Search results for: gambling decision
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4034

Search results for: gambling decision

2894 Digital Twin for Retail Store Security

Authors: Rishi Agarwal

Abstract:

Digital twins are emerging as a strong technology used to imitate and monitor physical objects digitally in real time across sectors. It is not only dealing with the digital space, but it is also actuating responses in the physical space in response to the digital space processing like storage, modeling, learning, simulation, and prediction. This paper explores the application of digital twins for enhancing physical security in retail stores. The retail sector still relies on outdated physical security practices like manual monitoring and metal detectors, which are insufficient for modern needs. There is a lack of real-time data and system integration, leading to ineffective emergency response and preventative measures. As retail automation increases, new digital frameworks must control safety without human intervention. To address this, the paper proposes implementing an intelligent digital twin framework. This collects diverse data streams from in-store sensors, surveillance, external sources, and customer devices and then Advanced analytics and simulations enable real-time monitoring, incident prediction, automated emergency procedures, and stakeholder coordination. Overall, the digital twin improves physical security through automation, adaptability, and comprehensive data sharing. The paper also analyzes the pros and cons of implementation of this technology through an Emerging Technology Analysis Canvas that analyzes different aspects of this technology through both narrow and wide lenses to help decision makers in their decision of implementing this technology. On a broader scale, this showcases the value of digital twins in transforming legacy systems across sectors and how data sharing can create a safer world for both retail store customers and owners.

Keywords: digital twin, retail store safety, digital twin in retail, digital twin for physical safety

Procedia PDF Downloads 73
2893 Developing a Green Strategic Management Model with regarding HSE-MS

Authors: Amin Padash, Gholam Reza Nabi Bid Hendi, Hassan Hoveidi

Abstract:

Purpose: The aim of this research is developing a model for green management based on Health, Safety and Environmental Management System. An HSE-MS can be a powerful tool for organizations to both improve their environmental, health and safety performance, and enhance their business efficiency to green management. Model: The model is developed in this study can be used for industries as guidelines for implementing green management issue by considering Health, Safety and Environmental Management System. Case Study: The Pars Special Economic / Energy Zone Organization on behalf of Iran’s Petroleum Ministry and National Iranian Oil Company (NIOC) manages and develops the South and North oil and gas fields in the region. Methodology: This research according to objective is applied and based on implementing is descriptive and also prescription. We used technique MCDM (Multiple Criteria Decision-Making) for determining the priorities of the factors. Based on process approach the model consists of the following steps and components: first factors involved in green issues are determined. Based on them a framework is considered. Then with using MCDM (Multiple Criteria Decision-Making) algorithms (TOPSIS) the priority of basic variables are determined. The authors believe that the proposed model and results of this research can aid industries managers to implement green subjects according to Health, Safety and Environmental Management System in a more efficient and effective manner. Finding and conclusion: Basic factors involved in green issues and their weights can be the main finding. Model and relation between factors are the other finding of this research. The case is considered Petrochemical Company for promoting the system of ecological industry thinking.

Keywords: Fuzzy-AHP method , green management, health, safety and environmental management system, MCDM technique, TOPSIS

Procedia PDF Downloads 412
2892 Belief-Based Games: An Appropriate Tool for Uncertain Strategic Situation

Authors: Saied Farham-Nia, Alireza Ghaffari-Hadigheh

Abstract:

Game theory is a mathematical tool to study the behaviors of a rational and strategic decision-makers, that analyze existing equilibrium in interest conflict situation and provides an appropriate mechanisms for cooperation between two or more player. Game theory is applicable for any strategic and interest conflict situation in politics, management and economics, sociology and etc. Real worlds’ decisions are usually made in the state of indeterminacy and the players often are lack of the information about the other players’ payoffs or even his own, which leads to the games in uncertain environments. When historical data for decision parameters distribution estimation is unavailable, we may have no choice but to use expertise belief degree, which represents the strength with that we believe the event will happen. To deal with belief degrees, we have use uncertainty theory which is introduced and developed by Liu based on normality, duality, subadditivity and product axioms to modeling personal belief degree. As we know, the personal belief degree heavily depends on the personal knowledge concerning the event and when personal knowledge changes, cause changes in the belief degree too. Uncertainty theory not only theoretically is self-consistent but also is the best among other theories for modeling belief degree on practical problem. In this attempt, we primarily reintroduced Expected Utility Function in uncertainty environment according to uncertainty theory axioms to extract payoffs. Then, we employed Nash Equilibrium to investigate the solutions. For more practical issues, Stackelberg leader-follower Game and Bertrand Game, as a benchmark models are discussed. Compared to existing articles in the similar topics, the game models and solution concepts introduced in this article can be a framework for problems in an uncertain competitive situation based on experienced expert’s belief degree.

Keywords: game theory, uncertainty theory, belief degree, uncertain expected value, Nash equilibrium

Procedia PDF Downloads 416
2891 The Impact of Bim Technology on the Whole Process Cost Management of Civil Engineering Projects in Kenya

Authors: Nsimbe Allan

Abstract:

The study examines the impact of Building Information Modeling (BIM) on the cost management of engineering projects, focusing specifically on the Mombasa Port Area Development Project. The objective of this research venture is to determine the mechanisms through which Building Information Modeling (BIM) facilitates stakeholder collaboration, reduces construction-related expenses, and enhances the precision of cost estimation. Furthermore, the study investigates barriers to execution, assesses the impact on the project's transparency, and suggests approaches to maximize resource utilization. The study, selected for its practical significance and intricate nature, conducted a Systematic Literature Review (SLR) using credible databases, including ScienceDirect and IEEE Xplore. To constitute the diverse sample, 69 individuals, including project managers, cost estimators, and BIM administrators, were selected via stratified random sampling. The data were obtained using a mixed-methods approach, which prioritized ethical considerations. SPSS and Microsoft Excel were applied to the analysis. The research emphasizes the crucial role that project managers, architects, and engineers play in the decision-making process (47% of respondents). Furthermore, a significant improvement in cost estimation accuracy was reported by 70% of the participants. It was found that the implementation of BIM resulted in enhanced project visibility, which in turn optimized resource allocation and facilitated the process of budgeting. In brief, the study highlights the positive impacts of Building Information Modeling (BIM) on collaborative decision-making and cost estimation, addresses challenges related to implementation, and provides solutions for the efficient assimilation and understanding of BIM principles.

