Search results for: deep log analyzer
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2403

Search results for: deep log analyzer

1263 Microgrid Design Under Optimal Control With Batch Reinforcement Learning

Authors: Valentin Père, Mathieu Milhé, Fabien Baillon, Jean-Louis Dirion

Abstract:

Microgrids offer potential solutions to meet the need for local grid stability and increase isolated networks autonomy with the integration of intermittent renewable energy production and storage facilities. In such a context, sizing production and storage for a given network is a complex task, highly depending on input data such as power load profile and renewable resource availability. This work aims at developing an operating cost computation methodology for different microgrid designs based on the use of deep reinforcement learning (RL) algorithms to tackle the optimal operation problem in stochastic environments. RL is a data-based sequential decision control method based on Markov decision processes that enable the consideration of random variables for control at a chosen time scale. Agents trained via RL constitute a promising class of Energy Management Systems (EMS) for the operation of microgrids with energy storage. Microgrid sizing (or design) is generally performed by minimizing investment costs and operational costs arising from the EMS behavior. The latter might include economic aspects (power purchase, facilities aging), social aspects (load curtailment), and ecological aspects (carbon emissions). Sizing variables are related to major constraints on the optimal operation of the network by the EMS. In this work, an islanded mode microgrid is considered. Renewable generation is done with photovoltaic panels; an electrochemical battery ensures short-term electricity storage. The controllable unit is a hydrogen tank that is used as a long-term storage unit. The proposed approach focus on the transfer of agent learning for the near-optimal operating cost approximation with deep RL for each microgrid size. Like most data-based algorithms, the training step in RL leads to important computer time. The objective of this work is thus to study the potential of Batch-Constrained Q-learning (BCQ) for the optimal sizing of microgrids and especially to reduce the computation time of operating cost estimation in several microgrid configurations. BCQ is an off-line RL algorithm that is known to be data efficient and can learn better policies than on-line RL algorithms on the same buffer. The general idea is to use the learned policy of agents trained in similar environments to constitute a buffer. The latter is used to train BCQ, and thus the agent learning can be performed without update during interaction sampling. A comparison between online RL and the presented method is performed based on the score by environment and on the computation time.

Keywords: batch-constrained reinforcement learning, control, design, optimal

Procedia PDF Downloads 123
1262 Impact of CYP3A5 Polymorphism on Tacrolimus to Predict the Optimal Initial Dose Requirements in South Indian Renal Transplant Recipients

Authors: S. Sreeja, Radhakrishnan R. Nair, Noble Gracious, Sreeja S. Nair, M. Radhakrishna Pillai

Abstract:

Background: Tacrolimus is a potent immunosuppressant clinically used for the long term treatment of antirejection of transplanted organs in liver and kidney transplant recipients though dose optimization is poorly managed. However, So far no study has been carried out on the South Indian kidney transplant patients. The objective of this study is to evaluate the potential influence of a functional polymorphism in CYP3A5*3 gene on tacrolimus physiological availability/dose ratio in South Indian renal transplant patients. Materials and Methods: Twenty five renal transplant recipients receiving tacrolimus were enrolled in this study. Their body weight, drug dosage, and therapeutic concentration of Tacrolimus were observed. All patients were on standard immunosuppressive regime of Tacrolimus-Mycophenolate mofetil along with steroids on a starting dose of Tac 0.1 mg/kg/day. CYP3A5 genotyping was performed by PCR followed with RFLP. Conformation of RFLP analysis and variation in the nucleotide sequence of CYP3A5*3 gene were determined by direct sequencing using a validated automated generic analyzer. Results: A significant association was found between tacrolimus per dose/kg/d and CYP3A5 gene (A6986G) polymorphism in the study population. The CYP3A5 *1/*1, *1/*3 and *3/*3 genotypes were detected in 5 (20 %), 5 (20 %) and 15 (60 %) of the 25 graft recipients, respectively. CYP3A5*3 genotypes were found to be a good predictor of tacrolimus Concentration/Dose ratio in kidney transplant recipients. Significantly higher L/D was observed among non-expressors 9.483 ng/mL(4.5- 14.1) as compared with the expressors 5.154 ng/mL (4.42-6.5 ) of CYP3A5. Acute rejection episodes were significantly higher for CYP3A5*1 homozygotes compared to patients with CYP3A5*1/*3 and CYP3A5*3/*3 genotypes (40 % versus 20 % and 13 %, respectively ). The dose normalized TAC concentration (ng/ml/mg/kg) was significantly lower in patients having CYP3A5*1/*3 polymorphism. Conclusion: This is the first study to extensively determine the effect of CYP3A5*3 genetic polymorphism on tacrolimus pharmacokinetics in South Indian renal transplant recipients and also shows that majority of our patients carry mutant allele A6986G in CYP3A5*3 gene. Identification of CYP3A5 polymorphism prior to transplantation could contribute to evaluate the appropriate initial dosage of tacrolimus for each patient.

Keywords: kidney transplant patients, CYP3A5 genotype, tacrolimus, RFLP

Procedia PDF Downloads 301
1261 Impact of Maternal Employment on the Overall Behavioral Development of Children

Authors: Hareem Kausar

Abstract:

Women of today’s world are energetic, enthusiastic and high-spirited. They tend to be the best in whatever they do and strive to accept and fulfil each challenge with utmost liveliness. The aim of the research was about studying the impact of Maternal Employment on the Child’s Behavioral Development. It was conducted as an initiative to study the impact factor in Pakistani culture and for deep insight to the subject using qualitative research methodology. The samples were interviewed through semi-structured interview method in three phases including two working mothers, two children and a day care center official and the data was collected and analyzed through content analysis. Further, it was linked with the literature from the west and the results show that children of working mothers tend to be sound mentally and physically but at some points they face the inner feeling of solitude. Overall, develop the mechanism in independence in their nature and behavior but maternal employment definitely affects the overall behavioral development of the children.

