Search results for: age-sex accuracy index
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7099

Search results for: age-sex accuracy index

5959 Improving the Dielectric Strength of Transformer Oil for High Health Index: An FEM Based Approach Using Nanofluids

Authors: Fatima Khurshid, Noor Ul Ain, Syed Abdul Rehman Kashif, Zainab Riaz, Abdullah Usman Khan, Muhammad Imran

Abstract:

As the world is moving towards extra-high voltage (EHV) and ultra-high voltage (UHV) power systems, the performance requirements of power transformers are becoming crucial to the system reliability and security. With the transformers being an essential component of a power system, low health index of transformers poses greater risks for safe and reliable operation. Therefore, to meet the rising demands of the power system and transformer performance, researchers are being prompted to provide solutions for enhanced thermal and electrical properties of transformers. This paper proposes an approach to improve the health index of a transformer by using nano-technology in conjunction with bio-degradable oils. Vegetable oils can serve as potential dielectric fluid alternatives to the conventional mineral oils, owing to their numerous inherent benefits; namely, higher fire and flashpoints, and being environment-friendly in nature. Moreover, the addition of nanoparticles in the dielectric fluid further serves to improve the dielectric strength of the insulation medium. In this research, using the finite element method (FEM) in COMSOL Multiphysics environment, and a 2D space dimension, three different oil samples have been modelled, and the electric field distribution is computed for each sample at various electric potentials, i.e., 90 kV, 100 kV, 150 kV, and 200 kV. Furthermore, each sample has been modified with the addition of nanoparticles of different radii (50 nm and 100 nm) and at different interparticle distance (5 mm and 10 mm), considering an instant of time. The nanoparticles used are non-conductive and have been modelled as alumina (Al₂O₃). The geometry has been modelled according to IEC standard 60897, with a standard electrode gap distance of 25 mm. For an input supply voltage of 100 kV, the maximum electric field stresses obtained for the samples of synthetic vegetable oil, olive oil, and mineral oil are 5.08 ×10⁶ V/m, 5.11×10⁶ V/m and 5.62×10⁶ V/m, respectively. It is observed that for the unmodified samples, vegetable oils have a greater dielectric strength as compared to the conventionally used mineral oils because of their higher flash points and higher values of relative permittivity. Also, for the modified samples, the addition of nanoparticles inhibits the streamer propagation inside the dielectric medium and hence, serves to improve the dielectric properties of the medium.

Keywords: dielectric strength, finite element method, health index, nanotechnology, streamer propagation

Procedia PDF Downloads 140
5958 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images

Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu

Abstract:

Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.

Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning

Procedia PDF Downloads 185
5957 Rethinking the Air Quality Health Index: Harmonizing Health Protection and Climate Mitigation

Authors: Kimberly Tasha Jiayi Tang, Changqing Lin, Zhe Wang, Tze-Wai Wong, Md. Shakhaoat Hossain, Jian Yu, Alexis Lau

Abstract:

Hong Kong has practiced a risk-based Air Quality Health Index (AQHI) system that sums hospitalization risks associated with short-term exposure to air pollu-tants. As an air pollution risk communication tool, it informs the public about the current air quality, anchoring around the World Health Organization's (WHO) 2005 Air Quality Guidelines (AQGs). Given the WHO's recent update in 2021, assessing how Hong Kong’s air quality risk communication can be en-hanced using these updated guidelines is essential. Hong Kong’s AQHI is lim-ited by solely focusing on short-term health risks, which could lead the public to underestimate cumulative health impacts. Therefore, we propose the intro-duction of a composite AQHI that reports both long-term and short-term health risks. Additionally, the WHO interim targets will be considered as anchor points for various health risk categories. Furthermore, with the increasing ozone levels in Hong Kong and Southern China due to improved NOx mitigation measures, it has been a challenging task in balancing health protection against climate mitigation. However, our findings present a promising outlook. Despite the rise in ozone levels, the combined health risks in Hong Kong and Guang-dong have seen a decline, largely due to reductions in NO2 and PM concentra-tions, both having significant health implications. By shifting from a concentra-tion-based approach to a health risk-based system like the AQHI, our study highlights the prospective of harmonizing health protection and climate mitiga-tion goals. This health-focused framework suggests that rigorous NOx controls can effective-ly serve both objectives in parallel.

