Search results for: distributed network
5324 Groundwater Monitoring Using a Community: Science Approach
Authors: Shobha Kumari Yadav, Yubaraj Satyal, Ajaya Dixit
Abstract:
In addressing groundwater depletion, it is important to develop evidence base so to be used in assessing the state of its degradation. Groundwater data is limited compared to meteorological data, which impedes the groundwater use and management plan. Monitoring of groundwater levels provides information base to assess the condition of aquifers, their responses to water extraction, land-use change, and climatic variability. It is important to maintain a network of spatially distributed, long-term monitoring wells to support groundwater management plan. Monitoring involving local community is a cost effective approach that generates real time data to effectively manage groundwater use. This paper presents the relationship between rainfall and spring flow, which are the main source of freshwater for drinking, household consumptions and agriculture in hills of Nepal. The supply and withdrawal of water from springs depends upon local hydrology and the meteorological characteristics- such as rainfall, evapotranspiration and interflow. The study offers evidence of the use of scientific method and community based initiative for managing groundwater and springshed. The approach presents a method to replicate similar initiative in other parts of the country for maintaining integrity of springs.Keywords: citizen science, groundwater, water resource management, Nepal
Procedia PDF Downloads 2025323 Tabu Search to Draw Evacuation Plans in Emergency Situations
Authors: S. Nasri, H. Bouziri
Abstract:
Disasters are quite experienced in our days. They are caused by floods, landslides, and building fires that is the main objective of this study. To cope with these unexpected events, precautions must be taken to protect human lives. The emphasis on disposal work focuses on the resolution of the evacuation problem in case of no-notice disaster. The problem of evacuation is listed as a dynamic network flow problem. Particularly, we model the evacuation problem as an earliest arrival flow problem with load dependent transit time. This problem is classified as NP-Hard. Our challenge here is to propose a metaheuristic solution for solving the evacuation problem. We define our objective as the maximization of evacuees during earliest periods of a time horizon T. The objective provides the evacuation of persons as soon as possible. We performed an experimental study on emergency evacuation from the tunisian children’s hospital. This work prompts us to look for evacuation plans corresponding to several situations where the network dynamically changes.Keywords: dynamic network flow, load dependent transit time, evacuation strategy, earliest arrival flow problem, tabu search metaheuristic
Procedia PDF Downloads 3725322 Centrality and Patent Impact: Coupled Network Analysis of Artificial Intelligence Patents Based on Co-Cited Scientific Papers
Authors: Xingyu Gao, Qiang Wu, Yuanyuan Liu, Yue Yang
Abstract:
In the era of the knowledge economy, the relationship between scientific knowledge and patents has garnered significant attention. Understanding the intricate interplay between the foundations of science and technological innovation has emerged as a pivotal challenge for both researchers and policymakers. This study establishes a coupled network of artificial intelligence patents based on co-cited scientific papers. Leveraging centrality metrics from network analysis offers a fresh perspective on understanding the influence of information flow and knowledge sharing within the network on patent impact. The study initially obtained patent numbers for 446,890 granted US AI patents from the United States Patent and Trademark Office’s artificial intelligence patent database for the years 2002-2020. Subsequently, specific information regarding these patents was acquired using the Lens patent retrieval platform. Additionally, a search and deduplication process was performed on scientific non-patent references (SNPRs) using the Web of Science database, resulting in the selection of 184,603 patents that cited 37,467 unique SNPRs. Finally, this study constructs a coupled network comprising 59,379 artificial intelligence patents by utilizing scientific papers co-cited in patent backward citations. In this network, nodes represent patents, and if patents reference the same scientific papers, connections are established between them, serving as edges within the network. Nodes and edges collectively constitute the patent coupling network. Structural characteristics such as node degree centrality, betweenness centrality, and closeness centrality are employed to assess the scientific connections between patents, while citation count is utilized as a quantitative metric for patent influence. Finally, a negative binomial model is employed to test the nonlinear relationship between these network structural features and patent influence. The research findings indicate that network structural features such as node degree centrality, betweenness centrality, and closeness centrality exhibit inverted U-shaped relationships with patent influence. Specifically, as these centrality metrics increase, patent influence initially shows an upward trend, but once these features reach a certain threshold, patent influence starts to decline. This discovery suggests that moderate network centrality is beneficial for enhancing patent influence, while excessively high centrality may have a detrimental effect on patent influence. This finding offers crucial insights for policymakers, emphasizing the importance of encouraging moderate knowledge flow and sharing to promote innovation when formulating technology policies. It suggests that in certain situations, data sharing and integration can contribute to innovation. Consequently, policymakers can take measures to promote data-sharing policies, such as open data initiatives, to facilitate the flow of knowledge and the generation of innovation. Additionally, governments and relevant agencies can achieve broader knowledge dissemination by supporting collaborative research projects, adjusting intellectual property policies to enhance flexibility, or nurturing technology entrepreneurship ecosystems.Keywords: centrality, patent coupling network, patent influence, social network analysis