Keywords: maternal employment, child behavior- development, childhood, impact

Procedia PDF Downloads 551
1260 Amelioration of Stability and Rheological Properties of a Crude Oil-Based Drilling Mud

Authors: Hammadi Larbi, Bergane Cheikh

Abstract:

Drilling for oil is done through many mechanisms. The goal is first to dig deep and then, after arriving at the oil source, to simply suck it up. And for this, it is important to know the role of oil-based drilling muds, which had many benefits for the drilling tool and for drilling generally, and also and essentially to know the rheological behavior of the emulsion system in particular water-in-oil inverse emulsions (Water/crude oil). This work contributes to the improvement of the stability and rheological properties of crude oil-based drilling mud by organophilic clay. Experimental data from steady-state flow measurements of crude oil-based drilling mud are classically analyzed by the Herschel-Bulkley model. The effects of organophilic clay type VG69 are studied. Microscopic observation showed that the addition of quantities of organophilic clay type VG69 less than or equal to 3 g leads to the stability of inverse Water/Oil emulsions; on the other hand, for quantities greater than 3g, the emulsions are destabilized.

Keywords: drilling, organophilic clay, crude oil, stability

Procedia PDF Downloads 125
1259 Human Posture Estimation Based on Multiple Viewpoints

Authors: Jiahe Liu, HongyangYu, Feng Qian, Miao Luo

Abstract:

This study aimed to address the problem of improving the confidence of key points by fusing multi-view information, thereby estimating human posture more accurately. We first obtained multi-view image information and then used the MvP algorithm to fuse this multi-view information together to obtain a set of high-confidence human key points. We used these as the input for the Spatio-Temporal Graph Convolution (ST-GCN). ST-GCN is a deep learning model used for processing spatio-temporal data, which can effectively capture spatio-temporal relationships in video sequences. By using the MvP algorithm to fuse multi-view information and inputting it into the spatio-temporal graph convolution model, this study provides an effective method to improve the accuracy of human posture estimation and provides strong support for further research and application in related fields.

Keywords: multi-view, pose estimation, ST-GCN, joint fusion

Procedia PDF Downloads 70
1258 Recombination Center Levels in Gold and Platinum Doped N-type Silicon for High-Speed Thyristor

Authors: Nam Chol Yu, GyongIl Chu, HoJong Ri

Abstract:

Using DLTS (Deep-level transient spectroscopy) measurement techniques, we determined the dominant recombination center levels (defects of both A and B) in gold and platinum doped n-type silicon. Also, the injection and temperature dependence of the Shockley-Read-Hall (SRH) carrier lifetime was studied under low-level injection and high-level injection. Here measurements show that the dominant level under low-level injection located at EC-0.25 eV (A) correlated to the Pt+G1 and the dominant level under high-level injection located at EC-0.54 eV (B) correlated to the Au+G4. Finally, A and B are the same dominant levels for controlling the lifetime in gold-platinum doped n-silicon.

Keywords: recombination center level, lifetime, carrier lifetime control, Gold, Platinum, Silicon

Procedia PDF Downloads 69
1257 Characterization of Complex Gold Ores for Preliminary Process Selection: The Case of Kapanda, Ibindi, Mawemeru, and Itumbi in Tanzania

Authors: Sospeter P. Maganga, Alphonce Wikedzi, Mussa D. Budeba, Samwel V. Manyele

Abstract:

This study characterizes complex gold ores (elemental and mineralogical composition, gold distribution, ore grindability, and mineral liberation) for preliminary process selection. About 200 kg of ore samples were collected from each location using systematic sampling by mass interval. Ores were dried, crushed, milled, and split into representative sub-samples (about 1 kg) for elemental and mineralogical composition analyses using X-ray fluorescence (XRF), fire assay finished with Atomic Absorption Spectrometer (AAS), and X-ray Diffraction (XRD) methods, respectively. The gold distribution was studied on size-by-size fractions, while ore grindability was determined using the standard Bond test. The mineral liberation analysis was conducted using ThermoFisher Scientific Mineral Liberation Analyzer (MLA) 650, where unsieved polished grain mounts (80% passing 700 µm) were used as MLA feed. Two MLA measurement modes, X-ray modal analysis (XMOD) and sparse phase liberation-grain X-ray mapping analysis (SPL-GXMAP), were employed. At least two cyanide consumers (Cu, Fe, Pb, and Zn) and kinetics impeders (Mn, S, As, and Bi) were present in all locations investigated. Copper content at Kapanda (0.77% Cu) and Ibindi (7.48% Cu) exceeded the recommended threshold of 0.5% Cu for direct cyanidation. The gold ore at Ibindi indicated a higher rate of grinding compared to other locations. This could be explained by the highest grindability (2.119 g/rev.) and lowest Bond work index (10.213 kWh/t) values. The pyrite-marcasite, chalcopyrite, galena, and siderite were identified as major gold, copper, lead, and iron-bearing minerals, respectively, with potential for economic extraction. However, only gold and copper can be recovered under conventional milling because of grain size issues (galena is exposed by 10%) and process complexity (difficult to concentrate and smelt iron from siderite). Therefore, the preliminary process selection is copper flotation followed by gold cyanidation for Kapanda and Ibindi ores, whereas gold cyanidation with additives such as glycine or ammonia is selected for Mawemeru and Itumbi ores because of low concentrations of Cu, Pb, Fe, and Zn minerals.

Keywords: complex gold ores, mineral liberation, ore characterization, ore grindability

Procedia PDF Downloads 73
1256 Energy Dissipation Characteristics of an Elastomer under Dynamic Condition: A Comprehensive Assessment Using High and Low Frequency Analyser

Authors: K. Anas, M. Selvakumar, Samson David, R. R. Babu, S. Chattopadhyay

Abstract:

The dynamic deformation of a visco elastic material can cause heat generation. This heat generation is aspect energy dissipation. The present work investigates the contribution of various factors like; elastomer structure, cross link type and density, filler networking, reinforcement potential and temperature at energy dissipation mechanism. The influences of these elements are investigated using very high frequency analyzer (VHF ) and dynamical mechanical analysis(DMA).VHF follows transmissibility and vibration isolation principle whereas DMA works on dynamical mechanical deformation principle. VHF analysis of different types of elastomers reveals that elastomer can act as a transmitter or damper of energy depending on the applied frequency ratio (ω/ωn). Dynamic modulus (G') of low damping rubbers like natural rubber does not varies rapidly with frequency but vice-versa for high damping rubber like butyl rubber (IIR). VHF analysis also depicts that polysulfidic linkages has high damping ratio (ζ) than mono sulfidic linkages due to its dissipative nature. At comparable cross link density, mono sulfidic linkages shows higher glass transition temperature (Tg) than poly sulfidic linkages. The intensity and location of loss modulus (G'') peak of different types of carbon black filled natural rubber compounds suggests that segmental relaxation at glass transition temperature (Tg) is seldom affected by filler particles, but the filler networks can influence the cross link density by absorbing the curatives. The filler network breaking and reformation during a dynamic strain is a thermally activated process. Thus, stronger aggregates are highly dissipative in nature. Measurements indicate that at lower temperature regimes polymeric chain friction is highly dissipative in nature.