Keywords: cost management, resource utilization, stakeholder collaboration, project transparency

Procedia PDF Downloads 69
2890 Protection of the Rights of Outsourced Employees and the Effect on Job Performance in Nigerian Banking Sector

Authors: Abiodun O. Ibude

Abstract:

Several organizations have devised the strategy of engaging the services of staff not directly employed by them in their production and service delivery. Some organizations also engage on contracting another organization to carry out a part of service or production process on their behalf. Outsourcing is becoming an important alternative employment option for most organizations. This paper attempts an exposition on the rights of workers within the more specific context of outsourcing as a human resource management phenomenon. Outsourced employees and their rights are treated conceptually and analytically in a generic sense as a mere subset of the larger whole, that is, labor. Outsourced employees derive their rights, like all workers, from their job context as well as the legal environment (municipal and global) in which they operate. The dynamics of globalization and the implications of this development for labor practices receive considerable attention in this exposition. In this regard, a guarded proposition is made, to examine the practice and effect of engaging outsourcing as an economic decision designed primarily to cut down on operational costs rather than a Human Resources Management decision to improve worker welfare. The population of the study was selected from purposive and simple random sampling techniques. Data obtained were analyzed through a simple percentage, Pearson product-moment correlation, and cross-tabulation. From the research conducted, it was discovered that, although outsourcing possesses opportunities for organizations, there are drawbacks arising from its implementation of job securities. It was also discovered that some employees are being exploited through this strategy. This gives rise to lower motivation and thereby decline in performance. In conclusion, there is need for examination of Human Resource Managers’ strategies that can serve as management policy tools for the protection of the rights of outsourced employees.

Keywords: legal environment, operational cost, outsourcing, protection

Procedia PDF Downloads 128
2889 A Framework on Data and Remote Sensing for Humanitarian Logistics

Authors: Vishnu Nagendra, Marten Van Der Veen, Stefania Giodini

Abstract:

Effective humanitarian logistics operations are a cornerstone in the success of disaster relief operations. However, for effectiveness, they need to be demand driven and supported by adequate data for prioritization. Without this data operations are carried out in an ad hoc manner and eventually become chaotic. The current availability of geospatial data helps in creating models for predictive damage and vulnerability assessment, which can be of great advantage to logisticians to gain an understanding on the nature and extent of the disaster damage. This translates into actionable information on the demand for relief goods, the state of the transport infrastructure and subsequently the priority areas for relief delivery. However, due to the unpredictable nature of disasters, the accuracy in the models need improvement which can be done using remote sensing data from UAVs (Unmanned Aerial Vehicles) or satellite imagery, which again come with certain limitations. This research addresses the need for a framework to combine data from different sources to support humanitarian logistic operations and prediction models. The focus is on developing a workflow to combine data from satellites and UAVs post a disaster strike. A three-step approach is followed: first, the data requirements for logistics activities are made explicit, which is done by carrying out semi-structured interviews with on field logistics workers. Second, the limitations in current data collection tools are analyzed to develop workaround solutions by following a systems design approach. Third, the data requirements and the developed workaround solutions are fit together towards a coherent workflow. The outcome of this research will provide a new method for logisticians to have immediately accurate and reliable data to support data-driven decision making.

Keywords: unmanned aerial vehicles, damage prediction models, remote sensing, data driven decision making

Procedia PDF Downloads 380
2888 Rethinking Urban Floodplain Management: The Case of Colombo, Sri Lanka

Authors: Malani Herath, Sohan Wijesekera, Jagath Munasingha

Abstract:

The impact of recent floods become significant, and the extraordinary flood events cause considerable damage to lives, properties, environment and negatively affect the whole development of Colombo urban region. Even though the Colombo urban region experiences recurrent flood impacts, several spatial planning interventions have been taken from time to time since early 20th century. All past plans have adopted a traditional approach to flood management, using infrastructural measures to reduce the chance of flooding together with rigid planning regulations. The existing flood risk management practices do not operate to be acceptable by the local community particular the urban poor. Researchers have constantly reported the differences in estimations of flood risk, priorities, concerns of experts and the local community. Risk-based decision making in flood management is not only a matter of technical facts; it has a significant bearing on how flood risk is viewed by local community and individuals. Moreover, sustainable flood management is an integrated approach, which highlights joint actions of experts and community. This indicates the necessity of further societal discussion on the acceptable level of flood risk indicators to prioritize and identify the appropriate flood management measures in Colombo. The understanding and evaluation of flood risk by local people are important to integrate in the decision-making process. This research questioned about the gap between the acceptable level of flood risk to spatial planners and to the local communities in Colombo. A comprehensive literature review was conducted to prepare a framework to analyze the public perception in Colombo. This research work identifies the factors that affect the variation of flood risk and acceptable levels to both local community and planning authorities.

Keywords: Colombo basin, public perception, urban flood risk, multi-criteria analysis

Procedia PDF Downloads 316
2887 Medical Decision-Making in Advanced Dementia from the Family Caregiver Perspective: A Qualitative Study

Authors: Elzbieta Sikorska-Simmons

Abstract:

Advanced dementia is a progressive terminal brain disease that is accompanied by a syndrome of difficult to manage symptoms and complications that eventually lead to death. The management of advanced dementia poses major challenges to family caregivers who act as patient health care proxies in making medical treatment decisions. Little is known, however, about how they manage advanced dementia and how their treatment choices influence the quality of patient life. This prospective qualitative study examines the key medical treatment decisions that family caregivers make while managing advanced dementia. The term ‘family caregiver’ refers to a relative or a friend who is primarily responsible for managing patient’s medical care needs and legally authorized to give informed consent for medical treatments. Medical decision-making implies a process of choosing between treatment options in response to patient’s medical care needs (e.g., worsening comorbid conditions, pain, infections, acute medical events). Family caregivers engage in this process when they actively seek treatments or follow recommendations by healthcare professionals. Better understanding of medical decision-making from the family caregiver perspective is needed to design interventions that maximize the quality of patient life and limit inappropriate treatments. Data were collected in three waves of semi-structured interviews with 20 family caregivers for patients with advanced dementia. A purposive sample of 20 family caregivers was recruited from a senior care center in Central Florida. The qualitative personal interviews were conducted by the author in 4-5 months intervals. The ethical approval for the study was obtained prior to the data collection. Advanced dementia was operationalized as stage five or higher on the Global Deterioration Scale (GDS) (i.e., starting with the GDS score of five, patients are no longer able survive without assistance due to major cognitive and functional impairments). Information about patients’ GDS scores was obtained from the Center’s Medical Director, who had an in-depth knowledge of each patient’s health and medical treatment history. All interviews were audiotaped and transcribed verbatim. The qualitative data analysis was conducted to answer the following research questions: 1) what treatment decisions do family caregivers make while managing the symptoms of advanced dementia and 2) how do these treatment decisions influence the quality of patient life? To validate the results, the author asked each participating family caregiver if the summarized findings accurately captured his/her experiences. The identified medical decisions ranged from seeking specialist medical care to end-of-life care. The most common decisions were related to arranging medical appointments, medication management, seeking treatments for pain and other symptoms, nursing home placement, and accessing community-based healthcare services. The most challenging and consequential decisions were related to the management of acute complications, hospitalizations, and discontinuation of treatments. Decisions that had the greatest impact on the quality of patient life and survival were triggered by traumatic falls, worsening psychiatric symptoms, and aspiration pneumonia. The study findings have important implications for geriatric nurses in the context of patient/caregiver-centered dementia care. Innovative nursing approaches are needed to support family caregivers to effectively manage medical care needs of patients with advanced dementia.