Procedia PDF Downloads 545321 Cluster Based Ant Colony Routing Algorithm for Mobile Ad-Hoc Networks
Authors: Alaa Eddien Abdallah, Bajes Yousef Alskarnah
Abstract:
Ant colony based routing algorithms are known to grantee the packet delivery, but they suffer from the huge overhead of control messages which are needed to discover the route. In this paper we utilize the network nodes positions to group the nodes in connected clusters. We use clusters-heads only on forwarding the route discovery control messages. Our simulations proved that the new algorithm has decreased the overhead dramatically without affecting the delivery rate.Keywords: ad-hoc network, MANET, ant colony routing, position based routing
Procedia PDF Downloads 4255320 Three-Stage Least Squared Models of a Station-Level Subway Ridership: Incorporating an Analysis on Integrated Transit Network Topology Measures
Authors: Jungyeol Hong, Dongjoo Park
Abstract:
The urban transit system is a critical part of a solution to the economic, energy, and environmental challenges. Furthermore, it ultimately contributes the improvement of people’s quality of lives. For taking these kinds of advantages, the city of Seoul has tried to construct an integrated transit system including both subway and buses. The effort led to the fact that approximately 6.9 million citizens use the integrated transit system every day for their trips. Diagnosing the current transit network is a significant task to provide more convenient and pleasant transit environment. Therefore, the critical objective of this study is to establish a methodological framework for the analysis of an integrated bus-subway network and to examine the relationship between subway ridership and parameters such as network topology measures, bus demand, and a variety of commercial business facilities. Regarding a statistical approach to estimate subway ridership at a station level, many previous studies relied on Ordinary Least Square regression, but there was lack of studies considering the endogeneity issues which might show in the subway ridership prediction model. This study focused on both discovering the impacts of integrated transit network topology measures and endogenous effect of bus demand on subway ridership. It could ultimately contribute to developing more accurate subway ridership estimation accounting for its statistical bias. The spatial scope of the study covers Seoul city in South Korea, and it includes 243 subway stations and 10,120 bus stops with the temporal scope set during twenty-four hours with one-hour interval time panels each. The subway and bus ridership information in detail was collected from the Seoul Smart Card data in 2015 and 2016. First, integrated subway-bus network topology measures which have characteristics regarding connectivity, centrality, transitivity, and reciprocity were estimated based on the complex network theory. The results of integrated transit network topology analysis were compared to subway-only network topology. Also, the non-recursive approach which is Three-Stage Least Square was applied to develop the daily subway ridership model as capturing the endogeneity between bus and subway demands. Independent variables included roadway geometry, commercial business characteristics, social-economic characteristics, safety index, transit facility attributes, and dummies for seasons and time zone. Consequently, it was found that network topology measures were significant size effect. Especially, centrality measures showed that the elasticity was a change of 4.88% for closeness centrality, 24.48% for betweenness centrality while the elasticity of bus ridership was 8.85%. Moreover, it was proved that bus demand and subway ridership were endogenous in a non-recursive manner as showing that predicted bus ridership and predicted subway ridership is statistically significant in OLS regression models. Therefore, it shows that three-stage least square model appears to be a plausible model for efficient subway ridership estimation. It is expected that the proposed approach provides a reliable guideline that can be used as part of the spectrum of tools for evaluating a city-wide integrated transit network.Keywords: integrated transit system, network topology measures, three-stage least squared, endogeneity, subway ridership
Procedia PDF Downloads 1775319 Coupling Random Demand and Route Selection in the Transportation Network Design Problem
Authors: Shabnam Najafi, Metin Turkay
Abstract:
Network design problem (NDP) is used to determine the set of optimal values for certain pre-specified decision variables such as capacity expansion of nodes and links by optimizing various system performance measures including safety, congestion, and accessibility. The designed transportation network should improve objective functions defined for the system by considering the route choice behaviors of network users at the same time. The NDP studies mostly investigated the random demand and route selection constraints separately due to computational challenges. In this work, we consider both random demand and route selection constraints simultaneously. This work presents a nonlinear stochastic model for land use and road network design problem to address the development of different functional zones in urban areas by considering both cost function and air pollution. This model minimizes cost function and air pollution simultaneously with random demand and stochastic route selection constraint that aims to optimize network performance via road capacity expansion. The Bureau of Public Roads (BPR) link impedance function is used to determine the travel time function in each link. We consider a city with origin and destination nodes which can be residential or employment or both. There are set of existing paths between origin-destination (O-D) pairs. Case of increasing employed population is analyzed to determine amount of roads and origin zones simultaneously. Minimizing travel and expansion cost of routes and origin zones in one side and minimizing CO emission in the other side is considered in this analysis at the same time. In this work demand between O-D pairs is random and also the network flow pattern is subject to stochastic user equilibrium, specifically logit route choice model. Considering both demand and route choice, random is more applicable to design urban network programs. Epsilon-constraint is one of the methods to solve both linear and nonlinear multi-objective problems. In this work epsilon-constraint method is used to solve the problem. The problem was solved by keeping first objective (cost function) as the objective function of the problem and second objective as a constraint that should be less than an epsilon, where epsilon is an upper bound of the emission function. The value of epsilon should change from the worst to the best value of the emission function to generate the family of solutions representing Pareto set. A numerical example with 2 origin zones and 2 destination zones and 7 links is solved by GAMS and the set of Pareto points is obtained. There are 15 efficient solutions. According to these solutions as cost function value increases, emission function value decreases and vice versa.Keywords: epsilon-constraint, multi-objective, network design, stochastic