Keywords: damping ratio, natural frequency, crosslinking density, segmental motion, surface activity, dissipative, polymeric chain friction

Procedia PDF Downloads 295
1255 Chi Square Confirmation of Autonomic Functions Percentile Norms of Indian Sportspersons Withdrawn from Competitive Games and Sports

Authors: Pawan Kumar, Dhananjoy Shaw, Manoj Kumar Rathi

Abstract:

Purpose of the study were to compare between (a) frequencies among the four quartiles of percentile norms of autonomic variables from power events and (b) frequencies among the four quartiles percentile norms of autonomic variables from aerobic events of Indian sportspersons withdrawn from competitive games and sports in regard to number of samples falling in each quartile. The study was conducted on 430 males of 30 to 35 years of age. Based on the nature of game/sports the retired sportspersons were classified into power events (throwers, judo players, wrestlers, short distance swimmers, cricket fast bowlers and power lifters) and aerobic events (long distance runners, long distance swimmers, water polo players). Date was collected using ECG polygraphs. Data were processed and extracted using frequency domain analysis and time domain analysis. Collected data were computed with frequency, percentage of each quartile and finally the frequencies were compared with the chi square analysis. The finding pertaining to norm reference comparison of frequencies among the four quartiles of Indian sportspersons withdrawn from competitive games and sports from (a) power events suggests that frequency distribution in four quartile namely Q1, Q2, Q3, and Q4 are significantly different at .05 level in regard to variables namely, SDNN, Total Power (Absolute Power), HF (Absolute Power), LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, valsalva manoeuvre, hand grip test, cold pressor test and lying to standing test, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD, SDANN, NN50 Count, pNN50 Count, LF (Absolute Power) and 30: 15 Ratio (b) aerobic events suggests that frequency distribution in four quartile are significantly different at .05 level in regard to variables namely, SDNN, LF (Normalized Power), HF (Normalized Power), LF/HF ratio, deep breathing test, expiratory respiratory ratio, hand grip test, cold pressor test, lying to standing test and 30: 15 ratio, whereas, insignificantly different at .05 level in regard to variables namely, SDSD, RMSSD. SDANN, NN50 count, pNN50 count, Total Power (Absolute Power), LF(Absolute Power) HF(Absolute Power), and valsalva manoeuvre. The study concluded that comparison of frequencies among the four quartiles of Indian retired sportspersons from power events and aerobic events are different in four quartiles in regard to selected autonomic functions, hence the developed percentile norms are not homogenously distributed across the percentile scale; hence strengthen the percentage distribution towards normal distribution.

Keywords: power, aerobic, absolute power, normalized power

Procedia PDF Downloads 353
1254 Evaluation of Modern Natural Language Processing Techniques via Measuring a Company's Public Perception

Authors: Burak Oksuzoglu, Savas Yildirim, Ferhat Kutlu

Abstract:

Opinion mining (OM) is one of the natural language processing (NLP) problems to determine the polarity of opinions, mostly represented on a positive-neutral-negative axis. The data for OM is usually collected from various social media platforms. In an era where social media has considerable control over companies’ futures, it’s worth understanding social media and taking actions accordingly. OM comes to the fore here as the scale of the discussion about companies increases, and it becomes unfeasible to gauge opinion on individual levels. Thus, the companies opt to automize this process by applying machine learning (ML) approaches to their data. For the last two decades, OM or sentiment analysis (SA) has been mainly performed by applying ML classification algorithms such as support vector machines (SVM) and Naïve Bayes to a bag of n-gram representations of textual data. With the advent of deep learning and its apparent success in NLP, traditional methods have become obsolete. Transfer learning paradigm that has been commonly used in computer vision (CV) problems started to shape NLP approaches and language models (LM) lately. This gave a sudden rise to the usage of the pretrained language model (PTM), which contains language representations that are obtained by training it on the large datasets using self-supervised learning objectives. The PTMs are further fine-tuned by a specialized downstream task dataset to produce efficient models for various NLP tasks such as OM, NER (Named-Entity Recognition), Question Answering (QA), and so forth. In this study, the traditional and modern NLP approaches have been evaluated for OM by using a sizable corpus belonging to a large private company containing about 76,000 comments in Turkish: SVM with a bag of n-grams, and two chosen pre-trained models, multilingual universal sentence encoder (MUSE) and bidirectional encoder representations from transformers (BERT). The MUSE model is a multilingual model that supports 16 languages, including Turkish, and it is based on convolutional neural networks. The BERT is a monolingual model in our case and transformers-based neural networks. It uses a masked language model and next sentence prediction tasks that allow the bidirectional training of the transformers. During the training phase of the architecture, pre-processing operations such as morphological parsing, stemming, and spelling correction was not used since the experiments showed that their contribution to the model performance was found insignificant even though Turkish is a highly agglutinative and inflective language. The results show that usage of deep learning methods with pre-trained models and fine-tuning achieve about 11% improvement over SVM for OM. The BERT model achieved around 94% prediction accuracy while the MUSE model achieved around 88% and SVM did around 83%. The MUSE multilingual model shows better results than SVM, but it still performs worse than the monolingual BERT model.