Keywords: air quality management, air quality health index, health risk management, air pollution

Procedia PDF Downloads 71
5956 A Comparative Study of a Defective Superconductor/ Semiconductor-Dielectric Photonic Crystal

Authors: S. Sadegzadeh, A. Mousavi

Abstract:

Temperature-dependent tunable photonic crystals have attracted widespread interest in recent years. In this research, transmission characteristics of a one-dimensional photonic crystal structure with a single defect have been studied. Here, we assume two different defect layers: InSb as a semiconducting layer and HgBa2Ca2Cu3O10 as a high-temperature superconducting layer. Both the defect layers have temperature-dependent refractive indexes. Two different types of dielectric materials (Si as a high-refractive index dielectric and MgF2 as a low-refractive index dielectric) are used to construct the asymmetric structures (Si/MgF2)NInSb(Si/MgF2)N named S.I, and (Si/MgF2)NHgBa2Ca2Cu3O10(Si/MgF2)N named S.II. It is found that in response to the temperature changes, transmission peaks within the photonic band gap of the S.II structure, in contrast to S.I, show a small wavelength shift. Furthermore, the results show that under the same conditions, S.I structure generates an extra defect mode in the transmission spectra. Besides high efficiency transmission property of S.II structure, it can be concluded that the semiconductor-dielectric photonic crystals are more sensitive to temperature variation than superconductor types.

Keywords: defect modes, photonic crystals, semiconductor, superconductor, transmission

Procedia PDF Downloads 290
5955 A Reliable Multi-Type Vehicle Classification System

Authors: Ghada S. Moussa

Abstract:

Vehicle classification is an important task in traffic surveillance and intelligent transportation systems. Classification of vehicle images is facing several problems such as: high intra-class vehicle variations, occlusion, shadow, illumination. These problems and others must be considered to develop a reliable vehicle classification system. In this study, a reliable multi-type vehicle classification system based on Bag-of-Words (BoW) paradigm is developed. Our proposed system used and compared four well-known classifiers; Linear Discriminant Analysis (LDA), Support Vector Machine (SVM), k-Nearest Neighbour (KNN), and Decision Tree to classify vehicles into four categories: motorcycles, small, medium and large. Experiments on a large dataset show that our approach is efficient and reliable in classifying vehicles with accuracy of 95.7%. The SVM outperforms other classification algorithms in terms of both accuracy and robustness alongside considerable reduction in execution time. The innovativeness of developed system is it can serve as a framework for many vehicle classification systems.

Keywords: vehicle classification, bag-of-words technique, SVM classifier, LDA classifier, KNN classifier, decision tree classifier, SIFT algorithm

Procedia PDF Downloads 355
5954 Comparison of Solar Radiation Models

Authors: O. Behar, A. Khellaf, K. Mohammedi, S. Ait Kaci

Abstract:

Up to now, most validation studies have been based on the MBE and RMSE, and therefore, focused only on long and short terms performance to test and classify solar radiation models. This traditional analysis does not take into account the quality of modeling and linearity. In our analysis we have tested 22 solar radiation models that are capable to provide instantaneous direct and global radiation at any given location Worldwide. We introduce a new indicator, which we named Global Accuracy Indicator (GAI) to examine the linear relationship between the measured and predicted values and the quality of modeling in addition to long and short terms performance. Note that the quality of model has been represented by the T-Statistical test, the model linearity has been given by the correlation coefficient and the long and short term performance have been respectively known by the MBE and RMSE. An important founding of this research is that the use GAI allows avoiding default validation when using traditional methodology that might results in erroneous prediction of solar power conversion systems performances.

Keywords: solar radiation model, parametric model, performance analysis, Global Accuracy Indicator (GAI)

Procedia PDF Downloads 348
5953 A Lagrangian Hamiltonian Computational Method for Hyper-Elastic Structural Dynamics

Authors: Hosein Falahaty, Hitoshi Gotoh, Abbas Khayyer

Abstract:

Performance of a Hamiltonian based particle method in simulation of nonlinear structural dynamics is subjected to investigation in terms of stability and accuracy. The governing equation of motion is derived based on Hamilton's principle of least action, while the deformation gradient is obtained according to Weighted Least Square method. The hyper-elasticity models of Saint Venant-Kirchhoff and a compressible version similar to Mooney- Rivlin are engaged for the calculation of second Piola-Kirchhoff stress tensor, respectively. Stability along with accuracy of numerical model is verified by reproducing critical stress fields in static and dynamic responses. As the results, although performance of Hamiltonian based model is evaluated as being acceptable in dealing with intense extensional stress fields, however kinds of instabilities reveal in the case of violent collision which can be most likely attributed to zero energy singular modes.