Procedia PDF Downloads 6475318 Predicting Indonesia External Debt Crisis: An Artificial Neural Network Approach
Authors: Riznaldi Akbar
Abstract:
In this study, we compared the performance of the Artificial Neural Network (ANN) model with back-propagation algorithm in correctly predicting in-sample and out-of-sample external debt crisis in Indonesia. We found that exchange rate, foreign reserves, and exports are the major determinants to experiencing external debt crisis. The ANN in-sample performance provides relatively superior results. The ANN model is able to classify correctly crisis of 89.12 per cent with reasonably low false alarms of 7.01 per cent. In out-of-sample, the prediction performance fairly deteriorates compared to their in-sample performances. It could be explained as the ANN model tends to over-fit the data in the in-sample, but it could not fit the out-of-sample very well. The 10-fold cross-validation has been used to improve the out-of-sample prediction accuracy. The results also offer policy implications. The out-of-sample performance could be very sensitive to the size of the samples, as it could yield a higher total misclassification error and lower prediction accuracy. The ANN model could be used to identify past crisis episodes with some accuracy, but predicting crisis outside the estimation sample is much more challenging because of the presence of uncertainty.Keywords: debt crisis, external debt, artificial neural network, ANN
Procedia PDF Downloads 4425317 A Framework for Teaching Distributed Requirements Engineering in Latin American Universities
Authors: G. Sevilla, S. Zapata, F. Giraldo, E. Torres, C. Collazos
Abstract:
This work describes a framework for teaching of global software engineering (GSE) in university undergraduate programs. This framework proposes a method of teaching that incorporates adequate techniques of software requirements elicitation and validated tools of communication, critical aspects to global software development scenarios. The use of proposed framework allows teachers to simulate small software development companies formed by Latin American students, which build information systems. Students from three Latin American universities played the roles of engineers by applying an iterative development of a requirements specification in a global software project. The proposed framework involves the use of a specific purpose Wiki for asynchronous communication between the participants of the process. It is also a practice to improve the quality of software requirements that are formulated by the students. The additional motivation of students to participate in these practices, in conjunction with peers from other countries, is a significant additional factor that positively contributes to the learning process. The framework promotes skills for communication, negotiation, and other complementary competencies that are useful for working on GSE scenarios.Keywords: requirements analysis, distributed requirements engineering, practical experiences, collaborative support
Procedia PDF Downloads 2045316 An Evaluation of Neural Network Efficacies for Image Recognition on Edge-AI Computer Vision Platform
Abstract:
Image recognition, as one of the most critical technologies in computer vision, works to help machine-like robotics understand a scene, that is, if deployed appropriately, will trigger the revolution in remote sensing and industry automation. With the developments of AI technologies, there are many prevailing and sophisticated neural networks as technologies developed for image recognition. However, computer vision platforms as hardware, supporting neural networks for image recognition, as crucial as the neural network technologies, need to be more congruently addressed as the research subjects. In contrast, different computer vision platforms are deterministic to leverage the performance of different neural networks for recognition. In this paper, three different computer vision platforms – Jetson Nano(with 4GB), a standalone laptop(with RTX 3000s, using CUDA), and Google Colab (web-based, using GPU) are explored and four prominent neural network architectures (including AlexNet, VGG(16/19), GoogleNet, and ResNet(18/34/50)), are investigated. In the context of pairwise usage between different computer vision platforms and distinctive neural networks, with the merits of recognition accuracy and time efficiency, the performances are evaluated. In the case study using public imageNets, our findings provide a nuanced perspective on optimizing image recognition tasks across Edge-AI platforms, offering guidance on selecting appropriate neural network structures to maximize performance under hardware constraints.Keywords: alexNet, VGG, googleNet, resNet, Jetson nano, CUDA, COCO-NET, cifar10, imageNet large scale visual recognition challenge (ILSVRC), google colab
Procedia PDF Downloads 905315 Building Capacity and Personnel Flow Modeling for Operating amid COVID-19
Authors: Samuel Fernandes, Dylan Kato, Emin Burak Onat, Patrick Keyantuo, Raja Sengupta, Amine Bouzaghrane
Abstract:
The COVID-19 pandemic has spread across the United States, forcing cities to impose stay-at-home and shelter-in-place orders. Building operations had to adjust as non-essential personnel worked from home. But as buildings prepare for personnel to return, they need to plan for safe operations amid new COVID-19 guidelines. In this paper we propose a methodology for capacity and flow modeling of personnel within buildings to safely operate under COVID-19 guidelines. We model personnel flow within buildings by network flows with queuing constraints. We study maximum flow, minimum cost, and minimax objectives. We compare our network flow approach with a simulation model through a case study and present the results. Our results showcase various scenarios of how buildings could be operated under new COVID-19 guidelines and provide a framework for building operators to plan and operate buildings in this new paradigm.Keywords: network analysis, building simulation, COVID-19
Procedia PDF Downloads 1605314 Multilabel Classification with Neural Network Ensemble Method
Authors: Sezin Ekşioğlu
Abstract:
Multilabel classification has a huge importance for several applications, it is also a challenging research topic. It is a kind of supervised learning that contains binary targets. The distance between multilabel and binary classification is having more than one class in multilabel classification problems. Features can belong to one class or many classes. There exists a wide range of applications for multi label prediction such as image labeling, text categorization, gene functionality. Even though features are classified in many classes, they may not always be properly classified. There are many ensemble methods for the classification. However, most of the researchers have been concerned about better multilabel methods. Especially little ones focus on both efficiency of classifiers and pairwise relationships at the same time in order to implement better multilabel classification. In this paper, we worked on modified ensemble methods by getting benefit from k-Nearest Neighbors and neural network structure to address issues within a beneficial way and to get better impacts from the multilabel classification. Publicly available datasets (yeast, emotion, scene and birds) are performed to demonstrate the developed algorithm efficiency and the technique is measured by accuracy, F1 score and hamming loss metrics. Our algorithm boosts benchmarks for each datasets with different metrics.Keywords: multilabel, classification, neural network, KNN
Procedia PDF Downloads 1555313 Basics of SCADA Security: A Technical Approach
Authors: Michał Witas
Abstract:
This paper presents a technical approach to analysis of security of SCADA systems. Main goal of the paper is to make SCADA administrators aware of risks resulting from SCADA systems usage and to familiarize with methods that can be adopt to existing or planned system, to increase overall system security level. Because SCADA based systems become a industrial standard, more attention should be paid to the security of that systems. Industrial Control Systems (ICS) like SCADA are responsible for controlling crucial aspects of wide range of industrial processes. In pair with that responsibility, goes a lot of money that can be earned or lost – this fact is main reason of increased interest of attackers. Additionally ICS are often responsible for maintaining resources strategic from the point of view of national economy, like electricity (including nuclear power plants), heating, water resources or military facilities, so they can be targets of terrorist cybernetic attacks. Without proper risk analysis and management, vulnerabilities resulting from the usage of SCADA can be easily exploited by potential attacker. Paper is based mostly on own experience in systems security, gathered during academic studies and professional work in international company. As title suggests, it will cover only basics of topic, because every of points mentioned in the document can be base for additional research and papers.Keywords: denial of service, SCADA, security policy, distributed network
Procedia PDF Downloads 3715312 A Novel Approach of NPSO on Flexible Logistic (S-Shaped) Model for Software Reliability Prediction
Authors: Pooja Rani, G. S. Mahapatra, S. K. Pandey
Abstract:
In this paper, we propose a novel approach of Neural Network and Particle Swarm Optimization methods for software reliability prediction. We first explain how to apply compound function in neural network so that we can derive a Flexible Logistic (S-shaped) Growth Curve (FLGC) model. This model mathematically represents software failure as a random process and can be used to evaluate software development status during testing. To avoid trapping in local minima, we have applied Particle Swarm Optimization method to train proposed model using failure test data sets. We drive our proposed model using computational based intelligence modeling. Thus, proposed model becomes Neuro-Particle Swarm Optimization (NPSO) model. We do test result with different inertia weight to update particle and update velocity. We obtain result based on best inertia weight compare along with Personal based oriented PSO (pPSO) help to choose local best in network neighborhood. The applicability of proposed model is demonstrated through real time test data failure set. The results obtained from experiments show that the proposed model has a fairly accurate prediction capability in software reliability.Keywords: software reliability, flexible logistic growth curve model, software cumulative failure prediction, neural network, particle swarm optimization
Procedia PDF Downloads 3445311 Second Order Statistics of Dynamic Response of Structures Using Gamma Distributed Damping Parameters
Authors: Badreddine Chemali, Boualem Tiliouine
Abstract:
This article presents the main results of a numerical investigation on the uncertainty of dynamic response of structures with statistically correlated random damping Gamma distributed. A computational method based on a Linear Statistical Model (LSM) is implemented to predict second order statistics for the response of a typical industrial building structure. The significance of random damping with correlated parameters and its implications on the sensitivity of structural peak response in the neighborhood of a resonant frequency are discussed in light of considerable ranges of damping uncertainties and correlation coefficients. The results are compared to those generated using Monte Carlo simulation techniques. The numerical results obtained show the importance of damping uncertainty and statistical correlation of damping coefficients when obtaining accurate probabilistic estimates of dynamic response of structures. Furthermore, the effectiveness of the LSM model to efficiently predict uncertainty propagation for structural dynamic problems with correlated damping parameters is demonstrated.Keywords: correlated random damping, linear statistical model, Monte Carlo simulation, uncertainty of dynamic response