Keywords: BERT, MUSE, opinion mining, pretrained language model, SVM, Turkish

Procedia PDF Downloads 146
1253 Using Convolutional Neural Networks to Distinguish Different Sign Language Alphanumerics

Authors: Stephen L. Green, Alexander N. Gorban, Ivan Y. Tyukin

Abstract:

Within the past decade, using Convolutional Neural Networks (CNN)’s to create Deep Learning systems capable of translating Sign Language into text has been a breakthrough in breaking the communication barrier for deaf-mute people. Conventional research on this subject has been concerned with training the network to recognize the fingerspelling gestures of a given language and produce their corresponding alphanumerics. One of the problems with the current developing technology is that images are scarce, with little variations in the gestures being presented to the recognition program, often skewed towards single skin tones and hand sizes that makes a percentage of the population’s fingerspelling harder to detect. Along with this, current gesture detection programs are only trained on one finger spelling language despite there being one hundred and forty-two known variants so far. All of this presents a limitation for traditional exploitation for the state of current technologies such as CNN’s, due to their large number of required parameters. This work aims to present a technology that aims to resolve this issue by combining a pretrained legacy AI system for a generic object recognition task with a corrector method to uptrain the legacy network. This is a computationally efficient procedure that does not require large volumes of data even when covering a broad range of sign languages such as American Sign Language, British Sign Language and Chinese Sign Language (Pinyin). Implementing recent results on method concentration, namely the stochastic separation theorem, an AI system is supposed as an operate mapping an input present in the set of images u ∈ U to an output that exists in a set of predicted class labels q ∈ Q of the alphanumeric that q represents and the language it comes from. These inputs and outputs, along with the interval variables z ∈ Z represent the system’s current state which implies a mapping that assigns an element x ∈ ℝⁿ to the triple (u, z, q). As all xi are i.i.d vectors drawn from a product mean distribution, over a period of time the AI generates a large set of measurements xi called S that are grouped into two categories: the correct predictions M and the incorrect predictions Y. Once the network has made its predictions, a corrector can then be applied through centering S and Y by subtracting their means. The data is then regularized by applying the Kaiser rule to the resulting eigenmatrix and then whitened before being split into pairwise, positively correlated clusters. Each of these clusters produces a unique hyperplane and if any element x falls outside the region bounded by these lines then it is reported as an error. As a result of this methodology, a self-correcting recognition process is created that can identify fingerspelling from a variety of sign language and successfully identify the corresponding alphanumeric and what language the gesture originates from which no other neural network has been able to replicate.

Keywords: convolutional neural networks, deep learning, shallow correctors, sign language

Procedia PDF Downloads 100
1252 The Evaluation of Complete Blood Cell Count-Based Inflammatory Markers in Pediatric Obesity and Metabolic Syndrome

Authors: Mustafa M. Donma, Orkide Donma

Abstract:

Obesity is defined as a severe chronic disease characterized by a low-grade inflammatory state. Therefore, inflammatory markers gained utmost importance during the evaluation of obesity and metabolic syndrome (MetS), a disease characterized by central obesity, elevated blood pressure, increased fasting blood glucose and elevated triglycerides or reduced high density lipoprotein cholesterol (HDL-C) values. Some inflammatory markers based upon complete blood cell count (CBC) are available. In this study, it was questioned which inflammatory marker was the best to evaluate the differences between various obesity groups. 514 pediatric individuals were recruited. 132 children with MetS, 155 morbid obese (MO), 90 obese (OB), 38 overweight (OW) and 99 children with normal BMI (N-BMI) were included into the scope of this study. Obesity groups were constituted using age- and sex-dependent body mass index (BMI) percentiles tabulated by World Health Organization. MetS components were determined to be able to specify children with MetS. CBC were determined using automated hematology analyzer. HDL-C analysis was performed. Using CBC parameters and HDL-C values, ratio markers of inflammation, which cover neutrophil-to-lymphocyte ratio (NLR), derived neutrophil-to-lymphocyte ratio (dNLR), platelet-to-lymphocyte ratio (PLR), lymphocyte-to-monocyte ratio (LMR), monocyte-to-HDL-C ratio (MHR) were calculated. Statistical analyses were performed. The statistical significance degree was considered as p < 0.05. There was no statistically significant difference among the groups in terms of platelet count, neutrophil count, lymphocyte count, monocyte count, and NLR. PLR differed significantly between OW and N-BMI as well as MetS. Monocyte-to HDL-C value exhibited statistical significance between MetS and N-BMI, OB, and MO groups. HDL-C value differed between MetS and N-BMI, OW, OB, MO groups. MHR was the ratio, which exhibits the best performance among the other CBC-based inflammatory markers. On the other hand, when MHR was compared to HDL-C only, it was suggested that HDL-C has given much more valuable information. Therefore, this parameter still keeps its value from the diagnostic point of view. Our results suggest that MHR can be an inflammatory marker during the evaluation of pediatric MetS, but the predictive value of this parameter was not superior to HDL-C during the evaluation of obesity.

Keywords: children, complete blood cell count, high density lipoprotein cholesterol, metabolic syndrome, obesity

Procedia PDF Downloads 129
1251 Effect of Wolffia globosa Incorporation on the Physical, Phytochemical and Antioxidant Properties of Breadsticks

Authors: May Phyo Wai, Tanyawan Suantawee

Abstract:

