Search results for: climatic classification
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2866

Search results for: climatic classification

1726 Study of the Process of Climate Change According to Data Simulation Using LARS-WG Software during 2010-2030: Case Study of Semnan Province

Authors: Leila Rashidian

Abstract:

Temperature rise on Earth has had harmful effects on the Earth's surface and has led to change in precipitation patterns all around the world. The present research was aimed to study the process of climate change according to the data simulation in future and compare these parameters with current situation in the studied stations in Semnan province including Garmsar, Shahrood and Semnan. In this regard, LARS-WG software, HADCM3 model and A2 scenario were used for the 2010-2030 period. In this model, climatic parameters such as maximum and minimum temperature, precipitation and radiation were used daily. The obtained results indicated that there will be a 4.4% increase in precipitation in Semnan province compared with the observed data, and in general, there will be a 1.9% increase in temperature. This temperature rise has significant impact on precipitation patterns. Most of precipitation will be raining (torrential rains in some cases). According to the results, from west to east, the country will experience more temperature rise and will be warmer.

Keywords: climate change, Semnan province, Lars.WG model, climate parameters, HADCM₃ model

Procedia PDF Downloads 252
1725 A Qualitative Research of Online Fraud Decision-Making Process

Authors: Semire Yekta

Abstract:

Many online retailers set up manual review teams to overcome the limitations of automated online fraud detection systems. This study critically examines the strategies they adapt in their decision-making process to set apart fraudulent individuals from non-fraudulent online shoppers. The study uses a mix method research approach. 32 in-depth interviews have been conducted alongside with participant observation and auto-ethnography. The study found out that all steps of the decision-making process are significantly affected by a level of subjectivity, personal understandings of online fraud, preferences and judgments and not necessarily by objectively identifiable facts. Rather clearly knowing who the fraudulent individuals are, the team members have to predict whether they think the customer might be a fraudster. Common strategies used are relying on the classification and fraud scorings in the automated fraud detection systems, weighing up arguments for and against the customer and making a decision, using cancellation to test customers’ reaction and making use of personal experiences and “the sixth sense”. The interaction in the team also plays a significant role given that some decisions turn into a group discussion. While customer data represent the basis for the decision-making, fraud management teams frequently make use of Google search and Google Maps to find out additional information about the customer and verify whether the customer is the person they claim to be. While this, on the one hand, raises ethical concerns, on the other hand, Google Street View on the address and area of the customer puts customers living in less privileged housing and areas at a higher risk of being classified as fraudsters. Phone validation is used as a final measurement to make decisions for or against the customer when previous strategies and Google Search do not suffice. However, phone validation is also characterized by individuals’ subjectivity, personal views and judgment on customer’s reaction on the phone that results in a final classification as genuine or fraudulent.

Keywords: online fraud, data mining, manual review, social construction

Procedia PDF Downloads 343
1724 Histopathological Features of Basal Cell Carcinoma: A Ten Year Retrospective Statistical Study in Egypt

Authors: Hala M. El-hanbuli, Mohammed F. Darweesh

Abstract:

The incidence rates of any tumor vary hugely with geographical location. Basal Cell Carcinoma (BCC) is one of the most common skin cancer that has many histopathologic subtypes. Objective: The aim was to study the histopathological features of BCC cases that were received in the Pathology Department, Kasr El-Aini hospital, Cairo University, Egypt during the period from Jan 2004 to Dec 2013 and to evaluate the clinical characters through the patient data available in the request sheets. Methods: Slides and data of BCC cases were collected from the archives of the pathology department, Kasr El-Aini hospital. Revision of all available slides and histological classification of BCC according to WHO (2006) was done. Results: A total number of 310 cases of BCC representing about 65% from the total number of malignant skin tumors examined during the 10-years duration in the department. The age ranged from 8 to 84 years, the mean age was (55.7 ± 15.5). Most of the patients (85%) were above the age of 40 years. There was a slight male predominance (55%). Ulcerated BCC was the most common gross picture (60%), followed by nodular lesion (30%) and finally the ulcerated nodule (10%). Most of the lesions situated in the high-risk sites (77%) where the nose was the most common site (35%) followed by the periocular area (22%), then periauricular (15%) and finally perioral (5%). No lesion was reported outside the head. The tumor size was less than 2 centimeters in 65% of cases, and from 2-5 centimeters in the lesions' greatest dimension in the rest of cases. Histopathological reclassification revealed that the nodular BCC was the most common (68%) followed by the pigmented nodular (18.75%). The histologic high-risk groups represented (7.5%) about half of them (3.75%) being basosquamous carcinoma. The total incidence for multiple BCC and 2nd primary was 12%. Recurrent BCC represented 8%. All of the recurrent lesions of BCC belonged to the histologic high-risk group. Conclusion: Basal Cell Carcinoma is the most common skin cancer in the 10-year survey. Histopathological diagnosis and classification of BCC cases are essential for the determination of the tumor type and its biological behavior.

Keywords: basal cell carcinoma, high risk, histopathological features, statistical analysis

Procedia PDF Downloads 149
1723 Molecular and Phytochemical Fingerprinting of Anti-Cancer Drug Yielding Plants in South India

Authors: Alexis John de Britto

Abstract:

Studies were performed to select the superior genotypes based on intra-specific variations, caused by phytogeographical, climatic and edaphic parameters of three anti cancer drug yielding mangrove plants such as Acanthus ilicifolius L., Calophyllum inophyllum L. and Excoecaria agallocha L. using ISSR (Inter Simple Sequence Repeats) markers and phytochemical analysis such as preliminary phytochemical tests, TLC, HPTLC, HPLC and antioxidant tests. The plants were collected from five different geographical locations of the East Coast of south India. Genetic heterozygosity, Nei’s gene diversity, Shannon’s information index and Percentage of polymorphism between the populations were calculated using POPGENE software. Cluster analysis was performed using UPGMA algorithm. AMOVA and correlations between genetic diversity and soil factors were analyzed. Combining the molecular and phytochemical variations superior genotypes were selected. Conservation constraints and methods of efficient exploitation of the species are discussed.