Keywords: Hamilton's principle of least action, particle-based method, hyper-elasticity, analysis of stability

Procedia PDF Downloads 340
5952 Early Gastric Cancer Prediction from Diet and Epidemiological Data Using Machine Learning in Mizoram Population

Authors: Brindha Senthil Kumar, Payel Chakraborty, Senthil Kumar Nachimuthu, Arindam Maitra, Prem Nath

Abstract:

Gastric cancer is predominantly caused by demographic and diet factors as compared to other cancer types. The aim of the study is to predict Early Gastric Cancer (ECG) from diet and lifestyle factors using supervised machine learning algorithms. For this study, 160 healthy individual and 80 cases were selected who had been followed for 3 years (2016-2019), at Civil Hospital, Aizawl, Mizoram. A dataset containing 11 features that are core risk factors for the gastric cancer were extracted. Supervised machine algorithms: Logistic Regression, Naive Bayes, Support Vector Machine (SVM), Multilayer perceptron, and Random Forest were used to analyze the dataset using Python Jupyter Notebook Version 3. The obtained classified results had been evaluated using metrics parameters: minimum_false_positives, brier_score, accuracy, precision, recall, F1_score, and Receiver Operating Characteristics (ROC) curve. Data analysis results showed Naive Bayes - 88, 0.11; Random Forest - 83, 0.16; SVM - 77, 0.22; Logistic Regression - 75, 0.25 and Multilayer perceptron - 72, 0.27 with respect to accuracy and brier_score in percent. Naive Bayes algorithm out performs with very low false positive rates as well as brier_score and good accuracy. Naive Bayes algorithm classification results in predicting ECG showed very satisfactory results using only diet cum lifestyle factors which will be very helpful for the physicians to educate the patients and public, thereby mortality of gastric cancer can be reduced/avoided with this knowledge mining work.

Keywords: Early Gastric cancer, Machine Learning, Diet, Lifestyle Characteristics

Procedia PDF Downloads 160
5951 Effective Tandem Mesh Nebulisation of Pulmonary Vasodilator and Bronchodilators in Critical Respiratory Failure

Authors: Nathalie Bolding, Marta Montero, Joaquim Cevallos, Juan F. Martin-Lazaro

Abstract:

Background: Inhaled epoprostenol (iEPO) have been shown to improve PaO2:FiO2 (PF) in combination with bronchodilators (BD). However, there is not an available device to deliver these two therapies concomitantly. We describe a new method to provide this therapy successfully. Objective: To evaluate the response to continuous nebulization of iEPO and intermittent nebulization of Salbutamol/Ipratropium bromide in adults with severe respiratory failure through a double mesh nebulisation in tandem. Methods: This observational study included two mechanical ventilated adults under hourly ventilatory, gasometrical and clinical measurements during 48h. Both had severe respiratory failure treated with continuous iEPO (50 – 200 micrograms/h) and BD (Salbutamol 2.5 mg and Ipratropium bromide 500 mcg every 6 hours) through double mesh nebulisation (Aerogen solo®) placed in tandem in the dry side of the humidificator. The primary endpoints were the variables associated with a positive response to this tandem nebulised therapy (PaFiO2 index, ROX index). Secondary endpoints were laboratory (ABG) clinical and ventilatory variables. Statistical analysis (SPSS v29) included linear regression and ANOVA. Results: The patients included (n=2) survived, both extubated, one after ECMO therapy. Severe acute respiratory failure had a positive response rate to continuous iEPO and intermittent BD: PaFiO2 increased (7.40 to 30.91; P75: 27%) as well as ROX index (2.91 to 11.43; P75: 33%). There was a linear correlation of improvement between iEPO with PaFiO2 (ANOVA, r=0.393, p<0.002) and ROX (r=0.419, p<0.001). iEPO+BD therapy did not show any complications. Conclusion: Continuous and intermittent mesh tandem nebulisation can be effectively delivered with this method with a positive effect in ventilatory parameters without observed complications. Randomised studies will be able to provide reassurance in this new therapy.