Procedia PDF Downloads 2805310 Fault Location Detection in Active Distribution System
Authors: R. Rezaeipour, A. R. Mehrabi
Abstract:
Recent increase of the DGs and microgrids in distribution systems, disturbs the tradition structure of the system. Coordination between protection devices in such a system becomes the concern of the network operators. This paper presents a new method for fault location detection in the active distribution networks, independent of the fault type or its resistance. The method uses synchronized voltage and current measurements at the interconnection of DG units and is able to adapt to changes in the topology of the system. The method has been tested on a 38-bus distribution system, with very encouraging results.Keywords: fault location detection, active distribution system, micro grids, network operators
Procedia PDF Downloads 7885309 Maximum Power Point Tracking for Small Scale Wind Turbine Using Multilayer Perceptron Neural Network Implementation without Mechanical Sensor
Authors: Piyangkun Kukutapan, Siridech Boonsang
Abstract:
The article proposes maximum power point tracking without mechanical sensor using Multilayer Perceptron Neural Network (MLPNN). The aim of article is to reduce the cost and complexity but still retain efficiency. The experimental is that duty cycle is generated maximum power, if it has suitable qualification. The measured data from DC generator, voltage (V), current (I), power (P), turnover rate of power (dP), and turnover rate of voltage (dV) are used as input for MLPNN model. The output of this model is duty cycle for driving the converter. The experiment implemented using Arduino Uno board. This diagram is compared to MPPT using MLPNN and P&O control (Perturbation and Observation control). The experimental results show that the proposed MLPNN based approach is more efficiency than P&O algorithm for this application.Keywords: maximum power point tracking, multilayer perceptron netural network, optimal duty cycle, DC generator
Procedia PDF Downloads 3255308 Recognition of Tifinagh Characters with Missing Parts Using Neural Network
Authors: El Mahdi Barrah, Said Safi, Abdessamad Malaoui
Abstract:
In this paper, we present an algorithm for reconstruction from incomplete 2D scans for tifinagh characters. This algorithm is based on using correlation between the lost block and its neighbors. This system proposed contains three main parts: pre-processing, features extraction and recognition. In the first step, we construct a database of tifinagh characters. In the second step, we will apply “shape analysis algorithm”. In classification part, we will use Neural Network. The simulation results demonstrate that the proposed method give good results.Keywords: Tifinagh character recognition, neural networks, local cost computation, ANN
Procedia PDF Downloads 3345307 A Survey on Traditional Mac Layer Protocols in Cognitive Wireless Mesh Networks
Authors: Anusha M., V. Srikanth
Abstract:
Maximizing spectrum usage and numerous applications of the wireless communication networks have forced to a high interest of available spectrum. Cognitive Radio control its receiver and transmitter features exactly so that they can utilize the vacant approved spectrum without impacting the functionality of the principal licensed users. The Use of various channels assists to address interferences thereby improves the whole network efficiency. The MAC protocol in cognitive radio network explains the spectrum usage by interacting with multiple channels among the users. In this paper we studied about the architecture of cognitive wireless mesh network and traditional TDMA dependent MAC method to allocate channels dynamically. The majority of the MAC protocols suggested in the research are operated on Common-Control-Channel (CCC) to handle the services between Cognitive Radio secondary users. In this paper, an extensive study of Multi-Channel Multi-Radios or frequency range channel allotment and continually synchronized TDMA scheduling are shown in summarized way.Keywords: TDMA, MAC, multi-channel, multi-radio, WMN’S, cognitive radios
Procedia PDF Downloads 5615306 Water Demand Modelling Using Artificial Neural Network in Ramallah
Authors: F. Massri, M. Shkarneh, B. Almassri
Abstract:
Water scarcity and increasing water demand especially for residential use are major challenges facing Palestine. The need to accurately forecast water consumption is useful for the planning and management of this natural resource. The main objective of this paper is to (i) study the major factors influencing the water consumption in Palestine, (ii) understand the general pattern of Household water consumption, (iii) assess the possible changes in household water consumption and suggest appropriate remedies and (iv) develop prediction model based on the Artificial Neural Network to the water consumption in Palestinian cities. The paper is organized in four parts. The first part includes literature review of household water consumption studies. The second part concerns data collection methodology, conceptual frame work for the household water consumption surveys, survey descriptions and data processing methods. The third part presents descriptive statistics, multiple regression and analysis of the water consumption in the two Palestinian cities. The final part develops the use of Artificial Neural Network for modeling the water consumption in Palestinian cities.Keywords: water management, demand forecasting, consumption, ANN, Ramallah
Procedia PDF Downloads 2195305 Distributed Energy Resources in Low-Income Communities: a Public Policy Proposal
Authors: Rodrigo Calili, Anna Carolina Sermarini, João Henrique Azevedo, Vanessa Cardoso de Albuquerque, Felipe Gonçalves, Gilberto Jannuzzi
Abstract:
The diffusion of Distributed Energy Resources (DER) has caused structural changes in the relationship between consumers and electrical systems. The Photovoltaic Distributed Generation (PVDG), in particular, is an essential strategy for achieving the 2030 Agenda goals, especially SDG 7 and SDG 13. However, it is observed that most projects involving this technology in Brazil are restricted to the wealthiest classes of society, not yet reaching the low-income population, aligned with theories of energy justice. Considering the research for energy equality, one of the policies adopted by governments is the social electricity tariff (SET), which provides discounts on energy tariffs/bills. However, just granting this benefit may not be effective, and it is possible to merge it with DER technologies, such as the PVDG. Thus, this work aims to evaluate the economic viability of the policy to replace the social electricity tariff (the current policy aimed at the low-income population in Brazil) by PVDG projects. To this end, a proprietary methodology was developed that included: mapping the stakeholders, identifying critical variables, simulating policy options, and carrying out an analysis in the Brazilian context. The simulation answered two key questions: in which municipalities low-income consumers would have lower bills with PVDG compared to SET; which consumers in a given city would have increased subsidies, which are now provided for solar energy in Brazil and for the social tariff. An economic model was created for verifying the feasibility of the proposed policy in each municipality in the country, considering geographic issues (tariff of a particular distribution utility, radiation from a specific location, etc.). To validate these results, four sensitivity analyzes were performed: variation of the simultaneity factor between generation and consumption, variation of the tariff readjustment rate, zeroing CAPEX, and exemption from state tax. The behind-the-meter modality of generation proved to be more promising than the construction of a shared plant. However, although the behind-the-meter modality presents better results than the shared plant, there is a greater complexity in adopting this modality due to issues related to the infrastructure of the most vulnerable communities (e.g., precarious electrical networks, need to reinforce roofs). Considering the shared power plant modality, many opportunities are still envisaged since the risk of investing in such a policy can be mitigated. Furthermore, this modality can be an alternative due to the mitigation of the risk of default, as it allows greater control of users and facilitates the process of operation and maintenance. Finally, it was also found, that in some regions of Brazil, the continuity of the SET presents more economic benefits than its replacement by PVDG. However, the proposed policy offers many opportunities. For future works, the model may include other parameters, such as cost with low-income populations’ engagement, and business risk. In addition, other renewable sources of distributed generation can be studied for this purpose.Keywords: low income, subsidy policy, distributed energy resources, energy justice
Procedia PDF Downloads 1125304 The Omicron Variant BA.2.86.1 of SARS- 2 CoV-2 Demonstrates an Altered Interaction Network and Dynamic Features to Enhance the Interaction with the hACE2
Authors: Taimur Khan, Zakirullah, Muhammad Shahab
Abstract:
The SARS-CoV-2 variant BA.2.86 (Omicron) has emerged with unique mutations that may increase its transmission and infectivity. This study investigates how these mutations alter the Omicron receptor-binding domain's interaction network and dynamic properties (RBD) compared to the wild-type virus, focusing on its binding affinity to the human ACE2 (hACE2) receptor. Protein-protein docking and all-atom molecular dynamics simulations were used to analyze structural and dynamic differences. Despite the structural similarity to the wild-type virus, the Omicron variant exhibits a distinct interaction network involving new residues that enhance its binding capacity. The dynamic analysis reveals increased flexibility in the RBD, particularly in loop regions crucial for hACE2 interaction. Mutations significantly alter the secondary structure, leading to greater flexibility and conformational adaptability compared to the wild type. Binding free energy calculations confirm that the Omicron RBD has a higher binding affinity (-70.47 kcal/mol) to hACE2 than the wild-type RBD (-61.38 kcal/mol). These results suggest that the altered interaction network and enhanced dynamics of the Omicron variant contribute to its increased infectivity, providing insights for the development of targeted therapeutics and vaccines.Keywords: SARS-CoV-2, molecular dynamic simulation, receptor binding domain, vaccine
Procedia PDF Downloads 215303 DCDNet: Lightweight Document Corner Detection Network Based on Attention Mechanism
Authors: Kun Xu, Yuan Xu, Jia Qiao
Abstract:
The document detection plays an important role in optical character recognition and text analysis. Because the traditional detection methods have weak generalization ability, and deep neural network has complex structure and large number of parameters, which cannot be well applied in mobile devices, this paper proposes a lightweight Document Corner Detection Network (DCDNet). DCDNet is a two-stage architecture. The first stage with Encoder-Decoder structure adopts depthwise separable convolution to greatly reduce the network parameters. After introducing the Feature Attention Union (FAU) module, the second stage enhances the feature information of spatial and channel dim and adaptively adjusts the size of receptive field to enhance the feature expression ability of the model. Aiming at solving the problem of the large difference in the number of pixel distribution between corner and non-corner, Weighted Binary Cross Entropy Loss (WBCE Loss) is proposed to define corner detection problem as a classification problem to make the training process more efficient. In order to make up for the lack of Dataset of document corner detection, a Dataset containing 6620 images named Document Corner Detection Dataset (DCDD) is made. Experimental results show that the proposed method can obtain fast, stable and accurate detection results on DCDD.Keywords: document detection, corner detection, attention mechanism, lightweight
Procedia PDF Downloads 3545302 Digital Forensics Compute Cluster: A High Speed Distributed Computing Capability for Digital Forensics
Authors: Daniel Gonzales, Zev Winkelman, Trung Tran, Ricardo Sanchez, Dulani Woods, John Hollywood
Abstract:
We have developed a distributed computing capability, Digital Forensics Compute Cluster (DFORC2) to speed up the ingestion and processing of digital evidence that is resident on computer hard drives. DFORC2 parallelizes evidence ingestion and file processing steps. It can be run on a standalone computer cluster or in the Amazon Web Services (AWS) cloud. When running in a virtualized computing environment, its cluster resources can be dynamically scaled up or down using Kubernetes. DFORC2 is an open source project that uses Autopsy, Apache Spark and Kafka, and other open source software packages. It extends the proven open source digital forensics capabilities of Autopsy to compute clusters and cloud architectures, so digital forensics tasks can be accomplished efficiently by a scalable array of cluster compute nodes. In this paper, we describe DFORC2 and compare it with a standalone version of Autopsy when both are used to process evidence from hard drives of different sizes.Keywords: digital forensics, cloud computing, cyber security, spark, Kubernetes, Kafka
Procedia PDF Downloads 3935301 Introduce a New Model of Anomaly Detection in Computer Networks Using Artificial Immune Systems
Authors: Mehrshad Khosraviani, Faramarz Abbaspour Leyl Abadi
Abstract:
The fundamental component of the computer network of modern information society will be considered. These networks are connected to the network of the internet generally. Due to the fact that the primary purpose of the Internet is not designed for, in recent decades, none of these networks in many of the attacks has been very important. Today, for the provision of security, different security tools and systems, including intrusion detection systems are used in the network. A common diagnosis system based on artificial immunity, the designer, the Adhasaz Foundation has been evaluated. The idea of using artificial safety methods in the diagnosis of abnormalities in computer networks it has been stimulated in the direction of their specificity, there are safety systems are similar to the common needs of m, that is non-diagnostic. For example, such methods can be used to detect any abnormalities, a variety of attacks, being memory, learning ability, and Khodtnzimi method of artificial immune algorithm pointed out. Diagnosis of the common system of education offered in this paper using only the normal samples is required for network and any additional data about the type of attacks is not. In the proposed system of positive selection and negative selection processes, selection of samples to create a distinction between the colony of normal attack is used. Copa real data collection on the evaluation of ij indicates the proposed system in the false alarm rate is often low compared to other ir methods and the detection rate is in the variations.Keywords: artificial immune system, abnormality detection, intrusion detection, computer networks
Procedia PDF Downloads 3535300 A 5G Architecture Based to Dynamic Vehicular Clustering Enhancing VoD Services Over Vehicular Ad hoc Networks
Authors: Lamaa Sellami, Bechir Alaya
Abstract:
Nowadays, video-on-demand (VoD) applications are becoming one of the tendencies driving vehicular network users. In this paper, considering the unpredictable vehicle density, the unexpected acceleration or deceleration of the different cars included in the vehicular traffic load, and the limited radio range of the employed communication scheme, we introduce the “Dynamic Vehicular Clustering” (DVC) algorithm as a new scheme for video streaming systems over VANET. The proposed algorithm takes advantage of the concept of small cells and the introduction of wireless backhauls, inspired by the different features and the performance of the Long Term Evolution (LTE)- Advanced network. The proposed clustering algorithm considers multiple characteristics such as the vehicle’s position and acceleration to reduce latency and packet loss. Therefore, each cluster is counted as a small cell containing vehicular nodes and an access point that is elected regarding some particular specifications.Keywords: video-on-demand, vehicular ad-hoc network, mobility, vehicular traffic load, small cell, wireless backhaul, LTE-advanced, latency, packet loss
Procedia PDF Downloads 1405299 Citation Analysis of New Zealand Court Decisions
Authors: Tobias Milz, L. Macpherson, Varvara Vetrova
Abstract:
The law is a fundamental pillar of human societies as it shapes, controls and governs how humans conduct business, behave and interact with each other. Recent advances in computer-assisted technologies such as NLP, data science and AI are creating opportunities to support the practice, research and study of this pervasive domain. It is therefore not surprising that there has been an increase in investments into supporting technologies for the legal industry (also known as “legal tech” or “law tech”) over the last decade. A sub-discipline of particular appeal is concerned with assisted legal research. Supporting law researchers and practitioners to retrieve information from the vast amount of ever-growing legal documentation is of natural interest to the legal research community. One tool that has been in use for this purpose since the early nineteenth century is legal citation indexing. Among other use cases, they provided an effective means to discover new precedent cases. Nowadays, computer-assisted network analysis tools can allow for new and more efficient ways to reveal the “hidden” information that is conveyed through citation behavior. Unfortunately, access to openly available legal data is still lacking in New Zealand and access to such networks is only commercially available via providers such as LexisNexis. Consequently, there is a need to create, analyze and provide a legal citation network with sufficient data to support legal research tasks. This paper describes the development and analysis of a legal citation Network for New Zealand containing over 300.000 decisions from 125 different courts of all areas of law and jurisdiction. Using python, the authors assembled web crawlers, scrapers and an OCR pipeline to collect and convert court decisions from openly available sources such as NZLII into uniform and machine-readable text. This facilitated the use of regular expressions to identify references to other court decisions from within the decision text. The data was then imported into a graph-based database (Neo4j) with the courts and their respective