Keywords: advanced dementia, family caregiver, medical decision-making, symptom management

Procedia PDF Downloads 122
2886 Democratic Action as Insurgency: On Claude Lefort's Concept of the Political Regime

Authors: Lorenzo Buti

Abstract:

This paper investigates the nature of democratic action through a critical reading of Claude Lefort’s notion of the democratic ‘regime’. Lefort provides one of the most innovative accounts of the essential features of a democratic regime. According to him, democracy is a political regime that acknowledges the indeterminacy of a society and stages it as a contestation between competing political actors. As such, democracy provides the symbolic markers of society’s openness towards the future. However, despite their democratic features, the recent decades in late capitalist societies attest to a sense of the future becoming fixed and predetermined. This suggests that Lefort’s conception of democracy harbours a misunderstanding of the character and experience of democratic action. This paper examines this underlying tension in Lefort’s work. It claims that Lefort underestimates how a democratic regime, next to its symbolic function, also takes a materially constituted form with its particular dynamics of power relations. Lefort’s systematic dismissal of this material dimension for democratic action can lead to the contemporary paradoxical situation where democracy’s symbolic markers are upheld (free elections, public debate, dynamic between government and opposition in parliament,…) but the room for political decision-making is constrained due to a myriad of material constraints (e.g., market pressures, institutional inertias). The paper draws out the implications for the notion of democratic action. Contra Lefort, it argues that democratic action necessarily targets the material conditions that impede the capacity for decision-making on the basis of equality and liberty. This analysis shapes our understanding of democratic action in two ways. First, democratic action takes an asymmetrical, insurgent form, as a contestation of material power relations from below. Second, it reveals an ambivalent position vis-à-vis the political regime: democratic action is symbolically made possible by the democratic dispositive, but it contests the constituted form that the democratic regime takes.

Keywords: Claude Lefort, democratic action, material constitution, political regime

Procedia PDF Downloads 143
2885 Knowledge Management Strategies within a Corporate Environment of Papers

Authors: Daniel J. Glauber

Abstract:

Knowledge transfer between personnel could benefit an organization’s improved competitive advantage in the marketplace from a strategic approach to knowledge management. The lack of information sharing between personnel could create knowledge transfer gaps while restricting the decision-making processes. Knowledge transfer between personnel can potentially improve information sharing based on an implemented knowledge management strategy. An organization’s capacity to gain more knowledge is aligned with the organization’s prior or existing captured knowledge. This case study attempted to understand the overall influence of a KMS within the corporate environment and knowledge exchange between personnel. The significance of this study was to help understand how organizations can improve the Return on Investment (ROI) of a knowledge management strategy within a knowledge-centric organization. A qualitative descriptive case study was the research design selected for this study. The lack of information sharing between personnel may create knowledge transfer gaps while restricting the decision-making processes. Developing a knowledge management strategy acceptable at all levels of the organization requires cooperation in support of a common organizational goal. Working with management and executive members to develop a protocol where knowledge transfer becomes a standard practice in multiple tiers of the organization. The knowledge transfer process could be measurable when focusing on specific elements of the organizational process, including personnel transition to help reduce time required understanding the job. The organization studied in this research acknowledged the need for improved knowledge management activities within the organization to help organize, retain, and distribute information throughout the workforce. Data produced from the study indicate three main themes including information management, organizational culture, and knowledge sharing within the workforce by the participants. These themes indicate a possible connection between an organizations KMS, the organizations culture, knowledge sharing, and knowledge transfer.

Keywords: knowledge transfer, management, knowledge management strategies, organizational learning, codification

Procedia PDF Downloads 443
2884 Formation of the Investment Portfolio of Intangible Assets with a Wide Pairwise Comparison Matrix Application

Authors: Gulnara Galeeva

Abstract:

The Analytic Hierarchy Process is widely used in the economic and financial studies, including the formation of investment portfolios. In this study, a generalized method of obtaining a vector of priorities for the case with separate pairwise comparisons of the expert opinion being presented as a set of several equal evaluations on a ratio scale is examined. The author claims that this method allows solving an important and up-to-date problem of excluding vagueness and ambiguity of the expert opinion in the decision making theory. The study describes the authentic wide pairwise comparison matrix. Its application in the formation of the efficient investment portfolio of intangible assets of a small business enterprise with limited funding is considered. The proposed method has been successfully approbated on the practical example of a functioning dental clinic. The result of the study confirms that the wide pairwise comparison matrix can be used as a simple and reliable method for forming the enterprise investment policy. Moreover, a comparison between the method based on the wide pairwise comparison matrix and the classical analytic hierarchy process was conducted. The results of the comparative analysis confirm the correctness of the method based on the wide matrix. The application of a wide pairwise comparison matrix also allows to widely use the statistical methods of experimental data processing for obtaining the vector of priorities. A new method is available for simple users. Its application gives about the same accuracy result as that of the classical hierarchy process. Financial directors of small and medium business enterprises get an opportunity to solve the problem of companies’ investments without resorting to services of analytical agencies specializing in such studies.

Keywords: analytic hierarchy process, decision processes, investment portfolio, intangible assets

Procedia PDF Downloads 268
2883 From Creativity to Innovation: Tracking Rejected Ideas

Authors: Lisete Barlach, Guilherme Ary Plonski

Abstract:

Innovative ideas are not always synonymous with business opportunities. Any idea can be creative and not recognized as a potential project in which money and time will be invested, among other resources. Even in firms that promote and enhance innovation, there are two 'check-points', the first corresponding to the acknowledgment of the idea as creative and the second, its consideration as a business opportunity. Both the recognition of new business opportunities or new ideas involve cognitive and psychological frameworks which provide individuals with a basis for noticing connections between seemingly independent events or trends as if they were 'connecting the dots'. It also involves prototypes-representing the most typical member of a certain category–functioning as 'templates' for this recognition. There is a general assumption that these kinds of evaluation processes develop through experience, explaining why expertise plays a central role in this process: the more experienced a professional, the easier for him (her) to identify new opportunities in business. But, paradoxically, an increase in expertise can lead to the inflexibility of thought due to automation of procedures. And, besides this, other cognitive biases can also be present, because new ideas or business opportunities generally depend on heuristics, rather than on established algorithms. The paper presents a literature review about the Einstellung effect by tracking famous cases of rejected ideas, extracted from historical records. It also presents the results of empirical research, with data upon rejected ideas gathered from two different environments: projects rejected during first semester of 2017 at a large incubator center in Sao Paulo and ideas proposed by employees that were rejected by a well-known business company, at its Brazilian headquarter. There is an implicit assumption that Einstellung effect tends to be more and more present in contemporaneity, due to time pressure upon decision-making and idea generation process. The analysis discusses desirability, viability, and feasibility as elements that affect decision-making.

