of structures related to the caudate lobe when the liver is moved to different positions. In recent decades, some modern educational tools using digital sources tend to replace old methods. One of the main reasons for this change is the lack of cadavers in laboratories with poorly qualified staff. The emergence of increasingly sophisticated mathematical models, image processing, and visualization tools in biomedical imaging research have enabled sophisticated three-dimensional (3D) representations of anatomical structures. In this paper, we report our current experience in the Faculty of Medicine in Nouakchott Mauritania. One of our main aims is to create a local learning community in the fields of anatomy. The main technological platform used in this project is called 3D Slicer. 3D Slicer platform is an open-source application available for free for viewing, analysis, and interaction with biomedical imaging data. Using the 3D Slicer platform, we created from real medical images anatomical atlases of parts of the human body, including head, thorax, abdomen, liver, and pelvis, upper and lower limbs. Data were collected from several local hospitals and also from the website. We used MRI and CT-Scan imaging data from children and adults. Many different anatomy atlases exist, both in print and digital forms. Anatomy Atlas displays three-dimensional anatomical models, image cross-sections of labelled structures and source radiological imaging, and a text-based hierarchy of structures. Open and free online anatomical atlases developed by our anatomy laboratory team will be available to our students. This will allow pedagogical autonomy and remedy the shortcomings by responding more fully to the objectives of sustainable local development of quality education and good health at the national level. To make this work a reality, our team produced several atlases available in our faculty in the form of research projects.

Keywords: anatomy, education, medical imaging, three dimensional

Procedia PDF Downloads 215
34 Rapid, Direct, Real-Time Method for Bacteria Detection on Surfaces

Authors: Evgenia Iakovleva, Juha Koivisto, Pasi Karppinen, J. Inkinen, Mikko Alava

Abstract:

Preventing the spread of infectious diseases throughout the worldwide is one of the most important tasks of modern health care. Infectious diseases not only account for one fifth of the deaths in the world, but also cause many pathological complications for the human health. Touch surfaces pose an important vector for the spread of infections by varying microorganisms, including antimicrobial resistant organisms. Further, antimicrobial resistance is reply of bacteria to the overused or inappropriate used of antibiotics everywhere. The biggest challenges in bacterial detection by existing methods are non-direct determination, long time of analysis, the sample preparation, use of chemicals and expensive equipment, and availability of qualified specialists. Therefore, a high-performance, rapid, real-time detection is demanded in rapid practical bacterial detection and to control the epidemiological hazard. Among the known methods for determining bacteria on the surfaces, Hyperspectral methods can be used as direct and rapid methods for microorganism detection on different kind of surfaces based on fluorescence without sampling, sample preparation and chemicals. The aim of this study was to assess the relevance of such systems to remote sensing of surfaces for microorganisms detection to prevent a global spread of infectious diseases. Bacillus subtilis and Escherichia coli with different concentrations (from 0 to 10x8 cell/100µL) were detected with hyperspectral camera using different filters as visible visualization of bacteria and background spots on the steel plate. A method of internal standards was applied for monitoring the correctness of the analysis results. Distances from sample to hyperspectral camera and light source are 25 cm and 40 cm, respectively. Each sample is optically imaged from the surface by hyperspectral imaging system, utilizing a JAI CM-140GE-UV camera. Light source is BeamZ FLATPAR DMX Tri-light, 3W tri-colour LEDs (red, blue and green). Light colors are changed through DMX USB Pro interface. The developed system was calibrated following a standard procedure of setting exposure and focused for light with λ=525 nm. The filter is ThorLabs KuriousTM hyperspectral filter controller with wavelengths from 420 to 720 nm. All data collection, pro-processing and multivariate analysis was performed using LabVIEW and Python software. The studied human eye visible and invisible bacterial stains clustered apart from a reference steel material by clustering analysis using different light sources and filter wavelengths. The calculation of random and systematic errors of the analysis results proved the applicability of the method in real conditions. Validation experiments have been carried out with photometry and ATP swab-test. The lower detection limit of developed method is several orders of magnitude lower than for both validation methods. All parameters of the experiments were the same, except for the light. Hyperspectral imaging method allows to separate not only bacteria and surfaces, but also different types of bacteria, such as Gram-negative Escherichia coli and Gram-positive Bacillus subtilis. Developed method allows skipping the sample preparation and the use of chemicals, unlike all other microbiological methods. The time of analysis with novel hyperspectral system is a few seconds, which is innovative in the field of microbiological tests.

Keywords: Escherichia coli, Bacillus subtilis, hyperspectral imaging, microorganisms detection

Procedia PDF Downloads 202
33 Advancements in Arthroscopic Surgery Techniques for Anterior Cruciate Ligament (ACL) Reconstruction

Authors: Islam Sherif, Ahmed Ashour, Ahmed Hassan, Hatem Osman

Abstract:

Anterior Cruciate Ligament (ACL) injuries are common among athletes and individuals participating in sports with sudden stops, pivots, and changes in direction. Arthroscopic surgery is the gold standard for ACL reconstruction, aiming to restore knee stability and function. Recent years have witnessed significant advancements in arthroscopic surgery techniques, graft materials, and technological innovations, revolutionizing the field of ACL reconstruction. This presentation delves into the latest advancements in arthroscopic surgery techniques for ACL reconstruction and their potential impact on patient outcomes. Traditionally, autografts from the patellar tendon, hamstring tendon, or quadriceps tendon have been commonly used for ACL reconstruction. However, recent studies have explored the use of allografts, synthetic scaffolds, and tissue-engineered grafts as viable alternatives. This abstract evaluates the benefits and potential drawbacks of each graft type, considering factors such as graft incorporation, strength, and risk of graft failure. Moreover, the application of augmented reality (AR) and virtual reality (VR) technologies in surgical planning and intraoperative navigation has gained traction. AR and VR platforms provide surgeons with detailed 3D anatomical reconstructions of the knee joint, enhancing preoperative visualization and aiding in graft tunnel placement during surgery. We discuss the integration of AR and VR in arthroscopic ACL reconstruction procedures, evaluating their accuracy, cost-effectiveness, and overall impact on surgical outcomes. Beyond graft selection and surgical navigation, patient-specific planning has gained attention in recent research. Advanced imaging techniques, such as MRI-based personalized planning, enable surgeons to tailor ACL reconstruction procedures to each patient's unique anatomy. By accounting for individual variations in the femoral and tibial insertion sites, this personalized approach aims to optimize graft placement and potentially improve postoperative knee kinematics and stability. Furthermore, rehabilitation and postoperative care play a crucial role in the success of ACL reconstruction. This abstract explores novel rehabilitation protocols, emphasizing early mobilization, neuromuscular training, and accelerated recovery strategies. Integrating technology, such as wearable sensors and mobile applications, into postoperative care can facilitate remote monitoring and timely intervention, contributing to enhanced rehabilitation outcomes. In conclusion, this presentation provides an overview of the cutting-edge advancements in arthroscopic surgery techniques for ACL reconstruction. By embracing innovative graft materials, augmented reality, patient-specific planning, and technology-driven rehabilitation, orthopedic surgeons and sports medicine specialists can achieve superior outcomes in ACL injury management. These developments hold great promise for improving the functional outcomes and long-term success rates of ACL reconstruction, benefitting athletes and patients alike.

Keywords: arthroscopic surgery, ACL, autograft, allograft, graft materials, ACL reconstruction, synthetic scaffolds, tissue-engineered graft, virtual reality, augmented reality, surgical planning, intra-operative navigation

Procedia PDF Downloads 71
32 Use of Machine Learning Algorithms to Pediatric MR Images for Tumor Classification

Authors: I. Stathopoulos, V. Syrgiamiotis, E. Karavasilis, A. Ploussi, I. Nikas, C. Hatzigiorgi, K. Platoni, E. P. Efstathopoulos

Abstract:

Introduction: Brain and central nervous system (CNS) tumors form the second most common group of cancer in children, accounting for 30% of all childhood cancers. MRI is the key imaging technique used for the visualization and management of pediatric brain tumors. Initial characterization of tumors from MRI scans is usually performed via a radiologist’s visual assessment. However, different brain tumor types do not always demonstrate clear differences in visual appearance. Using only conventional MRI to provide a definite diagnosis could potentially lead to inaccurate results, and so histopathological examination of biopsy samples is currently considered to be the gold standard for obtaining definite diagnoses. Machine learning is defined as the study of computational algorithms that can use, complex or not, mathematical relationships and patterns from empirical and scientific data to make reliable decisions. Concerning the above, machine learning techniques could provide effective and accurate ways to automate and speed up the analysis and diagnosis for medical images. Machine learning applications in radiology are or could potentially be useful in practice for medical image segmentation and registration, computer-aided detection and diagnosis systems for CT, MR or radiography images and functional MR (fMRI) images for brain activity analysis and neurological disease diagnosis. Purpose: The objective of this study is to provide an automated tool, which may assist in the imaging evaluation and classification of brain neoplasms in pediatric patients by determining the glioma type, grade and differentiating between different brain tissue types. Moreover, a future purpose is to present an alternative way of quick and accurate diagnosis in order to save time and resources in the daily medical workflow. Materials and Methods: A cohort, of 80 pediatric patients with a diagnosis of posterior fossa tumor, was used: 20 ependymomas, 20 astrocytomas, 20 medulloblastomas and 20 healthy children. The MR sequences used, for every single patient, were the following: axial T1-weighted (T1), axial T2-weighted (T2), FluidAttenuated Inversion Recovery (FLAIR), axial diffusion weighted images (DWI), axial contrast-enhanced T1-weighted (T1ce). From every sequence only a principal slice was used that manually traced by two expert radiologists. Image acquisition was carried out on a GE HDxt 1.5-T scanner. The images were preprocessed following a number of steps including noise reduction, bias-field correction, thresholding, coregistration of all sequences (T1, T2, T1ce, FLAIR, DWI), skull stripping, and histogram matching. A large number of features for investigation were chosen, which included age, tumor shape characteristics, image intensity characteristics and texture features. After selecting the features for achieving the highest accuracy using the least number of variables, four machine learning classification algorithms were used: k-Nearest Neighbour, Support-Vector Machines, C4.5 Decision Tree and Convolutional Neural Network. The machine learning schemes and the image analysis are implemented in the WEKA platform and MatLab platform respectively. Results-Conclusions: The results and the accuracy of images classification for each type of glioma by the four different algorithms are still on process.

Keywords: image classification, machine learning algorithms, pediatric MRI, pediatric oncology

Procedia PDF Downloads 127