cases represented as nodes and the extracted citations as links. Furthermore, additional links between courts of connected cases were added to indicate an indirect citation between the courts. Neo4j, as a graph-based database, allows efficient querying and use of network algorithms such as PageRank to reveal the most influential/most cited courts and court decisions over time. This paper shows that the in-degree distribution of the New Zealand legal citation network resembles a power-law distribution, which indicates a possible scale-free behavior of the network. This is in line with findings of the respective citation networks of the U.S. Supreme Court, Austria and Germany. The authors of this paper provide the database as an openly available data source to support further legal research. The decision texts can be exported from the database to be used for NLP-related legal research, while the network can be used for in-depth analysis. For example, users of the database can specify the network algorithms and metrics to only include specific courts to filter the results to the area of law of interest.Keywords: case citation network, citation analysis, network analysis, Neo4j
Procedia PDF Downloads 1075298 Influence of the Refractory Period on Neural Networks Based on the Recognition of Neural Signatures
Authors: José Luis Carrillo-Medina, Roberto Latorre
Abstract:
Experimental evidence has revealed that different living neural systems can sign their output signals with some specific neural signature. Although experimental and modeling results suggest that neural signatures can have an important role in the activity of neural networks in order to identify the source of the information or to contextualize a message, the functional meaning of these neural fingerprints is still unclear. The existence of cellular mechanisms to identify the origin of individual neural signals can be a powerful information processing strategy for the nervous system. We have recently built different models to study the ability of a neural network to process information based on the emission and recognition of specific neural fingerprints. In this paper we further analyze the features that can influence on the information processing ability of this kind of networks. In particular, we focus on the role that the duration of a refractory period in each neuron after emitting a signed message can play in the network collective dynamics.Keywords: neural signature, neural fingerprint, processing based on signal identification, self-organizing neural network
Procedia PDF Downloads 4925297 Supporting Densification through the Planning and Implementation of Road Infrastructure in the South African Context
Authors: K. Govender, M. Sinclair
Abstract:
This paper demonstrates a proof of concept whereby shorter trips and land use densification can be promoted through an alternative approach to planning and implementation of road infrastructure in the South African context. It briefly discusses how the development of the Compact City concept relies on a combination of promoting shorter trips and densification through a change in focus in road infrastructure provision. The methodology developed in this paper uses a traffic model to test the impact of synthesized deterrence functions on congestion locations in the road network through the assignment of traffic on the study network. The results from this study demonstrate that intelligent planning of road infrastructure can indeed promote reduced urban sprawl, increased residential density and mixed-use areas which are supported by an efficient public transport system; and reduced dependence on the freeway network with a fixed road infrastructure budget. The study has resonance for all cities where urban sprawl is seemingly unstoppable.Keywords: compact cities, densification, road infrastructure planning, transportation modelling
Procedia PDF Downloads 1785296 Experimental Study and Neural Network Modeling in Prediction of Surface Roughness on Dry Turning Using Two Different Cutting Tool Nose Radii
Authors: Deba Kumar Sarma, Sanjib Kr. Rajbongshi
Abstract:
Surface finish is an important product quality in machining. At first, experiments were carried out to investigate the effect of the cutting tool nose radius (considering 1mm and 0.65mm) in prediction of surface finish with process parameters of cutting speed, feed and depth of cut. For all possible cutting conditions, full factorial design was considered as two levels four parameters. Commercial Mild Steel bar and High Speed Steel (HSS) material were considered as work-piece and cutting tool material respectively. In order to obtain functional relationship between process parameters and surface roughness, neural network was used which was found to be capable for the prediction of surface roughness within a reasonable degree of accuracy. It was observed that tool nose radius of 1mm provides better surface finish in comparison to 0.65 mm. Also, it was observed that feed rate has a significant influence on surface finish.Keywords: full factorial design, neural network, nose radius, surface finish
Procedia PDF Downloads 3685295 Application of Neural Network in Portfolio Product Companies: Integration of Boston Consulting Group Matrix and Ansoff Matrix
Authors: M. Khajezadeh, M. Saied Fallah Niasar, S. Ali Asli, D. Davani Davari, M. Godarzi, Y. Asgari
Abstract:
This study aims to explore the joint application of both Boston and Ansoff matrices in the operational development of the product. We conduct deep analysis, by utilizing the Artificial Neural Network, to predict the position of the product in the market while the company is interested in increasing its share. The data are gathered from two industries, called hygiene and detergent. In doing so, the effort is being made by investigating the behavior of top player companies and, recommend strategic orientations. In conclusion, this combination analysis is appropriate for operational development; as well, it plays an important role in providing the position of the product in the market for both hygiene and detergent industries. More importantly, it will elaborate on the company’s strategies to increase its market share related to a combination of the Boston Consulting Group (BCG) Matrix and Ansoff Matrix.Keywords: artificial neural network, portfolio analysis, BCG matrix, Ansoff matrix
Procedia PDF Downloads 143