Keywords: tandem, mesh, nebulisers, pulmonary, vasoldilators, bronchodilators, respiratory, failure

Procedia PDF Downloads 82
5950 Using New Machine Algorithms to Classify Iranian Musical Instruments According to Temporal, Spectral and Coefficient Features

Authors: Ronak Khosravi, Mahmood Abbasi Layegh, Siamak Haghipour, Avin Esmaili

Abstract:

In this paper, a study on classification of musical woodwind instruments using a small set of features selected from a broad range of extracted ones by the sequential forward selection method was carried out. Firstly, we extract 42 features for each record in the music database of 402 sound files belonging to five different groups of Flutes (end blown and internal duct), Single –reed, Double –reed (exposed and capped), Triple reed and Quadruple reed. Then, the sequential forward selection method is adopted to choose the best feature set in order to achieve very high classification accuracy. Two different classification techniques of support vector machines and relevance vector machines have been tested out and an accuracy of up to 96% can be achieved by using 21 time, frequency and coefficient features and relevance vector machine with the Gaussian kernel function.

Keywords: coefficient features, relevance vector machines, spectral features, support vector machines, temporal features

Procedia PDF Downloads 318
5949 Multi-Classification Deep Learning Model for Diagnosing Different Chest Diseases

Authors: Bandhan Dey, Muhsina Bintoon Yiasha, Gulam Sulaman Choudhury

Abstract:

Chest disease is one of the most problematic ailments in our regular life. There are many known chest diseases out there. Diagnosing them correctly plays a vital role in the process of treatment. There are many methods available explicitly developed for different chest diseases. But the most common approach for diagnosing these diseases is through X-ray. In this paper, we proposed a multi-classification deep learning model for diagnosing COVID-19, lung cancer, pneumonia, tuberculosis, and atelectasis from chest X-rays. In the present work, we used the transfer learning method for better accuracy and fast training phase. The performance of three architectures is considered: InceptionV3, VGG-16, and VGG-19. We evaluated these deep learning architectures using public digital chest x-ray datasets with six classes (i.e., COVID-19, lung cancer, pneumonia, tuberculosis, atelectasis, and normal). The experiments are conducted on six-classification, and we found that VGG16 outperforms other proposed models with an accuracy of 95%.

Keywords: deep learning, image classification, X-ray images, Tensorflow, Keras, chest diseases, convolutional neural networks, multi-classification

Procedia PDF Downloads 91
5948 Airborne SAR Data Analysis for Impact of Doppler Centroid on Image Quality and Registration Accuracy

Authors: Chhabi Nigam, S. Ramakrishnan

Abstract:

This paper brings out the analysis of the airborne Synthetic Aperture Radar (SAR) data to study the impact of Doppler centroid on Image quality and geocoding accuracy from the perspective of Stripmap mode of data acquisition. Although in Stripmap mode of data acquisition radar beam points at 90 degrees broad side (side looking), shift in the Doppler centroid is invariable due to platform motion. In-accurate estimation of Doppler centroid leads to poor image quality and image miss-registration. The effect of Doppler centroid is analyzed in this paper using multiple sets of data collected from airborne platform. Occurrences of ghost (ambiguous) targets and their power levels have been analyzed that impacts appropriate choice of PRF. Effect of aircraft attitudes (roll, pitch and yaw) on the Doppler centroid is also analyzed with the collected data sets. Various stages of the RDA (Range Doppler Algorithm) algorithm used for image formation in Stripmap mode, range compression, Doppler centroid estimation, azimuth compression, range cell migration correction are analyzed to find the performance limits and the dependence of the imaging geometry on the final image. The ability of Doppler centroid estimation to enhance the imaging accuracy for registration are also illustrated in this paper. The paper also tries to bring out the processing of low squint SAR data, the challenges and the performance limits imposed by the imaging geometry and the platform dynamics on the final image quality metrics. Finally, the effect on various terrain types, including land, water and bright scatters is also presented.