Keywords: cognitive biases, Einstellung effect, recognition of business opportunities, rejected ideas

Procedia PDF Downloads 205
2882 Analysis of Farm Management Skills in Broiler Poultry Producers in Botswana

Authors: Som Pal Baliyan

Abstract:

The purpose of this quantitative study was to analyze farm management skills in broiler poultryproducers in Botswana. The study adopted a descriptive and correlation research design. The population of the study was the poultry farm operators who had been in broiler poultry farming at least for two years. Based on the information from literature, a questionnaire was constructed for data collection on seven areas of farm management skills namely; planning skills, accounting and financial management skills, production management skills, product procurement and marketing skills, decision making skills, risk management skills, and specific technical skills. The validity and reliability of the questionnaire were accomplished by a panel of experts and by calculating the Cronbach’s alpha coefficient, respectively. Data were collected through a survey of 60 randomly sampled poultry farm operators in Botswana. Data were analyzed through descriptive statistical tools whereby the level of farm management skills were determined by calculating means and standard deviations of the management skills among the broiler producers. The level of farm management skills in broilers producers was discussed. All the seven farm management skills were ranked based on their calculated means. The specific technical skills and risk management skills were the highest and the lowest ranked farm management skills, respectively.Findings revealed that the broiler producers had skills above the average level only in specific technical skills whereas the skill levels in the remaining six farm management skills under study were found below the average level. This prevailing low level of farm management skills can be justified asthe cause of failure or poor performance of the broiler poultry farms in Botswana. Therefore, in order to improve the efficiency and productivityin broiler production in the country, it was recommended that the broiler poultry producers should be adequately trained in areas of planning skills, financial management skills, production management skills, product procurement and marketing skills, decision making skills and risk management skills.

Keywords: poultry production, broiler production, management skills, levels of skills

Procedia PDF Downloads 402
2881 Parameters Influencing Human Machine Interaction in Hospitals

Authors: Hind Bouami

Abstract:

Handling life-critical systems complexity requires to be equipped with appropriate technology and the right human agents’ functions such as knowledge, experience, and competence in problem’s prevention and solving. Human agents are involved in the management and control of human-machine system’s performance. Documenting human agent’s situation awareness is crucial to support human-machine designers’ decision-making. Knowledge about risks, critical parameters and factors that can impact and threaten automation system’s performance should be collected using preventive and retrospective approaches. This paper aims to document operators’ situation awareness through the analysis of automated organizations’ feedback. The analysis of automated hospital pharmacies feedbacks helps to identify and control critical parameters influencing human machine interaction in order to enhance system’s performance and security. Our human machine system evaluation approach has been deployed in Macon hospital center’s pharmacy which is equipped with automated drug dispensing systems since 2015. Automation’s specifications are related to technical aspects, human-machine interaction, and human aspects. The evaluation of drug delivery automation performance in Macon hospital center has shown that the performance of the automated activity depends on the performance of the automated solution chosen, and also on the control of systemic factors. In fact, 80.95% of automation specification related to the chosen Sinteco’s automated solution is met. The performance of the chosen automated solution is involved in 28.38% of automation specifications performance in Macon hospital center. The remaining systemic parameters involved in automation specifications performance need to be controlled.

Keywords: life-critical systems, situation awareness, human-machine interaction, decision-making

Procedia PDF Downloads 181
2880 Destination Decision Model for Cruising Taxis Based on Embedding Model

Authors: Kazuki Kamada, Haruka Yamashita

Abstract:

In Japan, taxi is one of the popular transportations and taxi industry is one of the big businesses. However, in recent years, there has been a difficult problem of reducing the number of taxi drivers. In the taxi business, mainly three passenger catching methods are applied. One style is "cruising" that drivers catches passengers while driving on a road. Second is "waiting" that waits passengers near by the places with many requirements for taxies such as entrances of hospitals, train stations. The third one is "dispatching" that is allocated based on the contact from the taxi company. Above all, the cruising taxi drivers need the experience and intuition for finding passengers, and it is difficult to decide "the destination for cruising". The strong recommendation system for the cruising taxies supports the new drivers to find passengers, and it can be the solution for the decreasing the number of drivers in the taxi industry. In this research, we propose a method of recommending a destination for cruising taxi drivers. On the other hand, as a machine learning technique, the embedding models that embed the high dimensional data to a low dimensional space is widely used for the data analysis, in order to represent the relationship of the meaning between the data clearly. Taxi drivers have their favorite courses based on their experiences, and the courses are different for each driver. We assume that the course of cruising taxies has meaning such as the course for finding business man passengers (go around the business area of the city of go to main stations) and course for finding traveler passengers (go around the sightseeing places or big hotels), and extract the meaning of their destinations. We analyze the cruising history data of taxis based on the embedding model and propose the recommendation system for passengers. Finally, we demonstrate the recommendation of destinations for cruising taxi drivers based on the real-world data analysis using proposing method.

Keywords: taxi industry, decision making, recommendation system, embedding model

Procedia PDF Downloads 138
2879 DeepNIC a Method to Transform Each Tabular Variable into an Independant Image Analyzable by Basic CNNs

Authors: Nguyen J. M., Lucas G., Ruan S., Digonnet H., Antonioli D.

Abstract:

Introduction: Deep Learning (DL) is a very powerful tool for analyzing image data. But for tabular data, it cannot compete with machine learning methods like XGBoost. The research question becomes: can tabular data be transformed into images that can be analyzed by simple CNNs (Convolutional Neuron Networks)? Will DL be the absolute tool for data classification? All current solutions consist in repositioning the variables in a 2x2 matrix using their correlation proximity. In doing so, it obtains an image whose pixels are the variables. We implement a technology, DeepNIC, that offers the possibility of obtaining an image for each variable, which can be analyzed by simple CNNs. Material and method: The 'ROP' (Regression OPtimized) model is a binary and atypical decision tree whose nodes are managed by a new artificial neuron, the Neurop. By positioning an artificial neuron in each node of the decision trees, it is possible to make an adjustment on a theoretically infinite number of variables at each node. From this new decision tree whose nodes are artificial neurons, we created the concept of a 'Random Forest of Perfect Trees' (RFPT), which disobeys Breiman's concepts by assembling very large numbers of small trees with no classification errors. From the results of the RFPT, we developed a family of 10 statistical information criteria, Nguyen Information Criterion (NICs), which evaluates in 3 dimensions the predictive quality of a variable: Performance, Complexity and Multiplicity of solution. A NIC is a probability that can be transformed into a grey level. The value of a NIC depends essentially on 2 super parameters used in Neurops. By varying these 2 super parameters, we obtain a 2x2 matrix of probabilities for each NIC. We can combine these 10 NICs with the functions AND, OR, and XOR. The total number of combinations is greater than 100,000. In total, we obtain for each variable an image of at least 1166x1167 pixels. The intensity of the pixels is proportional to the probability of the associated NIC. The color depends on the associated NIC. This image actually contains considerable information about the ability of the variable to make the prediction of Y, depending on the presence or absence of other variables. A basic CNNs model was trained for supervised classification. Results: The first results are impressive. Using the GSE22513 public data (Omic data set of markers of Taxane Sensitivity in Breast Cancer), DEEPNic outperformed other statistical methods, including XGBoost. We still need to generalize the comparison on several databases. Conclusion: The ability to transform any tabular variable into an image offers the possibility of merging image and tabular information in the same format. This opens up great perspectives in the analysis of metadata.