The positive correlation between unhealthy diets (high in fats, sugars, carbohydrates, and low fibers) and the risk of non-communicable diseases (NCDs) like obesity, hypertension, diabetes, and heart diseases has led to a growing interest in healthier lifestyles and diets. Consequently, people are opting for foods rich in fiber and phytochemicals. Wolffia globosa, also known as duckweed or watermeal, is the smallest plant with high nutritional value, including protein, fiber, phytochemicals, and antioxidant properties. It offers numerous health benefits, such as improving gut health and lowering blood glucose levels, and it is widely available in Thailand. The purpose of this study was to develop nutritionally enhanced breadsticks utilizing vacuum heat-dried Wolffia globosa power (WP). Various concentrations of WP (0% as control, 5%, 10%, and 15 % w/w/) were added, and then the breadsticks’ physical properties (hardness, fracturability, and color), phytochemicals (total phenolic compounds: TPC and total flavonoid contents: TFC), and antioxidant properties (DPPH radical scavenging activity (DPPH) and ferric reducing antioxidant power (FRAP) assay) were investigated. Experiments were done by triplicates and data was analyzed by one-way ANOVA. The results showed that the hardness, measured by a texture analyzer, increased significantly (p<0.05) with higher WP concentrations, reaching 2,897.01 ± 77.31 g at 15% WP from 1,314.41 ± 32.52 g of the control. In contrast, the lightness (L*), redness (a*), and yellowness (b*) of the breadsticks significantly decreased (p < 0.05) in a dose-dependent manner with added WP. Incorporating WP, rich in phytochemicals and antioxidants, into the flour significantly enhanced the TPC and TFC of the breadsticks (p<0.05), with TPC and TFC increasing dose-dependently rising to 1.8-fold and 3.5-fold at 15% WP, respectively. The antioxidant power, assessed by DPPH and FRAP assays, also showed a similar trend, with significantly higher values at 10% and 15% WP (p<0.05). These results indicate that adding WP significantly boosted the TPC, TFC, DPPH, and FRAP values of the developed breadsticks. Therefore, incorporating WP into breadsticks might be a promising strategy for creating food products enriched with phytochemicals and antioxidants, offering consumers healthier options in the market.

Keywords: antioxidant properties, breadsticks, phytochemicals, Wolffia globosa

Procedia PDF Downloads 36
1250 A Comparison between Russian and Western Approach for Deep Foundation Design

Authors: Saeed Delara, Kendra MacKay

Abstract:

Varying methodologies are considered for pile design for both Russian and Western approaches. Although both approaches rely on toe and side frictional resistances, different calculation methods are proposed to estimate pile capacity. The Western approach relies on compactness (internal friction angle) of soil for cohesionless soils and undrained shear strength for cohesive soils. The Russian approach relies on grain size for cohesionless soils and liquidity index for cohesive soils. Though most recommended methods in the Western approaches are relatively simple methods to predict pile settlement, the Russian approach provides a detailed method to estimate single pile and pile group settlement. Details to calculate pile axial capacity and settlement using the Russian and Western approaches are discussed and compared against field test results.

Keywords: pile capacity, pile settlement, Russian approach, western approach

Procedia PDF Downloads 166
1249 The Twin Terminal of Pedestrian Trajectory Based on City Intelligent Model (CIM) 4.0

Authors: Chen Xi, Liu Xuebing, Lao Xueru, Kuan Sinman, Jiang Yike, Wang Hanwei, Yang Xiaolang, Zhou Junjie, Xie Jinpeng

Abstract:

To further promote the development of smart cities, the microscopic "nerve endings" of the City Intelligent Model (CIM) are extended to be more sensitive. In this paper, we develop a pedestrian trajectory twin terminal based on the CIM and CNN technology. It also uses 5G networks, architectural and geoinformatics technologies, convolutional neural networks, combined with deep learning networks for human behavior recognition models, to provide empirical data such as 'pedestrian flow data and human behavioral characteristics data', and ultimately form spatial performance evaluation criteria and spatial performance warning systems, to make the empirical data accurate and intelligent for prediction and decision making.

Keywords: urban planning, urban governance, CIM, artificial intelligence, sustainable development

Procedia PDF Downloads 419
1248 Investigation of Ground Disturbance Caused by Pile Driving: Case Study

Authors: Thayalan Nall, Harry Poulos

Abstract:

Piling is the most widely used foundation method for heavy structures in poor soil conditions. The geotechnical engineer can choose among a variety of piling methods, but in most cases, driving piles by impact hammer is the most cost-effective alternative. Under unfavourable conditions, driving piles can cause environmental problems, such as noise, ground movements and vibrations, with the risk of ground disturbance leading to potential damage to proposed structures. In one of the project sites in which the authors were involved, three offshore container terminals, namely CT1, CT2 and CT3, were constructed over thick compressible marine mud. The seabed was around 6m deep and the soft clay thickness within the project site varied between 9m and 20m. CT2 and CT3 were connected together and rectangular in shape and were 2600mx800m in size. CT1 was 400m x 800m in size and was located on south opposite of CT2 towards its eastern end. CT1 was constructed first and due to time and environmental limitations, it was supported on a “forest” of large diameter driven piles. CT2 and CT3 are now under construction and are being carried out using a traditional dredging and reclamation approach with ground improvement by surcharging with vertical drains. A few months after the installation of the CT1 piles, a 2600m long sand bund to 2m above mean sea level was constructed along the southern perimeter of CT2 and CT3 to contain the dredged mud that was expected to be pumped. The sand bund was constructed by sand spraying and pumping using a dredging vessel. About 2000m length of the sand bund in the west section was constructed without any major stability issues or any noticeable distress. However, as the sand bund approached the section parallel to CT1, it underwent a series of deep seated failures leading the displaced soft clay materials to heave above the standing water level. The crest of the sand bund was about 100m away from the last row of piles. There were no plausible geological reasons to conclude that the marine mud only across the CT1 region was weaker than over the rest of the site. Hence it was suspected that the pile driving by impact hammer may have caused ground movements and vibrations, leading to generation of excess pore pressures and cyclic softening of the marine mud. This paper investigates the probable cause of failure by reviewing: (1) All ground investigation data within the region; (2) Soil displacement caused by pile driving, using theories similar to spherical cavity expansion; (3) Transfer of stresses and vibrations through the entire system, including vibrations transmitted from the hammer to the pile, and the dynamic properties of the soil; and (4) Generation of excess pore pressure due to ground vibration and resulting cyclic softening. The evidence suggests that the problems encountered at the site were primarily caused by the “side effects” of the pile driving operations.