Keywords: ambiguous target, Doppler Centroid, image registration, Airborne SAR

Procedia PDF Downloads 217
5947 AquaCrop Model Simulation for Water Productivity of Teff (Eragrostic tef): A Case Study in the Central Rift Valley of Ethiopia

Authors: Yenesew Mengiste Yihun, Abraham Mehari Haile, Teklu Erkossa, Bart Schultz

Abstract:

Teff (Eragrostic tef) is a staple food in Ethiopia. The local and international demand for the crop is ever increasing pushing the current price five times compared with that in 2006. To meet this escalating demand increasing production including using irrigation is imperative. Optimum application of irrigation water, especially in semi-arid areas is profoundly important. AquaCrop model application in irrigation water scheduling and simulation of water productivity helps both irrigation planners and agricultural water managers. This paper presents simulation and evaluation of AquaCrop model in optimizing the yield and biomass response to variation in timing and rate of irrigation water application. Canopy expansion, canopy senescence and harvest index are the key physiological processes sensitive to water stress. For full irrigation water application treatment there was a strong relationship between the measured and simulated canopy and biomass with r2 and d values of 0.87 and 0.96 for canopy and 0.97 and 0.74 for biomass, respectively. However, the model under estimated the simulated yield and biomass for higher water stress level. For treatment receiving full irrigation the harvest index value obtained were 29%. The harvest index value shows generally a decreasing trend under water stress condition. AquaCrop model calibration and validation using the dry season field experiments of 2010/2011 and 2011/2012 shows that AquaCrop adequately simulated the yield response to different irrigation water scenarios. We conclude that the AquaCrop model can be used in irrigation water scheduling and optimizing water productivity of Teff grown under water scarce semi-arid conditions.

Keywords: AquaCrop, climate smart agriculture, simulation, teff, water security, water stress regions

Procedia PDF Downloads 401
5946 Real-Time Lane Marking Detection Using Weighted Filter

Authors: Ayhan Kucukmanisa, Orhan Akbulut, Oguzhan Urhan

Abstract:

Nowadays, advanced driver assistance systems (ADAS) have become popular, since they enable safe driving. Lane detection is a vital step for ADAS. The performance of the lane detection process is critical to obtain a high accuracy lane departure warning system (LDWS). Challenging factors such as road cracks, erosion of lane markings, weather conditions might affect the performance of a lane detection system. In this paper, 1-D weighted filter based on row filtering to detect lane marking is proposed. 2-D input image is filtered by 1-D weighted filter considering four-pixel values located symmetrically around the center of candidate pixel. Performance evaluation is carried out by two metrics which are true positive rate (TPR) and false positive rate (FPR). Experimental results demonstrate that the proposed approach provides better lane marking detection accuracy compared to the previous methods while providing real-time processing performance.

Keywords: lane marking filter, lane detection, ADAS, LDWS

Procedia PDF Downloads 191
5945 Superoxide Dismutase Activity of Male Rats after Administration of Extract and Nanoparticle of Ginger Torch Flower

Authors: Tresna Lestari, Tita Nofianti, Ade Yeni Aprilia, Lilis Tuslinah, Ruswanto Ruswanto

Abstract:

Nanoparticle formulation is often used to improve drug absorptivity, thus increasing the sharpness of the action. Ginger torch flower extract was formulated into nanoparticle form using poloxamer 1, 3 and 5%. The nanoparticle was then characterized by its particle size, polydispersity index, zeta potential, entrapment efficiency and morphological form by SEM. The result shows that nanoparticle formulations have particle size 134.7-193.1 nm, polydispersity index less than 0.5 for all formulations, zeta potential -41.0 - (-24.3) mV and entrapment efficiency 89.93-97.99 against flavonoid content with a soft surface and spherical form of particles. Methanolic extract of ginger torch flower could enhance superoxide dismutase activity by 1,3183 U/mL in male rats. Nanoparticle formulation of ginger torch extract is expected to increase the capability of the drug to enhance superoxide dismutase activity.