Keywords: anti-cancer drug yielding plants, DNA fingerprinting, phytochemical analysis, selection of superior genotypes

Procedia PDF Downloads 330
1722 A Methodology for Developing New Technology Ideas to Avoid Patent Infringement: F-Term Based Patent Analysis

Authors: Kisik Song, Sungjoo Lee

Abstract:

With the growing importance of intangible assets recently, the impact of patent infringement on the business of a company has become more evident. Accordingly, it is essential for firms to estimate the risk of patent infringement risk before developing a technology and create new technology ideas to avoid the risk. Recognizing the needs, several attempts have been made to help develop new technology opportunities and most of them have focused on identifying emerging vacant technologies from patent analysis. In these studies, the IPC (International Patent Classification) system or keywords from text-mining application to patent documents was generally used to define vacant technologies. Unlike those studies, this study adopted F-term, which classifies patent documents according to the technical features of the inventions described in them. Since the technical features are analyzed by various perspectives by F-term, F-term provides more detailed information about technologies compared to IPC while more systematic information compared to keywords. Therefore, if well utilized, it can be a useful guideline to create a new technology idea. Recognizing the potential of F-term, this paper aims to suggest a novel approach to developing new technology ideas to avoid patent infringement based on F-term. For this purpose, we firstly collected data about F-term and then applied text-mining to the descriptions about classification criteria and attributes. From the text-mining results, we could identify other technologies with similar technical features of the existing one, the patented technology. Finally, we compare the technologies and extract the technical features that are commonly used in other technologies but have not been used in the existing one. These features are presented in terms of “purpose”, “function”, “structure”, “material”, “method”, “processing and operation procedure” and “control means” and so are useful for creating new technology ideas that help avoid infringing patent rights of other companies. Theoretically, this is one of the earliest attempts to adopt F-term to patent analysis; the proposed methodology can show how to best take advantage of F-term with the wealth of technical information. In practice, the proposed methodology can be valuable in the ideation process for successful product and service innovation without infringing the patents of other companies.

Keywords: patent infringement, new technology ideas, patent analysis, F-term

Procedia PDF Downloads 269
1721 Categorical Metadata Encoding Schemes for Arteriovenous Fistula Blood Flow Sound Classification: Scaling Numerical Representations Leads to Improved Performance

Authors: George Zhou, Yunchan Chen, Candace Chien

Abstract:

Kidney replacement therapy is the current standard of care for end-stage renal diseases. In-center or home hemodialysis remains an integral component of the therapeutic regimen. Arteriovenous fistulas (AVF) make up the vascular circuit through which blood is filtered and returned. Naturally, AVF patency determines whether adequate clearance and filtration can be achieved and directly influences clinical outcomes. Our aim was to build a deep learning model for automated AVF stenosis screening based on the sound of blood flow through the AVF. A total of 311 patients with AVF were enrolled in this study. Blood flow sounds were collected using a digital stethoscope. For each patient, blood flow sounds were collected at 6 different locations along the patient’s AVF. The 6 locations are artery, anastomosis, distal vein, middle vein, proximal vein, and venous arch. A total of 1866 sounds were collected. The blood flow sounds are labeled as “patent” (normal) or “stenotic” (abnormal). The labels are validated from concurrent ultrasound. Our dataset included 1527 “patent” and 339 “stenotic” sounds. We show that blood flow sounds vary significantly along the AVF. For example, the blood flow sound is loudest at the anastomosis site and softest at the cephalic arch. Contextualizing the sound with location metadata significantly improves classification performance. How to encode and incorporate categorical metadata is an active area of research1. Herein, we study ordinal (i.e., integer) encoding schemes. The numerical representation is concatenated to the flattened feature vector. We train a vision transformer (ViT) on spectrogram image representations of the sound and demonstrate that using scalar multiples of our integer encodings improves classification performance. Models are evaluated using a 10-fold cross-validation procedure. The baseline performance of our ViT without any location metadata achieves an AuROC and AuPRC of 0.68 ± 0.05 and 0.28 ± 0.09, respectively. Using the following encodings of Artery:0; Arch: 1; Proximal: 2; Middle: 3; Distal 4: Anastomosis: 5, the ViT achieves an AuROC and AuPRC of 0.69 ± 0.06 and 0.30 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 10; Proximal: 20; Middle: 30; Distal 40: Anastomosis: 50, the ViT achieves an AuROC and AuPRC of 0.74 ± 0.06 and 0.38 ± 0.10, respectively. Using the following encodings of Artery:0; Arch: 100; Proximal: 200; Middle: 300; Distal 400: Anastomosis: 500, the ViT achieves an AuROC and AuPRC of 0.78 ± 0.06 and 0.43 ± 0.11. respectively. Interestingly, we see that using increasing scalar multiples of our integer encoding scheme (i.e., encoding “venous arch” as 1,10,100) results in progressively improved performance. In theory, the integer values do not matter since we are optimizing the same loss function; the model can learn to increase or decrease the weights associated with location encodings and converge on the same solution. However, in the setting of limited data and computation resources, increasing the importance at initialization either leads to faster convergence or helps the model escape a local minimum.

Keywords: arteriovenous fistula, blood flow sounds, metadata encoding, deep learning

Procedia PDF Downloads 88
1720 Aquatic and Marshy Flora from Fresh Water Wetlands on Quartz Sands in Pinar Del Río, Cuba

Authors: Vidal Pérez Hernández, Enrique González Pendás

Abstract:

The most of the aquatic and marshy flora in Cuba, is located on quartzitic sands ecosystems and they are represented by a wide variety of freshwater wetlands, which are spread in the whole south and south-western plain of Pinar del Río. The survey carried out in these ecosystems offers an updated inventory of these species, showing up their biological type, habit, distribution, and the threat grade to which are subjected, taking into account categories granted by UICN. A remarkable decrease is evidenced, in the total of these species respect to this area; due to deposit processes and deforestation, which are taken place by the human activity and the climatic change. It is linked to others threats like, limitless use of their water reserves for irrigating groves, the cattle raising and intensive fishing. Added to it, its sand with 99% pure crystal quartz, are used for the mining. The combination of all factors has a negative influence on a flora that stores more than 250 species, most of them herbaceous and hydrophytes. In these particular ecosystems were found a 40% endemism from total flora, and more than 80%, are evaluated inside the most sensitive threat categories, and already some of them have been declared as extinct.