Keywords: tabular data, CNNs, NICs, DeepNICs, random forest of perfect trees, classification

Procedia PDF Downloads 128
2878 The Development of an Agent-Based Model to Support a Science-Based Evacuation and Shelter-in-Place Planning Process within the United States

Authors: Kyle Burke Pfeiffer, Carmella Burdi, Karen Marsh

Abstract:

The evacuation and shelter-in-place planning process employed by most jurisdictions within the United States is not informed by a scientifically-derived framework that is inclusive of the behavioral and policy-related indicators of public compliance with evacuation orders. While a significant body of work exists to define these indicators, the research findings have not been well-integrated nor translated into useable planning factors for public safety officials. Additionally, refinement of the planning factors alone is insufficient to support science-based evacuation planning as the behavioral elements of evacuees—even with consideration of policy-related indicators—must be examined in the context of specific regional transportation and shelter networks. To address this problem, the Federal Emergency Management Agency and Argonne National Laboratory developed an agent-based model to support regional analysis of zone-based evacuation in southeastern Georgia. In particular, this model allows public safety officials to analyze the consequences that a range of hazards may have upon a community, assess evacuation and shelter-in-place decisions in the context of specified evacuation and response plans, and predict outcomes based on community compliance with orders and the capacity of the regional (to include extra-jurisdictional) transportation and shelter networks. The intention is to use this model to aid evacuation planning and decision-making. Applications for the model include developing a science-driven risk communication strategy and, ultimately, in the case of evacuation, the shortest possible travel distance and clearance times for evacuees within the regional boundary conditions.

Keywords: agent-based modeling for evacuation, decision-support for evacuation planning, evacuation planning, human behavior in evacuation

Procedia PDF Downloads 238
2877 Challenges of Implementing Participatory Irrigation Management for Food Security in Semi Arid Areas of Tanzania

Authors: Pilly Joseph Kagosi

Abstract:

The study aims at assessing challenges observed during the implementation of participatory irrigation management (PIM) approach for food security in semi-arid areas of Tanzania. Data were collected through questionnaire, PRA tools, key informants discussion, Focus Group Discussion (FGD), participant observation, and literature review. Data collected from the questionnaire was analysed using SPSS while PRA data was analysed with the help of local communities during PRA exercise. Data from other methods were analysed using content analysis. The study revealed that PIM approach has a contribution in improved food security at household level due to the involvement of communities in water management activities and decision making which enhanced the availability of water for irrigation and increased crop production. However, there were challenges observed during the implementation of the approach including; minimum participation of beneficiaries in decision-making during planning and designing stages, meaning inadequate devolution of power among scheme owners. Inadequate and lack of transparency on income expenditure in Water Utilization Associations’ (WUAs), water conflict among WUAs members, conflict between farmers and livestock keepers and conflict between WUAs leaders and village government regarding training opportunities and status; WUAs rules and regulation are not legally recognized by the National court and few farmers involved in planting trees around water sources. However, it was realized that some of the mentioned challenges were rectified by farmers themselves facilitated by government officials. The study recommends that the identified challenges need to be rectified for farmers to realize impotence of PIM approach as it was realized by other Asian countries.

Keywords: challenges, participatory approach, irrigation management, food security, semi arid areas

Procedia PDF Downloads 327
2876 Maori Primary Industries Responses to Climate Change and Freshwater Policy Reforms in Aotearoa New Zealand

Authors: Tanira Kingi, Oscar Montes Oca, Reina Tamepo

Abstract:

The introduction of the Climate Change Response (Zero Carbon) Amendment Act (2019) and the National Policy Statement for Freshwater Management (2020) both contain underpinning statements that refer to the principles of the Treaty of Waitangi and cultural concepts of stewardship and environmental protection. Maori interests in New Zealand’s agricultural, forestry, fishing and horticultural sectors are significant. The organizations that manage these investments do so on behalf of extended family groups that hold inherited interests based on genealogical connections (whakapapa) to particular tribal units (iwi and hapu) and areas of land (whenua) and freshwater bodies (wai). This paper draws on the findings of current research programmes funded by the New Zealand Agricultural Greenhouse Gas Research Centre (NZAGRC) and the Our Land & Water National Science Challenge (OLW NSC) to understand the impact of cultural knowledge and imperatives on agricultural GHG and freshwater mitigation and land-use change decisions. In particular, the research outlines mitigation and land-use change scenario decision support frameworks that model changes in emissions profiles (reductions in biogenic methane, nitrous oxide and nutrient emissions to freshwater) of agricultural and forestry production systems along with impacts on key economic indicators and socio-cultural factors. The paper also assesses the effectiveness of newly introduced partnership arrangements between Maori groups/organizations and key government agencies on policy co-design and implementation, and in particular, decisions to adopt mitigation practices and to diversify land use.

Keywords: co-design and implementation of environmental policy, indigenous environmental knowledge, Māori land tenure and agribusiness, mitigation and land use change decision support frameworks

Procedia PDF Downloads 216
2875 Load Forecasting in Microgrid Systems with R and Cortana Intelligence Suite

Authors: F. Lazzeri, I. Reiter

Abstract:

Energy production optimization has been traditionally very important for utilities in order to improve resource consumption. However, load forecasting is a challenging task, as there are a large number of relevant variables that must be considered, and several strategies have been used to deal with this complex problem. This is especially true also in microgrids where many elements have to adjust their performance depending on the future generation and consumption conditions. The goal of this paper is to present a solution for short-term load forecasting in microgrids, based on three machine learning experiments developed in R and web services built and deployed with different components of Cortana Intelligence Suite: Azure Machine Learning, a fully managed cloud service that enables to easily build, deploy, and share predictive analytics solutions; SQL database, a Microsoft database service for app developers; and PowerBI, a suite of business analytics tools to analyze data and share insights. Our results show that Boosted Decision Tree and Fast Forest Quantile regression methods can be very useful to predict hourly short-term consumption in microgrids; moreover, we found that for these types of forecasting models, weather data (temperature, wind, humidity and dew point) can play a crucial role in improving the accuracy of the forecasting solution. Data cleaning and feature engineering methods performed in R and different types of machine learning algorithms (Boosted Decision Tree, Fast Forest Quantile and ARIMA) will be presented, and results and performance metrics discussed.