Keywords: superoxide dismutase, ginger torch flower, nanoparticle, poloxamer

Procedia PDF Downloads 157
5944 Towards Islamic Sustainable Consumption: Micro Evidence from Muslim Household in Malaysia

Authors: Noorhaslinda Kulub Abd. Rashid, Zuraini Anang, Bayu Taufiq Possumah, Suriyani Muhamad, Fauziah Abu Hasan, Hairunnizam Wahid

Abstract:

Reality of Malaysian lives today, especially the households, are not exempted from using a variety of good products and services that are particularly materialistic. In fact, the pace and sophistication of the technology is seen as a major catalyst to the pattern of community life. In facing the challenges of the current economy, the key role to be played by household is managing the pattern of expenditure, income and loan debts regularly and blessed by Allah. Unfortunately, the world today is witnessing the average household could owe solely to meet their needs with existing spending limits. This study aims to measure the ‘Religious Index of Household Expenditure’ (IKM) and analyze how far the religious influence to the pattern of household expenditure based on the 441 Muslim households. The results showed only a 5-item spending, food, housing, transportation, education, and recreation and entertainment that has a significant relationship with IKM. Therefore, Islamic consumer education is a must to establish sustainable consumptions in order to speed up the internalization of sustainable lifestyle among Malaysians.

Keywords: ‘Religious Index of Household Expenditure’ (IKM), income, sustainable consumptions, household expenditure

Procedia PDF Downloads 232
5943 Compact Low Loss Design of SOI 1x2 Y-Branch Optical Power Splitter with S-Bend Waveguide and Study on the Variation of Transmitted Power with Various Waveguide Parameters

Authors: Nagaraju Pendam, C. P. Vardhani

Abstract:

A simple technology–compatible design of silicon-on-insulator based 1×2 optical power splitter is proposed. For developing large area Opto-electronic Silicon-on-Insulator (SOI) devices, the power splitter is a key passive device. The SOI rib- waveguide dimensions (height, width, and etching depth, refractive indices, length of waveguide) leading simultaneously to single mode propagation. In this paper a low loss optical power splitter is designed by using R Soft cad tool and simulated by Beam propagation method, here s-bend waveguides proposed. We concentrate changing the refractive index difference, branching angle, width of the waveguide, free space wavelength of the waveguide and observing transmitted power, effective refractive index in the designed waveguide, and choosing the best simulated results to be fabricated on silicon-on insulator platform. In this design 1550 nm free spacing are used.

Keywords: beam propagation method, insertion loss, optical power splitter, rib waveguide, transmitted power

Procedia PDF Downloads 659
5942 An Auxiliary Technique for Coronary Heart Disease Prediction by Analyzing Electrocardiogram Based on ResNet and Bi-Long Short-Term Memory

Authors: Yang Zhang, Jian He

Abstract:

Heart disease is one of the leading causes of death in the world, and coronary heart disease (CHD) is one of the major heart diseases. Electrocardiogram (ECG) is widely used in the detection of heart diseases, but the traditional manual method for CHD prediction by analyzing ECG requires lots of professional knowledge for doctors. This paper introduces sliding window and continuous wavelet transform (CWT) to transform ECG signals into images, and then ResNet and Bi-LSTM are introduced to build the ECG feature extraction network (namely ECGNet). At last, an auxiliary system for coronary heart disease prediction was developed based on modified ResNet18 and Bi-LSTM, and the public ECG dataset of CHD from MIMIC-3 was used to train and test the system. The experimental results show that the accuracy of the method is 83%, and the F1-score is 83%. Compared with the available methods for CHD prediction based on ECG, such as kNN, decision tree, VGGNet, etc., this method not only improves the prediction accuracy but also could avoid the degradation phenomenon of the deep learning network.

Keywords: Bi-LSTM, CHD, ECG, ResNet, sliding window

Procedia PDF Downloads 88
5941 Testing the Weak Form Efficiency of Islamic Stock Market: Empirical Evidence from Indonesia

Authors: Herjuno Bagus Wicaksono, Emma Almira Fauni, Salma Amelia Dina

Abstract:

The Efficient Market Hypothesis (EMH) states that, in an efficient capital market, price fully reflects the information available in the market. This theory has influenced many investors behavior in trading in the stock market. Advanced researches have been conducted to test the efficiency of the stock market in particular countries. Indonesia, as one of the emerging countries, has performed substantial growth in the past years. Hence, this paper aims to examine the efficiency of Islamic stock market in Indonesia in its weak form. The daily stock price data from Indonesia Sharia Stock Index (ISSI) for the period October 2015 to October 2016 were used to do the statistical tests: Run Test and Serial Correlation Test. The results show that there is no serial correlation between the current price with the past prices and the market follows the random walk. This research concludes that Indonesia Islamic stock market is weak form efficient.