Keywords: aquatic flora, marshy flora, quartzitic sands, wetlands

Procedia PDF Downloads 228
1719 Study and Analysis of the Factors Affecting Road Safety Using Decision Tree Algorithms

Authors: Naina Mahajan, Bikram Pal Kaur

Abstract:

The purpose of traffic accident analysis is to find the possible causes of an accident. Road accidents cannot be totally prevented but by suitable traffic engineering and management the accident rate can be reduced to a certain extent. This paper discusses the classification techniques C4.5 and ID3 using the WEKA Data mining tool. These techniques use on the NH (National highway) dataset. With the C4.5 and ID3 technique it gives best results and high accuracy with less computation time and error rate.

Keywords: C4.5, ID3, NH(National highway), WEKA data mining tool

Procedia PDF Downloads 338
1718 Fault-Tolerant Control Study and Classification: Case Study of a Hydraulic-Press Model Simulated in Real-Time

Authors: Jorge Rodriguez-Guerra, Carlos Calleja, Aron Pujana, Iker Elorza, Ana Maria Macarulla

Abstract:

Society demands more reliable manufacturing processes capable of producing high quality products in shorter production cycles. New control algorithms have been studied to satisfy this paradigm, in which Fault-Tolerant Control (FTC) plays a significant role. It is suitable to detect, isolate and adapt a system when a harmful or faulty situation appears. In this paper, a general overview about FTC characteristics are exposed; highlighting the properties a system must ensure to be considered faultless. In addition, a research to identify which are the main FTC techniques and a classification based on their characteristics is presented in two main groups: Active Fault-Tolerant Controllers (AFTCs) and Passive Fault-Tolerant Controllers (PFTCs). AFTC encompasses the techniques capable of re-configuring the process control algorithm after the fault has been detected, while PFTC comprehends the algorithms robust enough to bypass the fault without further modifications. The mentioned re-configuration requires two stages, one focused on detection, isolation and identification of the fault source and the other one in charge of re-designing the control algorithm by two approaches: fault accommodation and control re-design. From the algorithms studied, one has been selected and applied to a case study based on an industrial hydraulic-press. The developed model has been embedded under a real-time validation platform, which allows testing the FTC algorithms and analyse how the system will respond when a fault arises in similar conditions as a machine will have on factory. One AFTC approach has been picked up as the methodology the system will follow in the fault recovery process. In a first instance, the fault will be detected, isolated and identified by means of a neural network. In a second instance, the control algorithm will be re-configured to overcome the fault and continue working without human interaction.

Keywords: fault-tolerant control, electro-hydraulic actuator, fault detection and isolation, control re-design, real-time

Procedia PDF Downloads 177
1717 Sustainable User Comfort Using Building Envelope Design; From Traditional Methods to Innovative Solutions

Authors: Soufi Saylam

Abstract:

Environmental concerns, rising consumption of energy, and the high cost of mechanical systems have all contributed to increased interest in building energy efficiency and passive thermal design in recent years. This study attempts to make an evaluation of building envelope components and associated retrofits in terms of their impact on energy efficiency and occupant comfort in a sustainable context. The design of the building envelope, as a critical component of the building, has a significant impact on the organization of interior space and user comfort. In this regard, in order to achieve maximum comfort and energy savings, the design of the building envelope should include a thermal comfort system that adapts to climatic variables. This system should be developed in harmony with the environmental features, building shape, and materials used. The aim of this study is to investigate the role of the building envelope in sustainable architecture by integrating traditional envelope design principles and strategies with technological techniques, as well as to examine its role in providing physical and psychological comfort to users in the interior space.

Keywords: envelope design, functional needs, physiological comfort, sustainable architecture, traditional techniques

Procedia PDF Downloads 8
1716 Mondoc: Informal Lightweight Ontology for Faceted Semantic Classification of Hypernymy

Authors: M. Regina Carreira-Lopez

Abstract:

Lightweight ontologies seek to concrete union relationships between a parent node, and a secondary node, also called "child node". This logic relation (L) can be formally defined as a triple ontological relation (LO) equivalent to LO in ⟨LN, LE, LC⟩, and where LN represents a finite set of nodes (N); LE is a set of entities (E), each of which represents a relationship between nodes to form a rooted tree of ⟨LN, LE⟩; and LC is a finite set of concepts (C), encoded in a formal language (FL). Mondoc enables more refined searches on semantic and classified facets for retrieving specialized knowledge about Atlantic migrations, from the Declaration of Independence of the United States of America (1776) and to the end of the Spanish Civil War (1939). The model looks forward to increasing documentary relevance by applying an inverse frequency of co-ocurrent hypernymy phenomena for a concrete dataset of textual corpora, with RMySQL package. Mondoc profiles archival utilities implementing SQL programming code, and allows data export to XML schemas, for achieving semantic and faceted analysis of speech by analyzing keywords in context (KWIC). The methodology applies random and unrestricted sampling techniques with RMySQL to verify the resonance phenomena of inverse documentary relevance between the number of co-occurrences of the same term (t) in more than two documents of a set of texts (D). Secondly, the research also evidences co-associations between (t) and their corresponding synonyms and antonyms (synsets) are also inverse. The results from grouping facets or polysemic words with synsets in more than two textual corpora within their syntagmatic context (nouns, verbs, adjectives, etc.) state how to proceed with semantic indexing of hypernymy phenomena for subject-heading lists and for authority lists for documentary and archival purposes. Mondoc contributes to the development of web directories and seems to achieve a proper and more selective search of e-documents (classification ontology). It can also foster on-line catalogs production for semantic authorities, or concepts, through XML schemas, because its applications could be used for implementing data models, by a prior adaptation of the based-ontology to structured meta-languages, such as OWL, RDF (descriptive ontology). Mondoc serves to the classification of concepts and applies a semantic indexing approach of facets. It enables information retrieval, as well as quantitative and qualitative data interpretation. The model reproduces a triple tuple ⟨LN, LE, LT, LCF L, BKF⟩ where LN is a set of entities that connect with other nodes to concrete a rooted tree in ⟨LN, LE⟩. LT specifies a set of terms, and LCF acts as a finite set of concepts, encoded in a formal language, L. Mondoc only resolves partial problems of linguistic ambiguity (in case of synonymy and antonymy), but neither the pragmatic dimension of natural language nor the cognitive perspective is addressed. To achieve this goal, forthcoming programming developments should target at oriented meta-languages with structured documents in XML.