Keywords: pile driving, ground vibration, excess pore pressure, cyclic softening

Procedia PDF Downloads 236
1247 The Old Man And The Sea: From A Gerotranscendence Perpective

Authors: Eng Lye, Ooi

Abstract:

The Old Man and The Sea is a novella written by Ernest Hemingway that depicts an old fisherman’ journey out into the deep sea in his pursuit to catch a big fish. Through this novella, Hemingway creates a world for his protagonist, Santiago who is portrayed as an old man who has gone eighty-four days without catching a fish, at last hooks an eighteen-foot marlin, the largest he ever known. The old man endures pain and struggles to bring back to shore. Looking through the lens of gerotranscendence, we can see that the old man has his dreams, and goals in life. In his pursuit for happiness, he has fought tirelessly to ward off the shark attacks and finally he won even though only half of his fish is left. Hemingway has portrayed Santiago as an old man as a transcendent self leaping from the dimension of “The Self” to the cosmic dimension with the personal and social relationship dimension in tow. The Old Man and The Sea offers a glimpse of the struggles of an old man, who is old and gaunt but spiritually undefeated in his battle out in the sea. He is surprisingly strong and powerful despite his old age, he respects the sea, the birds. the turtles, the sharks and the fish. He can endure suffering and is focussed on achieving his goals. This is what Hemingway has portrayed Santiago to be a gerotranscendent in the eyes of the gerotranscendental approach in respect of the changes and development as seen in Santiago, the protagonist in this novella.

Keywords: gerotranscendence, gerotranscendenatal, old man, the sea, hemingway

Procedia PDF Downloads 33
1246 Various Perspectives for the Concept of the Emotion Labor

Authors: Jae Soo Do, Kyoung-Seok Kim

Abstract:

Radical changes in the industrial environment, and spectacular developments of IT have changed the current of managements from people-centered to technology- or IT-centered. Interpersonal emotion exchanges have long become insipid and interactive services have also come as mechanical reactions. This study offers various concepts for the emotional labor based on traditional studies on emotional labor. Especially the present day, on which human emotions are subject to being served as machinized thing, is the time when the study on human emotions comes momentous. Precedent researches on emotional labors commonly and basically dealt with the relationship between the active group who performs actions and the passive group who is done with the action. This study focuses on the passive group and tries to offer a new perspective of 'liquid emotion' as a defence mechanism for the passive group from the external environment. Especially, this addresses a concrete discussion on directions of following studies on the liquid labor as a newly suggested perspective.

Keywords: emotion labor, surface acting, deep acting, liquid emotion

Procedia PDF Downloads 346
1245 Use of Technology to Improve Students’ Attitude in Learning Mathematics of Non- Mathematics Undergraduate Students

Authors: Asia Majeed

Abstract:

The learning of mathematics in science, engineering and social science programs can be enhanced through practical problem-solving techniques. The instructors can design their lessons with some strategies to improve students’ educational needs and accomplishments in mathematics classrooms. The use of technology in class problem solving and application sessions can enhance deep understanding of mathematics among students. As mathematician, we believe in subject specific and content-driven teaching methods. Through technology the relationship between the physical problems and the mathematical models can be analyzed. This paper is about selective use of technology in mathematics classrooms and helpful to others mathematics instructors who wishes to improve their traditional teaching techniques to improve students’ attitude in learning mathematics. These techniques corpus can be used in teaching large mathematics classes in science, technology, engineering, and social science.

Keywords: attitude in learning mathematics, mathematics, non-mathematics undergraduate students, technology

Procedia PDF Downloads 222
1244 Churn Prediction for Telecommunication Industry Using Artificial Neural Networks

Authors: Ulas Vural, M. Ergun Okay, E. Mesut Yildiz

Abstract:

Telecommunication service providers demand accurate and precise prediction of customer churn probabilities to increase the effectiveness of their customer relation services. The large amount of customer data owned by the service providers is suitable for analysis by machine learning methods. In this study, expenditure data of customers are analyzed by using an artificial neural network (ANN). The ANN model is applied to the data of customers with different billing duration. The proposed model successfully predicts the churn probabilities at 83% accuracy for only three months expenditure data and the prediction accuracy increases up to 89% when the nine month data is used. The experiments also show that the accuracy of ANN model increases on an extended feature set with information of the changes on the bill amounts.

Keywords: customer relationship management, churn prediction, telecom industry, deep learning, artificial neural networks

Procedia PDF Downloads 146
1243 Seismic Inversion to Improve the Reservoir Characterization: Case Study in Central Blue Nile Basin, Sudan

Authors: Safwat E. Musa, Nuha E. Mohamed, Nuha A. Bagi

Abstract:

In this study, several crossplots of the P-impedance with the lithology logs (gamma ray, neutron porosity, deep resistivity, water saturation and Vp/Vs curves) were made in three available wells, which were drilled in central part of the Blue Nile basin in depths varies from 1460 m to 1600 m. These crossplots were successful to discriminate between sand and shale when using P-Impedance values, and between the wet sand and the pay sand when using both P-impedance and Vp/Vs together. Also, some impedance sections were converted to porosity sections using linear formula to characterize the reservoir in terms of porosity. The used crossplots were created on log resolution, while the seismic resolution can identify only the reservoir, unless a 3D seismic angle stacks were available; then it would be easier to identify the pay sand with great confidence; through high resolution seismic inversion and geostatistical approach when using P-impedance and Vp/Vs volumes.

Keywords: basin, Blue Nile, inversion, seismic

Procedia PDF Downloads 430
1242 The Effect of Choke on the Efficiency of Coaxial Antenna for Percutaneous Microwave Coagulation Therapy for Hepatic Tumor

Authors: Surita Maini

Abstract:

There are many perceived advantages of microwave ablation have driven researchers to develop innovative antennas to effectively treat deep-seated, non-resectable hepatic tumors. In this paper a coaxial antenna with a miniaturized sleeve choke has been discussed for microwave interstitial ablation therapy, in order to reduce backward heating effects irrespective of the insertion depth into the tissue. Two dimensional Finite Element Method (FEM) is used to simulate and measure the results of miniaturized sleeve choke antenna. This paper emphasizes the importance of factors that can affect simulation accuracy, which include mesh resolution, surface heating and reflection coefficient. Quarter wavelength choke effectiveness has been discussed by comparing it with the unchoked antenna with same dimensions.