Keywords: time-series, features engineering methods for forecasting, energy demand forecasting, Azure Machine Learning

Procedia PDF Downloads 299
2874 The Role of Metaphor in Communication

Authors: Fleura Shkëmbi, Valbona Treska

Abstract:

In elementary school, we discover that a metaphor is a decorative linguistic device just for poets. But now that we know, it's also a crucial tactic that individuals employ to understand the universe, from fundamental ideas like time and causation to the most pressing societal challenges today. Metaphor is the use of language to refer to something other than what it was originally intended for or what it "literally" means in order to suggest a similarity or establish a connection between the two. People do not identify metaphors as relevant in their decisions, according to a study on metaphor and its effect on decision-making; instead, they refer to more "substantive" (typically numerical) facts as the basis for their problem-solving decision. Every day, metaphors saturate our lives via language, cognition, and action. They argue that our conceptions shape our views and interactions with others and that concepts define our reality. Metaphor is thus a highly helpful tool for both describing our experiences to others and forming notions for ourselves. In therapeutic contexts, their shared goal appears to be twofold. The cognitivist approach to metaphor regards it as one of the fundamental foundations of human communication. The benefits and disadvantages of utilizing the metaphor differ depending on the target domain that the metaphor portrays. The challenge of creating messages and surroundings that affect customers' notions of abstract ideas in a variety of industries, including health, hospitality, romance, and money, has been studied for decades in marketing and consumer psychology. The aim of this study is to examine, through a systematic literature review, the role of the metaphor in communication and in advertising. This study offers a selected analysis of this literature, concentrating on research on customer attitudes and product appraisal. The analysis of the data identifies potential research questions. With theoretical and applied implications for marketing, design, and persuasion, this study sheds light on how, when, and for whom metaphoric communications are powerful.

Keywords: metaphor, communication, advertising, cognition, action

Procedia PDF Downloads 99
2873 Balanced Scorecard (BSC) Project : A Methodological Proposal for Decision Support in a Corporate Scenario

Authors: David de Oliveira Costa, Miguel Ângelo Lellis Moreira, Carlos Francisco Simões Gomes, Daniel Augusto de Moura Pereira, Marcos dos Santos

Abstract:

Strategic management is a fundamental process for global companies that intend to remain competitive in an increasingly dynamic and complex market. To do so, it is necessary to maintain alignment with their principles and values. The Balanced Scorecard (BSC) proposes to ensure that the overall business performance is based on different perspectives (financial, customer, internal processes, and learning and growth). However, relying solely on the BSC may not be enough to ensure the success of strategic management. It is essential that companies also evaluate and prioritize strategic projects that need to be implemented to ensure they are aligned with the business vision and contribute to achieving established goals and objectives. In this context, the proposition involves the incorporation of the SAPEVO-M multicriteria method to indicate the degree of relevance between different perspectives. Thus, the strategic objectives linked to these perspectives have greater weight in the classification of structural projects. Additionally, it is proposed to apply the concept of the Impact & Probability Matrix (I&PM) to structure and ensure that strategic projects are evaluated according to their relevance and impact on the business. By structuring the business's strategic management in this way, alignment and prioritization of projects and actions related to strategic planning are ensured. This ensures that resources are directed towards the most relevant and impactful initiatives. Therefore, the objective of this article is to present the proposal for integrating the BSC methodology, the SAPEVO-M multicriteria method, and the prioritization matrix to establish a concrete weighting of strategic planning and obtain coherence in defining strategic projects aligned with the business vision. This ensures a robust decision-making support process.

Keywords: MCDA process, prioritization problematic, corporate strategy, multicriteria method

Procedia PDF Downloads 82
2872 Multiple Version of Roman Domination in Graphs

Authors: J. C. Valenzuela-Tripodoro, P. Álvarez-Ruíz, M. A. Mateos-Camacho, M. Cera

Abstract:

In 2004, it was introduced the concept of Roman domination in graphs. This concept was initially inspired and related to the defensive strategy of the Roman Empire. An undefended place is a city so that no legions are established on it, whereas a strong place is a city in which two legions are deployed. This situation may be modeled by labeling the vertices of a finite simple graph with labels {0, 1, 2}, satisfying the condition that any 0-vertex must be adjacent to, at least, a 2-vertex. Roman domination in graphs is a variant of classic domination. Clearly, the main aim is to obtain such labeling of the vertices of the graph with minimum cost, that is to say, having minimum weight (sum of all vertex labels). Formally, a function f: V (G) → {0, 1, 2} is a Roman dominating function (RDF) in the graph G = (V, E) if f(u) = 0 implies that f(v) = 2 for, at least, a vertex v which is adjacent to u. The weight of an RDF is the positive integer w(f)= ∑_(v∈V)▒〖f(v)〗. The Roman domination number, γ_R (G), is the minimum weight among all the Roman dominating functions? Obviously, the set of vertices with a positive label under an RDF f is a dominating set in the graph, and hence γ(G)≤γ_R (G). In this work, we start the study of a generalization of RDF in which we consider that any undefended place should be defended from a sudden attack by, at least, k legions. These legions can be deployed in the city or in any of its neighbours. A function f: V → {0, 1, . . . , k + 1} such that f(N[u]) ≥ k + |AN(u)| for all vertex u with f(u) < k, where AN(u) represents the set of active neighbours (i.e., with a positive label) of vertex u, is called a [k]-multiple Roman dominating functions and it is denoted by [k]-MRDF. The minimum weight of a [k]-MRDF in the graph G is the [k]-multiple Roman domination number ([k]-MRDN) of G, denoted by γ_[kR] (G). First, we prove that the [k]-multiple Roman domination decision problem is NP-complete even when restricted to bipartite and chordal graphs. A problem that had been resolved for other variants and wanted to be generalized. We know the difficulty of calculating the exact value of the [k]-MRD number, even for families of particular graphs. Here, we present several upper and lower bounds for the [k]-MRD number that permits us to estimate it with as much precision as possible. Finally, some graphs with the exact value of this parameter are characterized.