Keywords: hypernymy, information retrieval, lightweight ontology, resonance

Procedia PDF Downloads 125
1715 Adaptive Architecture: Reformulation of Socio-Ecological Systems

Authors: Pegah Zamani

Abstract:

This multidisciplinary study interrogates the reformulation of socio-ecological systems by bringing different disciplines together and incorporating ecological, social, and technological components to the sustainable design. The study seeks for a holistic sustainable system to understand the multidimensional impact of the evolving innovative technologies on responding to the variable socio-environmental conditions. Through a range of cases, from the vernacular built spaces to the sophisticated optimized systems, the research unfolds how far the environmental elements would impact the performance of a sustainable building, its micro-climatic ecological requirements, and its human inhabitation. As a product of the advancing technologies, an optimized and environmentally responsive building offers new identification, and realization of the built space through reformulating the connection to its internal and external environments (such as solar, thermal, and airflow), as well as its dwellers. The study inquires properties of optimized buildings, by bringing into the equation not only the environmental but also the socio-cultural, morphological, and phenomenal factors. Thus, the research underlines optimized built space as a product and practice which would not be meaningful without addressing and dynamically adjusting to the diversity and complexity of socio-ecological systems.

Keywords: ecology, morphology, socio-ecological systems, sustainability

Procedia PDF Downloads 204
1714 The Effects of Lithofacies on Oil Enrichment in Lucaogou Formation Fine-Grained Sedimentary Rocks in Santanghu Basin, China

Authors: Guoheng Liu, Zhilong Huang

Abstract:

For more than the past ten years, oil and gas production from marine shale such as the Barnett shale. In addition, in recent years, major breakthroughs have also been made in lacustrine shale gas exploration, such as the Yanchang Formation of the Ordos Basin in China. Lucaogou Formation shale, which is also lacustrine shale, has also yielded a high production in recent years, for wells such as M1, M6, and ML2, yielding a daily oil production of 5.6 tons, 37.4 tons and 13.56 tons, respectively. Lithologic identification and classification of reservoirs are the base and keys to oil and gas exploration. Lithology and lithofacies obviously control the distribution of oil and gas in lithological reservoirs, so it is of great significance to describe characteristics of lithology and lithofacies of reservoirs finely. Lithofacies is an intrinsic property of rock formed under certain conditions of sedimentation. Fine-grained sedimentary rocks such as shale formed under different sedimentary conditions display great particularity and distinctiveness. Hence, to our best knowledge, no constant and unified criteria and methods exist for fine-grained sedimentary rocks regarding lithofacies definition and classification. Consequently, multi-parameters and multi-disciplines are necessary. A series of qualitative descriptions and quantitative analysis were used to figure out the lithofacies characteristics and its effect on oil accumulation of Lucaogou formation fine-grained sedimentary rocks in Santanghu basin. The qualitative description includes core description, petrographic thin section observation, fluorescent thin-section observation, cathode luminescence observation and scanning electron microscope observation. The quantitative analyses include X-ray diffraction, total organic content analysis, ROCK-EVAL.II Methodology, soxhlet extraction, porosity and permeability analysis and oil saturation analysis. Three types of lithofacies were mainly well-developed in this study area, which is organic-rich massive shale lithofacies, organic-rich laminated and cloddy hybrid sedimentary lithofacies and organic-lean massive carbonate lithofacies. Organic-rich massive shale lithofacies mainly include massive shale and tuffaceous shale, of which quartz and clay minerals are the major components. Organic-rich laminated and cloddy hybrid sedimentary lithofacies contain lamina and cloddy structure. Rocks from this lithofacies chiefly consist of dolomite and quartz. Organic-lean massive carbonate lithofacies mainly contains massive bedding fine-grained carbonate rocks, of which fine-grained dolomite accounts for the main part. Organic-rich massive shale lithofacies contain the highest content of free hydrocarbon and solid organic matter. Moreover, more pores were developed in organic-rich massive shale lithofacies. Organic-lean massive carbonate lithofacies contain the lowest content solid organic matter and develop the least amount of pores. Organic-rich laminated and cloddy hybrid sedimentary lithofacies develop the largest number of cracks and fractures. To sum up, organic-rich massive shale lithofacies is the most favorable type of lithofacies. Organic-lean massive carbonate lithofacies is impossible for large scale oil accumulation.