Keywords: microwave ablation, tumor, finite element method, coaxial slot antenna, coaxial dipole antenna

Procedia PDF Downloads 357
1241 A Muslim Jurisprudential Stance on Melodious Application of Music in Qur’ānic Recitation

Authors: Muhammad Feroz-Ud-Din Shah Khagga

Abstract:

The holy Qur’ān, due to its exceptional and unique rhythmic style of expression, seems to have a deep connection with music and elegance of melodiousness of voice, on the other hand, Islam has various authentic transmissions and expound teachings regarding the prevention of music and songs. In this context, there has been a remarkable debate among Islamic scholars, jurists and Qur’ānic scientist to whether it is permissible to use the principles of Arabic musical symphonies, Maqāmāt and melodies in the recitation of the Qur’ān? Some Muslim scholars are convinced of the Sharīʻah legitimacy of the use of music, Maqāmāt and melodies in the recitation of the Qur’ān but some scholars do not consider it permissible. This study is an attempt to discover the factual Muslim jurisprudential experts’ stance on the subject by analyzing the arguments of both groups of scholars. It supports the viewpoint of the opponents, but also tries to reconcile the two positions. It maintains that there is nothing wrong with reciting the Qur’ān in a beautiful voice but it must be free from those forms of music which are not adored in Islamic Sharīʻah.

Keywords: Quranic recitation. maqāmāt, music, lahn, Uloom al-Qur’ān, Quranic sciences

Procedia PDF Downloads 6
1240 Bridging the Data Gap for Sexism Detection in Twitter: A Semi-Supervised Approach

Authors: Adeep Hande, Shubham Agarwal

Abstract:

This paper presents a study on identifying sexism in online texts using various state-of-the-art deep learning models based on BERT. We experimented with different feature sets and model architectures and evaluated their performance using precision, recall, F1 score, and accuracy metrics. We also explored the use of pseudolabeling technique to improve model performance. Our experiments show that the best-performing models were based on BERT, and their multilingual model achieved an F1 score of 0.83. Furthermore, the use of pseudolabeling significantly improved the performance of the BERT-based models, with the best results achieved using the pseudolabeling technique. Our findings suggest that BERT-based models with pseudolabeling hold great promise for identifying sexism in online texts with high accuracy.

Keywords: large language models, semi-supervised learning, sexism detection, data sparsity

Procedia PDF Downloads 70
1239 An Inorganic Nanofiber/Polymeric Microfiber Network Membrane for High-Performance Oil/Water Separation

Authors: Zhaoyang Liu

Abstract:

It has been highly desired to develop a high-performance membrane for separating oil/water emulsions with the combined features of high water flux, high oil separation efficiency, and high mechanical stability. Here, we demonstrated a design for high-performance membranes constructed with ultra-long titanate nanofibers (over 30 µm in length)/cellulose microfibers. An integrated network membrane was achieved with these ultra-long nano/microfibers, contrast to the non-integrated membrane constructed with carbon nanotubes (5 µm in length)/cellulose microfibers. The morphological properties of the prepared membranes were characterized by A FEI Quanta 400 (Hillsboro, OR, United States) environmental scanning electron microscope (ESEM). The hydrophilicity, underwater oleophobicity and oil adhesion property of the membranes were examined using an advanced goniometer (Rame-hart model 500, Succasunna, NJ, USA). More specifically, the hydrophilicity of membranes was investigated by analyzing the spreading process of water into membranes. A filtration device (Nalgene 300-4050, Rochester, NY, USA) with an effective membrane area of 11.3 cm² was used for evaluating the separation properties of the fabricated membranes. The prepared oil-in-water emulsions were poured into the filtration device. The separation process was driven under vacuum with a constant pressure of 5 kPa. The filtrate was collected, and the oil content in water was detected by a Shimadzu total organic carbon (TOC) analyzer (Nakagyo-ku, Kyoto, Japan) to examine the separation efficiency. Water flux (J) of the membrane was calculated by measuring the time needed to collect some volume of permeate. This network membrane demonstrated good mechanical flexibility and robustness, which are critical for practical applications. This network membrane also showed high separation efficiency (99.9%) for oil/water emulsions with oil droplet size down to 3 µm, and meanwhile, has high water permeation flux (6.8 × 10³ L m⁻² h⁻¹ bar⁻¹) at low operation pressure. The high water flux is attributed to the interconnected scaffold-like structure throughout the whole membrane, while the high oil separation efficiency is attributed to the nanofiber-made nanoporous selective layer. Moreover, the economic materials and low-cost fabrication process of this membrane indicate its great potential for large-scale industrial applications.

Keywords: membrane, inorganic nanofibers, oil/water separation, emulsions

Procedia PDF Downloads 173
1238 Influence of Crystal Orientation on Electromechanical Behaviors of Relaxor Ferroelectric P(VDF-TRFE-CTFE) Terpolymer

Authors: Qing Liu, Jean-fabien Capsal, Claude Richard

Abstract:

In this current contribution, authors are dedicated to investigate influence of the crystal lamellae orientation on electromechanical behaviors of relaxor ferroelectric Poly (vinylidene fluoride –trifluoroethylene -chlorotrifluoroethylene) (P(VDF-TrFE-CTFE)) films by control of polymer microstructure, aiming to picture the full map of structure-property relationship. In order to define their crystal orientation films, terpolymer films were fabricated by solution-casting, stretching and hot-pressing process. Differential scanning calorimetry, impedance analyzer, and tensile strength techniques were employed to characterize crystallographic parameters, dielectric permittivity, and elastic Young’s modulus respectively. In addition, large electrical induced out-of-plane electrostrictive strain was obtained by cantilever beam mode. Consequently, as-casted pristine films exhibited surprisingly high electrostrictive strain 0.1774% due to considerably small value of elastic Young’s modulus although relatively low dielectric permittivity. Such reasons contributed to large mechanical elastic energy density. Instead, due to 2 folds increase of elastic Young’s modulus and less than 50% augmentation of dielectric constant, fully-crystallized film showed weak electrostrictive behavior and mechanical energy density as well. And subjected to mechanical stretching process, Film C exhibited stronger dielectric constant and out-performed electrostrictive strain over Film B because edge-on crystal lamellae orientation induced by uniaxially mechanical stretch. Hot-press films were compared in term of cooling rate. Rather large electrostrictive strain of 0.2788% for hot-pressed Film D in quenching process was observed although its dielectric permittivity equivalent to that of pristine as-casted Film A, showing highest mechanical elastic energy density value of 359.5 J/m^3. In hot-press cooling process, dielectric permittivity of Film E saw values at 48.8 concomitant with ca.100% increase of Young’s modulus. Films with intermediate mechanical energy density were obtained.