Keywords: multiple roman domination function, decision problem np-complete, bounds, exact values

Procedia PDF Downloads 110
2871 Urban Growth and Its Impact on Natural Environment: A Geospatial Analysis of North Part of the UAE

Authors: Mohamed Bualhamam

Abstract:

Due to the complex nature of tourism resources of the Northern part of the United Arab Emirates (UAE), the potential of Geographical Information Systems (GIS) and Remote Sensing (RS) in resolving these issues was used. The study was an attempt to use existing GIS data layers to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth and give some specific recommendations to protect the area. By identifying sensitive natural environment and archaeological heritage resources, public agencies and citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas. The paper concludes that applications of GIS and RS in study of urban growth impact in tourism resources are a strong and effective tool that can aid in tourism planning and decision-making. The study area is one of the fastest growing regions in the country. The increase in population along the region, as well as rapid growth of towns, has increased the threat to natural resources and archeological sites. Satellite remote sensing data have been proven useful in assessing the natural resources and in monitoring the changes. The study used GIS and RS to identify sensitive natural environment and archaeological heritage resources that may be threatened by increased urban growth. The result of GIS analyses shows that the Northern part of the UAE has variety for tourism resources, which can use for future tourism development. Rapid urban development in the form of small towns and different economic activities are showing in different places in the study area. The urban development extended out of old towns and have negative affected of sensitive tourism resources in some areas. Tourism resources for the Northern part of the UAE is a highly complex resources, and thus requires tools that aid in effective decision making to come to terms with the competing economic, social, and environmental demands of sustainable development. The UAE government should prepare a tourism databases and a GIS system, so that planners can be accessed for archaeological heritage information as part of development planning processes. Applications of GIS in urban planning, tourism and recreation planning illustrate that GIS is a strong and effective tool that can aid in tourism planning and decision- making. The power of GIS lies not only in the ability to visualize spatial relationships, but also beyond the space to a holistic view of the world with its many interconnected components and complex relationships. The worst of the damage could have been avoided by recognizing suitable limits and adhering to some simple environmental guidelines and standards will successfully develop tourism in sustainable manner. By identifying sensitive natural environment and archaeological heritage resources of the Northern part of the UAE, public agencies and private citizens are in a better position to successfully protect important natural lands and direct growth away from environmentally sensitive areas.

Keywords: GIS, natural environment, UAE, urban growth

Procedia PDF Downloads 265
2870 Agent-Based Modelling to Improve Dairy-origin Beef Production: Model Description and Evaluation

Authors: Addisu H. Addis, Hugh T. Blair, Paul R. Kenyon, Stephen T. Morris, Nicola M. Schreurs, Dorian J. Garrick

Abstract:

Agent-based modeling (ABM) enables an in silico representation of complex systems and cap-tures agent behavior resulting from interaction with other agents and their environment. This study developed an ABM to represent a pasture-based beef cattle finishing systems in New Zea-land (NZ) using attributes of the rearer, finisher, and processor, as well as specific attributes of dairy-origin beef cattle. The model was parameterized using values representing 1% of NZ dairy-origin cattle, and 10% of rearers and finishers in NZ. The cattle agent consisted of 32% Holstein-Friesian, 50% Holstein-Friesian–Jersey crossbred, and 8% Jersey, with the remainder being other breeds. Rearers and finishers repetitively and simultaneously interacted to determine the type and number of cattle populating the finishing system. Rearers brought in four-day-old spring-born calves and reared them until 60 calves (representing a full truck load) on average had a live weight of 100 kg before selling them on to finishers. Finishers mainly attained weaners from rearers, or directly from dairy farmers when weaner demand was higher than the supply from rearers. Fast-growing cattle were sent for slaughter before the second winter, and the re-mainder were sent before their third winter. The model finished a higher number of bulls than heifers and steers, although it was 4% lower than the industry reported value. Holstein-Friesian and Holstein-Friesian–Jersey-crossbred cattle dominated the dairy-origin beef finishing system. Jersey cattle account for less than 5% of total processed beef cattle. Further studies to include re-tailer and consumer perspectives and other decision alternatives for finishing farms would im-prove the applicability of the model for decision-making processes.

Keywords: agent-based modelling, dairy cattle, beef finishing, rearers, finishers

Procedia PDF Downloads 101
2869 From Pink to Ink: Understanding the Decision-Making Process of Post-mastectomy Women Who Have Covered Their Scars with Decorative Tattoos

Authors: Fernanda Rodriguez

Abstract:

Breast cancer is pervasive among women, and an increasing number of women are opting for a mastectomy: a medical operation in which one or both breasts are removed with the intention of treating or averting breast cancer. However, there is an emerging population of cancer survivors in European nations that, rather than attempting to reconstruct their breasts to resemble as much as possible ‘normal’ breasts, have turned to dress their scars with decorative tattoos. At a practical level, this study hopes to improve the support systems of these women by possibly providing professionals in the medical field, tattoo artists, and family members of cancer survivors with a deeper understanding of their motivations and decision-making processes for choosing an alternative restorative route - such as decorative tattoos - after their mastectomy. At an intellectual level, however, this study aims to narrow a gap in the academic field concerning the relationship between mastectomies and alternative methods of healing, such as decorative tattoos, as well as to broaden the understanding regarding meaning-making and the ‘normal’ feminine body. Thus, by means of semi-structured interviews and a phenomenological standpoint, this research set itself the goal to understand why do women who have undergone a mastectomy choose to dress their scars with decorative tattoos instead of attempting to regain ‘normalcy’ through breast reconstruction or 3D areola tattoos? The results obtained from the interviews with fifteen women showed that the disillusionment with one part of the other of breast restoration techniques had led these women to find an alternative form of healing that allows them not only to close a painful chapter of their life but also to regain control over their bodies after a period of time in which agency was taking away from them. Decorative post-mastectomy tattoos allow these women to grant their bodies with new meanings and produce their own interpretation of their feminine body and identity.

Keywords: alternative femininity, decorative mastectomy tattoos, gender embodiment, social stigmatization

Procedia PDF Downloads 121
2868 Application of Environmental Justice Concept in Urban Planning, The Peri-Urban Environment of Tehran as the Case Study

Authors: Zahra Khodaee

Abstract:

Environmental Justice (EJ) concept consists of multifaceted movements, community struggles, and discourses in contemporary societies that seek to reduce environmental risks, increase environmental protections, and generally reduce environmental inequalities suffered by minority and poor communities; a term that incorporates ‘environmental racism’ and ‘environmental classism,’ captures the idea that different racial and socioeconomic groups experience differential access to environmental quality. This article explores environmental justice as an urban phenomenon in urban planning and applies it in peri-urban environment of a metropolis. Tehran peri-urban environments which are the result of meeting the city- village- nature systems or «city-village junction» have gradually faced effects such as accelerated environmental decline, changes without land-use plan, and severe service deficiencies. These problems are instances of environmental injustice which make the planners to adjust the problems and use and apply the appropriate strategies and policies by looking for solutions and resorting to theories, techniques and methods related to environmental justice. In order to access to this goal, try to define environmental justice through justice and determining environmental justice indices to analysis environmental injustice in case study. Then, make an effort to introduce some criteria to select case study in two micro and micro levels. Qiyamdasht town as the peri-urban environment of Tehran metropolis is chosen and examined to show the existence of environmental injustice by questionnaire analysis and SPSS software. Finally, use AIDA technique to design a strategic plan and reduce environmental injustice in case study by introducing the better scenario to be used in policy and decision making areas.