Keywords: lithofacies classification, tuffaceous shale, oil enrichment, Lucaogou formation

Procedia PDF Downloads 220
1713 Energy Related Carbon Dioxide Emissions in Pakistan: A Decomposition Analysis Using LMDI

Authors: Arsalan Khan, Faisal Jamil

Abstract:

The unprecedented increase in anthropogenic gases in recent decades has led to climatic changes worldwide. CO2 emissions are the most important factors responsible for greenhouse gases concentrations. This study decomposes the changes in overall CO2 emissions in Pakistan for the period 1990-2012 using Log Mean Divisia Index (LMDI). LMDI enables to decompose the changes in CO2 emissions into five factors namely; activity effect, structural effect, intensity effect, fuel-mix effect, and emissions factor effect. This paper confirms an upward trend of overall emissions level of the country during the period. The study finds that activity effect, structural effect and intensity effect are the three major factors responsible for the changes in overall CO2 emissions in Pakistan with activity effect as the largest contributor to overall changes in the emissions level. The structural effect is also adding to CO2 emissions, which indicates that the economic activity is shifting towards more energy-intensive sectors. However, intensity effect has negative sign representing energy efficiency gains, which indicate a good relationship between the economy and environment. The findings suggest that policy makers should encourage the diversification of the output level towards more energy efficient sub-sectors of the economy.

Keywords: energy consumption, CO2 emissions, decomposition analysis, LMDI, intensity effect

Procedia PDF Downloads 398
1712 Reconnaissance Investigation of Thermal Springs in the Middle Benue Trough, Nigeria by Remote Sensing

Authors: N. Tochukwu, M. Mukhopadhyay, A. Mohamed

Abstract:

It is no new that Nigeria faces a continual power shortage problem due to its vast population power demand and heavy reliance on nonrenewable forms of energy such as thermal power or fossil fuel. Many researchers have recommended using geothermal energy as an alternative; however, Past studies focus on the geophysical & geochemical investigation of this energy in the sedimentary and basement complex; only a few studies incorporated the remote sensing methods. Therefore, in this study, the preliminary examination of geothermal resources in the Middle Benue was carried out using satellite imagery in ArcMap. Landsat 8 scene (TIR, NIR, Red spectral bands) was used to estimate the Land Surface Temperature (LST). The Maximum Likelihood Classification (MLC) technique was used to classify sites with very low, low, moderate, and high LST. The intermediate and high classification happens to be possible geothermal zones, and they occupy 49% of the study area (38077km2). Riverline were superimposed on the LST layer, and the identification tool was used to locate high temperate sites. Streams that overlap on the selected sites were regarded as geothermal springs as. Surprisingly, the LST results show lower temperatures (<36°C) at the famous thermal springs (Awe & Wukari) than some unknown rivers/streams found in Kwande (38°C), Ussa, (38°C), Gwer East (37°C), Yola Cross & Ogoja (36°C). Studies have revealed that temperature increases with depth. However, this result shows excellent geothermal resources potential as it is expected to exceed the minimum geothermal gradient of 25.47 with an increase in depth. Therefore, further investigation is required to estimate the depth of the causative body, geothermal gradients, and the sustainability of the reservoirs by geophysical and field exploration. This method has proven to be cost-effective in locating geothermal resources in the study area. Consequently, the same procedure is recommended to be applied in other regions of the Precambrian basement complex and the sedimentary basins in Nigeria to save a preliminary field survey cost.

Keywords: ArcMap, geothermal resources, Landsat 8, LST, thermal springs, MLC

Procedia PDF Downloads 190
1711 Constructing a Semi-Supervised Model for Network Intrusion Detection

Authors: Tigabu Dagne Akal

Abstract:

While advances in computer and communications technology have made the network ubiquitous, they have also rendered networked systems vulnerable to malicious attacks devised from a distance. These attacks or intrusions start with attackers infiltrating a network through a vulnerable host and then launching further attacks on the local network or Intranet. Nowadays, system administrators and network professionals can attempt to prevent such attacks by developing intrusion detection tools and systems using data mining technology. In this study, the experiments were conducted following the Knowledge Discovery in Database Process Model. The Knowledge Discovery in Database Process Model starts from selection of the datasets. The dataset used in this study has been taken from Massachusetts Institute of Technology Lincoln Laboratory. After taking the data, it has been pre-processed. The major pre-processing activities include fill in missed values, remove outliers; resolve inconsistencies, integration of data that contains both labelled and unlabelled datasets, dimensionality reduction, size reduction and data transformation activity like discretization tasks were done for this study. A total of 21,533 intrusion records are used for training the models. For validating the performance of the selected model a separate 3,397 records are used as a testing set. For building a predictive model for intrusion detection J48 decision tree and the Naïve Bayes algorithms have been tested as a classification approach for both with and without feature selection approaches. The model that was created using 10-fold cross validation using the J48 decision tree algorithm with the default parameter values showed the best classification accuracy. The model has a prediction accuracy of 96.11% on the training datasets and 93.2% on the test dataset to classify the new instances as normal, DOS, U2R, R2L and probe classes. The findings of this study have shown that the data mining methods generates interesting rules that are crucial for intrusion detection and prevention in the networking industry. Future research directions are forwarded to come up an applicable system in the area of the study.

Keywords: intrusion detection, data mining, computer science, data mining

Procedia PDF Downloads 296
1710 Application of Random Forest Model in The Prediction of River Water Quality

Authors: Turuganti Venkateswarlu, Jagadeesh Anmala

Abstract:

Excessive runoffs from various non-point source land uses, and other point sources are rapidly contaminating the water quality of streams in the Upper Green River watershed, Kentucky, USA. It is essential to maintain the stream water quality as the river basin is one of the major freshwater sources in this province. It is also important to understand the water quality parameters (WQPs) quantitatively and qualitatively along with their important features as stream water is sensitive to climatic events and land-use practices. In this paper, a model was developed for predicting one of the significant WQPs, Fecal Coliform (FC) from precipitation, temperature, urban land use factor (ULUF), agricultural land use factor (ALUF), and forest land-use factor (FLUF) using Random Forest (RF) algorithm. The RF model, a novel ensemble learning algorithm, can even find out advanced feature importance characteristics from the given model inputs for different combinations. This model’s outcomes showed a good correlation between FC and climate events and land use factors (R2 = 0.94) and precipitation and temperature are the primary influencing factors for FC.