Keywords: crystal orientation, electrostroctive strain, mechanical energy density, permittivity, relaxor ferroelectric

Procedia PDF Downloads 376
1237 Visual Preferences of Elementary School Children with Autism Spectrum Disorder: An Experimental Study

Authors: Larissa Pliska, Isabel Neitzel, Michael Buschermöhle, Olga Kunina-Habenicht, Ute Ritterfeld

Abstract:

Visual preferences, which can be assessed using eye tracking technologies, are considered one of the defining hallmarks of Autism Spectrum Disorder (ASD). Specifically, children with ASD show a decreased preference for social images rather than geometric images compared to typically developed (TD) children. Such differences are already prevalent at a very early age and indicate the severity of the disorder: toddlers with ASD who preferred geometric images when confronted with social and geometric images showed higher ASD symptom severity than toddlers with ASD who showed higher social attention. Furthermore, the complexity of social pictures (one child playing vs. two children playing together) as well as the mode of stimulus presentation (video or image), are not decisive for the marker. The average age of diagnosis for ASD in Germany is 6.5 years, and visual preference data on this age group is missing. In the present study, we therefore investigated whether visual preferences persist into school age. We examined the visual preferences of 16 boys aged 6 to 11 with ASD and unimpaired cognition as well as TD children (1:1 matching based on children's age and the parent's level of education) within an experimental setting. Different stimulus presentation formats (images vs. videos) and different levels of stimulus complexity were included. Children with and without ASD received pairs of social and non-social images and video stimuli on a screen while eye movements (i.e., eye position and gaze direction) were recorded. For this specific use case, KIZMO GmbH developed a customized, native iOS app (KIZMO Face-Analyzer) for use on iPads. Neither the format of stimulus presentation nor the complexity of the social images had a significant effect on the visual preference of children with and without ASD in this study. Despite the tendency for a difference between the groups for the video stimuli, there were no significant differences. Overall, no statistical differences in visual preference occurred between boys with and without ASD, suggesting that gaze preference in these groups is similar at primary school age. One limitation is that the children with ASD were already receiving Autism-specific intervention. The potential of a visual preference task as an indicator of ASD can be emphasized. The article discusses the clinical relevance of this marker in elementary school children.

Keywords: autism spectrum disorder, eye tracking, hallmark, visual preference

Procedia PDF Downloads 60
1236 Improving Fingerprinting-Based Localization System Using Generative AI

Authors: Getaneh Berie Tarekegn, Li-Chia Tai

Abstract:

With the rapid advancement of artificial intelligence, low-power built-in sensors on Internet of Things devices, and communication technologies, location-aware services have become increasingly popular and have permeated every aspect of people’s lives. Global navigation satellite systems (GNSSs) are the default method of providing continuous positioning services for ground and aerial vehicles, as well as consumer devices (smartphones, watches, notepads, etc.). However, the environment affects satellite positioning systems, particularly indoors, in dense urban and suburban cities enclosed by skyscrapers, or when deep shadows obscure satellite signals. This is because (1) indoor environments are more complicated due to the presence of many objects surrounding them; (2) reflection within the building is highly dependent on the surrounding environment, including the positions of objects and human activity; and (3) satellite signals cannot be reached in an indoor environment, and GNSS doesn't have enough power to penetrate building walls. GPS is also highly power-hungry, which poses a severe challenge for battery-powered IoT devices. Due to these challenges, IoT applications are limited. Consequently, precise, seamless, and ubiquitous Positioning, Navigation and Timing (PNT) systems are crucial for many artificial intelligence Internet of Things (AI-IoT) applications in the era of smart cities. Their applications include traffic monitoring, emergency alarms, environmental monitoring, location-based advertising, intelligent transportation, and smart health care. This paper proposes a generative AI-based positioning scheme for large-scale wireless settings using fingerprinting techniques. In this article, we presented a semi-supervised deep convolutional generative adversarial network (S-DCGAN)-based radio map construction method for real-time device localization. We also employed a reliable signal fingerprint feature extraction method with t-distributed stochastic neighbor embedding (t-SNE), which extracts dominant features while eliminating noise from hybrid WLAN and long-term evolution (LTE) fingerprints. The proposed scheme reduced the workload of site surveying required to build the fingerprint database by up to 78.5% and significantly improved positioning accuracy. The results show that the average positioning error of GAILoc is less than 0.39 m, and more than 90% of the errors are less than 0.82 m. According to numerical results, SRCLoc improves positioning performance and reduces radio map construction costs significantly compared to traditional methods.

Keywords: location-aware services, feature extraction technique, generative adversarial network, long short-term memory, support vector machine

Procedia PDF Downloads 42
1235 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 121
1234 The Nexus between Social Media Usage and Overtourism: A Survey Study Applied to Hangzhou in China

Authors: Song Qingfeng

Abstract:

This research aims to seek the relationship between social media usage and overtourism from the perspective of tourists based on the theory of Maslow’s hierarchy needs. A questionnaire is formulated to collect data from 400 tourists who have visited the Hangzhou city in China in the last 12 months. Structural Equation Model (SEM) is employed to analysis data. The finding is that social media usage aggravates overtourism. Specifically, social media is used by tourists to information-seeking, entertainment, self-presentation, and socialization for traveling. These roles of social media would evoke the traveling intention to a specific destination at a certain time, which further influences the tourist flow. When the tourist flow concentrate, the overtourism would be aggravated. This study contributes to the destination managers to deep-understand the cause-effect relationship between social media and overtourism in order to address this problem.

Keywords: social media, overtourism, tourist flow, SEM, Maslow’s hierarchy of needs, Hangzhou

Procedia PDF Downloads 135