Keywords: environmental justice, metropolis of Tehran, Qiyam, Dasht peri, urban settlement, analysis of interconnected decision area (AIDA)

Procedia PDF Downloads 493
2867 Application of a Model-Free Artificial Neural Networks Approach for Structural Health Monitoring of the Old Lidingö Bridge

Authors: Ana Neves, John Leander, Ignacio Gonzalez, Raid Karoumi

Abstract:

Systematic monitoring and inspection are needed to assess the present state of a structure and predict its future condition. If an irregularity is noticed, repair actions may take place and the adequate intervention will most probably reduce the future costs with maintenance, minimize downtime and increase safety by avoiding the failure of the structure as a whole or of one of its structural parts. For this to be possible decisions must be made at the right time, which implies using systems that can detect abnormalities in their early stage. In this sense, Structural Health Monitoring (SHM) is seen as an effective tool for improving the safety and reliability of infrastructures. This paper explores the decision-making problem in SHM regarding the maintenance of civil engineering structures. The aim is to assess the present condition of a bridge based exclusively on measurements using the suggested method in this paper, such that action is taken coherently with the information made available by the monitoring system. Artificial Neural Networks are trained and their ability to predict structural behavior is evaluated in the light of a case study where acceleration measurements are acquired from a bridge located in Stockholm, Sweden. This relatively old bridge is presently still in operation despite experiencing obvious problems already reported in previous inspections. The prediction errors provide a measure of the accuracy of the algorithm and are subjected to further investigation, which comprises concepts like clustering analysis and statistical hypothesis testing. These enable to interpret the obtained prediction errors, draw conclusions about the state of the structure and thus support decision making regarding its maintenance.

Keywords: artificial neural networks, clustering analysis, model-free damage detection, statistical hypothesis testing, structural health monitoring

Procedia PDF Downloads 210
2866 Pulmonary Disease Identification Using Machine Learning and Deep Learning Techniques

Authors: Chandu Rathnayake, Isuri Anuradha

Abstract:

Early detection and accurate diagnosis of lung diseases play a crucial role in improving patient prognosis. However, conventional diagnostic methods heavily rely on subjective symptom assessments and medical imaging, often causing delays in diagnosis and treatment. To overcome this challenge, we propose a novel lung disease prediction system that integrates patient symptoms and X-ray images to provide a comprehensive and reliable diagnosis.In this project, develop a mobile application specifically designed for detecting lung diseases. Our application leverages both patient symptoms and X-ray images to facilitate diagnosis. By combining these two sources of information, our application delivers a more accurate and comprehensive assessment of the patient's condition, minimizing the risk of misdiagnosis. Our primary aim is to create a user-friendly and accessible tool, particularly important given the current circumstances where many patients face limitations in visiting healthcare facilities. To achieve this, we employ several state-of-the-art algorithms. Firstly, the Decision Tree algorithm is utilized for efficient symptom-based classification. It analyzes patient symptoms and creates a tree-like model to predict the presence of specific lung diseases. Secondly, we employ the Random Forest algorithm, which enhances predictive power by aggregating multiple decision trees. This ensemble technique improves the accuracy and robustness of the diagnosis. Furthermore, we incorporate a deep learning model using Convolutional Neural Network (CNN) with the RestNet50 pre-trained model. CNNs are well-suited for image analysis and feature extraction. By training CNN on a large dataset of X-ray images, it learns to identify patterns and features indicative of lung diseases. The RestNet50 architecture, known for its excellent performance in image recognition tasks, enhances the efficiency and accuracy of our deep learning model. By combining the outputs of the decision tree-based algorithms and the deep learning model, our mobile application generates a comprehensive lung disease prediction. The application provides users with an intuitive interface to input their symptoms and upload X-ray images for analysis. The prediction generated by the system offers valuable insights into the likelihood of various lung diseases, enabling individuals to take appropriate actions and seek timely medical attention. Our proposed mobile application has significant potential to address the rising prevalence of lung diseases, particularly among young individuals with smoking addictions. By providing a quick and user-friendly approach to assessing lung health, our application empowers individuals to monitor their well-being conveniently. This solution also offers immense value in the context of limited access to healthcare facilities, enabling timely detection and intervention. In conclusion, our research presents a comprehensive lung disease prediction system that combines patient symptoms and X-ray images using advanced algorithms. By developing a mobile application, we provide an accessible tool for individuals to assess their lung health conveniently. This solution has the potential to make a significant impact on the early detection and management of lung diseases, benefiting both patients and healthcare providers.

Keywords: CNN, random forest, decision tree, machine learning, deep learning

Procedia PDF Downloads 74
2865 Short Text Classification Using Part of Speech Feature to Analyze Students' Feedback of Assessment Components

Authors: Zainab Mutlaq Ibrahim, Mohamed Bader-El-Den, Mihaela Cocea

Abstract:

Students' textual feedback can hold unique patterns and useful information about learning process, it can hold information about advantages and disadvantages of teaching methods, assessment components, facilities, and other aspects of teaching. The results of analysing such a feedback can form a key point for institutions’ decision makers to advance and update their systems accordingly. This paper proposes a data mining framework for analysing end of unit general textual feedback using part of speech feature (PoS) with four machine learning algorithms: support vector machines, decision tree, random forest, and naive bays. The proposed framework has two tasks: first, to use the above algorithms to build an optimal model that automatically classifies the whole data set into two subsets, one subset is tailored to assessment practices (assessment related), and the other one is the non-assessment related data. Second task to use the same algorithms to build an optimal model for whole data set, and the new data subsets to automatically detect their sentiment. The significance of this paper is to compare the performance of the above four algorithms using part of speech feature to the performance of the same algorithms using n-grams feature. The paper follows Knowledge Discovery and Data Mining (KDDM) framework to construct the classification and sentiment analysis models, which is understanding the assessment domain, cleaning and pre-processing the data set, selecting and running the data mining algorithm, interpreting mined patterns, and consolidating the discovered knowledge. The results of this paper experiments show that both models which used both features performed very well regarding first task. But regarding the second task, models that used part of speech feature has underperformed in comparison with models that used unigrams and bigrams.

Keywords: assessment, part of speech, sentiment analysis, student feedback

Procedia PDF Downloads 143