Keywords: water quality, land use factors, random forest, fecal coliform

Procedia PDF Downloads 197
1709 Characterization of Climatic Drought in the Saiss Plateau (Morocco) Using Statistical Indices

Authors: Abdeghani Qadem

Abstract:

Climate change is now an undeniable reality with increasing impacts on water systems worldwide, especially leading to severe drought episodes. The Southern Mediterranean region is particularly affected by this drought, which can have devastating consequences on water resources. Morocco, due to its geographical location in North Africa and the Southern Mediterranean, is especially vulnerable to these effects of climate change, particularly drought. In this context, this article focuses on the study of climate variability and drought characteristics in the Saiss Plateau region and its adjacent areas with the Middle Atlas, using specific statistical indices. The study begins by analyzing the annual precipitation variation, with a particular emphasis on data homogenization and gap filling using a regional vector. Then, the analysis delves into drought episodes in the region, using the Standardized Precipitation Index (SPI) over a 12-month period. The central objective is to accurately assess significant drought changes between 1980 and 2015, based on data collected from nine meteorological stations located in the study area.

Keywords: climate variability, regional vector, drought, standardized precipitation index, Saiss Plateau, middle atlas

Procedia PDF Downloads 68
1708 Validation and Projections for Solar Radiation up to 2100: HadGEM2-AO Global Circulation Model

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

The objective of this work is to evaluate the results of solar radiation projections between 2006 and 2013 for the state of Rio Grande do Sul, Brazil. The projections are provided by the General Circulation Models (MCGs) belonging to the Coupled Model Intercomparison Phase 5 (CMIP5). In all, the results of the simulation of six models are evaluated, compared to monthly data, measured by a network of thirteen meteorological stations of the National Meteorological Institute (INMET). The performance of the models is evaluated by the Nash coefficient and the Bias. The results are presented in the form of tables, graphs and spatialization maps. The ACCESS1-0 RCP 4.5 model presented the best results for the solar radiation simulations, for the most optimistic scenario, in much of the state. The efficiency coefficients (CEF) were between 0.95 and 0.98. In the most pessimistic scenario, HADGen2-AO RCP 8.5 had the best accuracy among the analyzed models, presenting coefficients of efficiency between 0.94 and 0.98. From this validation, solar radiation projection maps were elaborated, indicating a seasonal increase of this climatic variable in some regions of the Brazilian territory, mainly in the spring.

Keywords: climate change, projections, solar radiation, validation

Procedia PDF Downloads 206
1707 Small and Medium-Sized Enterprises in West African Semi-Arid Lands Facing Climate Change

Authors: Mamadou Diop, Florence Crick, Momadou Sow, Kate Elizabeth Gannon

Abstract:

Understanding SME leaders’ responses to climate is essential to cope with ongoing changes in temperature and rainfall. This study analyzes the response of SME leaders to the adverse effects of climate change in semi-arid lands (SAL) in Senegal. Based on surveys administrated to 161 SME leaders, this research shows that 91% of economic units are affected by climatic conditions, although 70% do not have a plan to deal with climate risks. Economic actors have striven to take measures to adapt. However, their efforts are limited by various obstacles accentuated by a lack of support from public authorities. In doing so, substantial political, institutional and financial efforts at national and local levels are needed to promote an enabling environment for economic actors to adapt. This will focus on information and training about the threats and opportunities related to global warming, the creation of an adaptation support fund to support local initiatives and the improvement of the institutional, regulatory and political framework.

Keywords: small and medium-sized enterprises, climate change, adaptation, semi-arid lands

Procedia PDF Downloads 208
1706 Critical Appraisal of Different Drought Indices of Drought Predection and Their Application in KBK Districts of Odisha

Authors: Bibhuti Bhusan Sahoo, Ramakar Jha

Abstract:

Mapping of the extreme events (droughts) is one of the adaptation strategies to consequences of increasing climatic inconsistency and climate alterations. There is no operational practice to forecast the drought. One of the suggestions is to update mapping of drought prone areas for developmental planning. Drought indices play a significant role in drought mitigation. Many scientists have worked on different statistical analysis in drought and other climatological hazards. Many researchers have studied droughts individually for different sub-divisions or for India. Very few workers have studied district wise probabilities over large scale. In the present study, district wise drought probabilities over KBK (Kalahandi-Balangir-Koraput) districts of Odisha, India, Which are seriously prone to droughts, has been established using Hydrological drought index and Meteorological drought index along with the remote sensing drought indices to develop a multidirectional approach in the field of drought mitigation. Mapping for moderate and severe drought probabilities for KBK districts has been done and regions belonging different class intervals of probabilities of drought have been demarcated. Such type of information would be a good tool for planning purposes, for input in modelling and better promising results can be achieved.

Keywords: drought indices, KBK districts, proposed drought severity index, SPI

Procedia PDF Downloads 451
1705 Recurrent Neural Networks for Classifying Outliers in Electronic Health Record Clinical Text

Authors: Duncan Wallace, M-Tahar Kechadi

Abstract:

In recent years, Machine Learning (ML) approaches have been successfully applied to an analysis of patient symptom data in the context of disease diagnosis, at least where such data is well codified. However, much of the data present in Electronic Health Records (EHR) are unlikely to prove suitable for classic ML approaches. Furthermore, as scores of data are widely spread across both hospitals and individuals, a decentralized, computationally scalable methodology is a priority. The focus of this paper is to develop a method to predict outliers in an out-of-hours healthcare provision center (OOHC). In particular, our research is based upon the early identification of patients who have underlying conditions which will cause them to repeatedly require medical attention. OOHC act as an ad-hoc delivery of triage and treatment, where interactions occur without recourse to a full medical history of the patient in question. Medical histories, relating to patients contacting an OOHC, may reside in several distinct EHR systems in multiple hospitals or surgeries, which are unavailable to the OOHC in question. As such, although a local solution is optimal for this problem, it follows that the data under investigation is incomplete, heterogeneous, and comprised mostly of noisy textual notes compiled during routine OOHC activities. Through the use of Deep Learning methodologies, the aim of this paper is to provide the means to identify patient cases, upon initial contact, which are likely to relate to such outliers. To this end, we compare the performance of Long Short-Term Memory, Gated Recurrent Units, and combinations of both with Convolutional Neural Networks. A further aim of this paper is to elucidate the discovery of such outliers by examining the exact terms which provide a strong indication of positive and negative case entries. While free-text is the principal data extracted from EHRs for classification, EHRs also contain normalized features. Although the specific demographical features treated within our corpus are relatively limited in scope, we examine whether it is beneficial to include such features among the inputs to our neural network, or whether these features are more successfully exploited in conjunction with a different form of a classifier. In this section, we compare the performance of randomly generated regression trees and support vector machines and determine the extent to which our classification program can be improved upon by using either of these machine learning approaches in conjunction with the output of our Recurrent Neural Network application. The output of our neural network is also used to help determine the most significant lexemes present within the corpus for determining high-risk patients. By combining the confidence of our classification program in relation to lexemes within true positive and true negative cases, with an inverse document frequency of the lexemes related to these cases, we can determine what features act as the primary indicators of frequent-attender and non-frequent-attender cases, providing a human interpretable appreciation of how our program classifies cases.

Keywords: artificial neural networks, data-mining, machine learning, medical informatics

Procedia PDF Downloads 131
1704 A Kruskal Based Heuxistic for the Application of Spanning Tree

Authors: Anjan Naidu

Abstract:

In this paper we first discuss the minimum spanning tree, then we use the Kruskal algorithm to obtain minimum spanning tree. Based on Kruskal algorithm we propose Kruskal algorithm to apply an application to find minimum cost applying the concept of spanning tree.

Keywords: Minimum Spanning tree, algorithm, Heuxistic, application, classification of Sub 97K90

Procedia PDF Downloads 444
1703 Towards Learning Query Expansion

Authors: Ahlem Bouziri, Chiraz Latiri, Eric Gaussier

Abstract:

The steady growth in the size of textual document collections is a key progress-driver for modern information retrieval techniques whose effectiveness and efficiency are constantly challenged. Given a user query, the number of retrieved documents can be overwhelmingly large, hampering their efficient exploitation by the user. In addition, retaining only relevant documents in a query answer is of paramount importance for an effective meeting of the user needs. In this situation, the query expansion technique offers an interesting solution for obtaining a complete answer while preserving the quality of retained documents. This mainly relies on an accurate choice of the added terms to an initial query. Interestingly enough, query expansion takes advantage of large text volumes by extracting statistical information about index terms co-occurrences and using it to make user queries better fit the real information needs. In this respect, a promising track consists in the application of data mining methods to extract dependencies between terms, namely a generic basis of association rules between terms. The key feature of our approach is a better trade off between the size of the mining result and the conveyed knowledge. Thus, face to the huge number of derived association rules and in order to select the optimal combination of query terms from the generic basis, we propose to model the problem as a classification problem and solve it using a supervised learning algorithm such as SVM or k-means. For this purpose, we first generate a training set using a genetic algorithm based approach that explores the association rules space in order to find an optimal set of expansion terms, improving the MAP of the search results. The experiments were performed on SDA 95 collection, a data collection for information retrieval. It was found that the results were better in both terms of MAP and NDCG. The main observation is that the hybridization of text mining techniques and query expansion in an intelligent way allows us to incorporate the good features of all of them. As this is a preliminary attempt in this direction, there is a large scope for enhancing the proposed method.

Keywords: supervised leaning, classification, query expansion, association rules

Procedia PDF Downloads 325
1702 Wastewater Treatment by Floating Macrophytes (Salvinia natans) under Algerian Semi-Arid Climate

Authors: Laabassi Ayache, Boudehane Asma

Abstract:

Macrophyte pond has developed strongly in the field of wastewater treatment for irrigation in rural areas and small communities. Their association allows, in some cases, to increase the hydraulic capacity while maintaining the highest level of quality. The present work is devoted to the treatment of domestic wastewater under climatic conditions of Algeria (semi-arid) through a system using two tanks planted with Salvinia natans. The performance study and treatment efficiency of the system overall shows that the latter provides a significant removal of nitrogen pollution: total Kjeldahl nitrogen NTK (85.2%), Ammonium NH₄⁺-N (79%), Nitrite NO₂⁻-N (40%) also, a major meaningful reduction of biochemical oxygen demand BOD₅ was observed at the output of the system (96.9 %). As BOD₅, the chemical oxygen demand (COD) removal was higher than 95% at the exit of the two tanks. A moderately low yield of phosphate-phosphorus (PO₄³-P) was achieved with values not exceeding 37%. In general, the quality of treated effluent meets the Algerian standard of discharge and which allows us to select a suitable species in constructed wetland treatment systems under semi-arid climate.

Keywords: nutrient removal, Salvinia natans, semi-arid climate, wastewater treatment

Procedia PDF Downloads 155
1701 Residential Building Facade Retrofit

Authors: Galit Shiff, Yael Gilad

Abstract:

The need to retrofit old buildings lies in the fact that buildings are responsible for the main energy use and CO₂ emission. Existing old structures are more dominant in their effect than new energy-efficient buildings. Nevertheless not every case of urban renewal that aims to replace old buildings with new neighbourhoods necessarily has a financial or sustainable justification. Façade design plays a vital role in the building's energy performance and the unit's comfort conditions. A retrofit façade residential methodology and feasibility applicative study has been carried out for the past four years, with two projects already fully renovated. The intention of this study is to serve as a case study for limited budget façade retrofit in Mediterranean climate urban areas. The two case study buildings are set in Israel. However, they are set in different local climatic conditions. One is in 'Sderot' in the south of the country, and one is in' Migdal Hahemek' in the north of the country. The building typology is similar. The budget of the projects is around $14,000 per unit and includes interventions at the buildings' envelope while tenants are living in. Extensive research and analysis of the existing conditions have been done. The building's components, materials and envelope sections were mapped, examined and compared to relevant updated standards. Solar radiation simulations for the buildings in their surroundings during winter and summer days were done. The energy rate of each unit, as well as the building as a whole, was calculated according to the Israeli Energy Code. The buildings’ facades were documented with the use of a thermal camera during different hours of the day. This information was superimposed with data about the electricity use and the thermal comfort that was collected from the residential units. Later in the process, similar tools were further used in order to compare the effectiveness of different design options and to evaluate the chosen solutions. Both projects showed that the most problematic units were the ones below the roof and the ones on top of the elevated entrance floor (pilotis). Old buildings tend to have poor insulation on those two horizontal surfaces which require treatment. Different radiation levels and wall sections in the two projects influenced the design strategies: In the southern project, there was an extreme difference in solar radiations levels between the main façade and the back elevation. Eventually, it was decided to invest in insulating the main south-west façade and the side façades, leaving the back north-east façade almost untouched. Lower levels of radiation in the northern project led to a different tactic: a combination of basic insulation on all façades, together with intense treatment on areas with problematic thermal behavior. While poor execution of construction details and bad installation of windows in the northern project required replacing them all, in the southern project it was found that it is more essential to shade the windows than replace them. Although the buildings and the construction typology was chosen for this study are similar, the research shows that there are large differences due to the location in different climatic zones and variation in local conditions. Therefore, in order to reach a systematic and cost-effective method of work, a more extensive catalogue database is needed. Such a catalogue will enable public housing companies in the Mediterranean climate to promote massive projects of renovating existing old buildings, drawing on minimal analysis and planning processes.

Keywords: facade, low budget, residential, retrofit

Procedia PDF Downloads 208
1700 Development of a Suitable Model for Energy Storage in Residential Buildings in Ahvaz Using Energy Plus Software

Authors: Farideh Azimi, Sam Vahedi Tafreshi

Abstract:

This research tries to study the residential buildings in Ahvaz, the common materials used, and the impact of passive methods of energy storage (as one of the most effective ways to reduce energy consumption in residential complexes) in order to achieve patterns for construction of residential buildings in Ahvaz conditions to reduce energy consumption. In this research, after studying Ahvaz conditions, the components of an existing building were simulated in Energy Plus software, and the climatic data of Ahvaz station was introduced to software. Then to achieve the most optimal conditions of energy consumption in Ahvaz conditions, each of the residential building elements was optimized. The results of simulation showed that using inactive materials and design including double glass, outside wall insulation, inverted roof, etc. in the buildings can reduce energy consumption in the hot and dry climate of Ahvaz. Among the parameters investigated, the inverted roof was the most effective energy saving pattern. According to the results of simulation of the entire building with the most optimal parameters, energy consumption can be saved by a mean of 12.51% in buildings of Ahvaz, and the obtained pattern can also be used in similar climates.

Keywords: residential buildings, thermal comfort, energy storage, Energy Plus software, Ahvaz

Procedia PDF Downloads 359
1699 Survey the Effects of Climate in Traditional and Modern Architecture of Iran

Authors: Yousefali Ziari, Hamidreza Joudaki

Abstract:

Humans have regularly been interacting with their environment, and have a close relation with their environment. House as a shelter which protects us against hot and cold weather and the other climatic occurrences in the environment has a close relation with climate. Before human could have access to the fossil fuels, preparing the comfort for the house was done by adjusting the building according to the climate conditions, and the help of natural resources. However after the man could access the fossil fuel, this way was forgotten, and caused much use of energy for heating & cooling. This research is trying to find some methods for designing suitable building that create comfort fitting with the zone by studying the climate condition of Arak city and as a result to find a way to reduce the use of energy and improving the design. So for the aim of this research we have used the statistics and information such as temperature, rain, wind and the approximate moisture from a period of 40 years from synoptic station of Arak. After specifying the climate of Arak by the use of effective temperature, Ulgi, Guni, Mahani and Ovenz indicator, we investigated the climate comfort conditions and the harmonious architecture with the climate and then some suggestion was given according to the climate situation of each month of the year and quality of human comfort according to this indicators.

Keywords: climate, architecture, traditional and modern architecture, comfort indicator, Arak city

Procedia PDF Downloads 479
1698 Human Gait Recognition Using Moment with Fuzzy

Authors: Jyoti Bharti, Navneet Manjhi, M. K.Gupta, Bimi Jain

Abstract:

A reliable gait features are required to extract the gait sequences from an images. In this paper suggested a simple method for gait identification which is based on moments. Moment values are extracted on different number of frames of gray scale and silhouette images of CASIA database. These moment values are considered as feature values. Fuzzy logic and nearest neighbour classifier are used for classification. Both achieved higher recognition.

Keywords: gait, fuzzy logic, nearest neighbour, recognition rate, moments

Procedia PDF Downloads 758
1697 Thermal Behavior of the Extensive Green Roofs in Riyadh City

Authors: Ashraf Muharam, Nasser Al-Hemiddi, El Sayed Amer

Abstract:

Green roof is one of sustainable practice for reducing the environmental impact of a building. Green roofs are vegetation roofs that are partially or completely covered building's roof. It can provide multiple environmental benefits such as mitigation of urban heat island effect and protecting buildings against solar radiation. In Riyadh city buildings consume about 70 % of the total energy used in the building for cooling and heating because of the Riyadh's harsh and tropical climate. So, the study aim was identifying the thermal performance of extensive green roof and comparing its performance with concrete roof performance during summer season. The experimental validations results indicated that the extensive green roofs system was better than concrete roof system for lowering the indoor air temperature. It could reduce the indoor air temperature from 2°C to 5.5°C compared to the concrete roof system. Also, the finding of this study demonstrated that extensive green roof system could reduce 12% to 33% of energy consumption of air conditioning in Riyadh city during summer seasons by using environmentally friendly insulation.

Keywords: thermal performance, green roof system, concrete roof system, tropical climatic, internal temperatures

Procedia PDF Downloads 408