Keywords: efficient market hypothesis, Indonesia sharia stock index, random walk, weak form efficiency

Procedia PDF Downloads 459
5940 Effect of Monsoon on Ground Water Quality and Contamination: A Case Study of Narsapur-Mogalthur Mandals, West Godavari District, Andhra Pradesh, India

Authors: M. S. V. K. V. Prasad, G. Siva Praveena, P. V. V. Prasada Rao

Abstract:

It is known that the groundwater quality is very important parameter because it is the main factor determining its suitability for drinking, agricultural and industrial purposes. Water Quality Index (WQI) has been calculated for ground water samples taken from Narsapur-Mogalthur mandals, West Godavari district, Andhra Pradesh, India, from 10 different locations in the pre-monsoon season as well as post monsoon. The water samples were analyzed for pH, Electrical Conductivity (EC), Total Dissolved Solids (TDS), Total Hardness (TH), major cations like calcium, magnesium, sodium, potassium and anions like chloride, nitrate and sulphate in the laboratory using the standard methods given by the American Public Health Association (APHA). The overall quality of water in the study area is somewhat good for all constituents. Drinking water at almost all the locations was found to be slightly contaminated, except a few locations during the year 2014. It was found that some effective measures are urgently required for water quality management in this region.

Keywords: Water Quality Index, Physico-chemical parameters, Quality rating, monsoon

Procedia PDF Downloads 333
5939 Comparison of Radiation Dosage and Image Quality: Digital Breast Tomosynthesis vs. Full-Field Digital Mammography

Authors: Okhee Woo

Abstract:

Purpose: With increasing concern of individual radiation exposure doses, studies analyzing radiation dosage in breast imaging modalities are required. Aim of this study is to compare radiation dosage and image quality between digital breast tomosynthesis (DBT) and full-field digital mammography (FFDM). Methods and Materials: 303 patients (mean age 52.1 years) who studied DBT and FFDM were retrospectively reviewed. Radiation dosage data were obtained by radiation dosage scoring and monitoring program: Radimetrics (Bayer HealthCare, Whippany, NJ). Entrance dose and mean glandular doses in each breast were obtained in both imaging modalities. To compare the image quality of DBT with two-dimensional synthesized mammogram (2DSM) and FFDM, 5-point scoring of lesion clarity was assessed and the better modality between the two was selected. Interobserver performance was compared with kappa values and diagnostic accuracy was compared using McNemar test. The parameters of radiation dosages (entrance dose, mean glandular dose) and image quality were compared between two modalities by using paired t-test and Wilcoxon rank sum test. Results: For entrance dose and mean glandular doses for each breasts, DBT had lower values compared with FFDM (p-value < 0.0001). Diagnostic accuracy did not have statistical difference, but lesion clarity score was higher in DBT with 2DSM and DBT was chosen as a better modality compared with FFDM. Conclusion: DBT showed lower radiation entrance dose and also lower mean glandular doses to both breasts compared with FFDM. Also, DBT with 2DSM had better image quality than FFDM with similar diagnostic accuracy, suggesting that DBT may have a potential to be performed as an alternative to FFDM.

Keywords: radiation dose, DBT, digital mammography, image quality

Procedia PDF Downloads 348
5938 The Relationships between Physical Activity Levels, Enjoyment of Physical Activity, and Body Mass Index among Bruneian Secondary School Adolescents

Authors: David Xiaoqian Sun, Khairunnisa Binti Haji Sibah, Jr., Lejak Anak Ambol

Abstract:

The purpose of the study was to examine the relationships between objectively measured physical activity levels (PALs), enjoyment of physical activity (EPA), and body mass index (BMI) among adolescents. A total of 188 12-14-year-old Bruneian secondary school adolescents (88 boys and 100 girls) voluntarily took part in this study. Subjects wore the RT3 accelerometer for seven consecutive days in order to measure their PALs. Times of students’ engagement in total (TPA), light (LPA), moderate (MPV), and vigorous PA (VPA) were obtained from the accelerometer. Their BMIs were calculated from their body height and weight. Physical Activity Enjoyment Scale (PACES) was administrated to obtain their EPA levels. Four key enjoyment factors including fun factors, positive perceptions, unexciting in doing activities, and negative perceptions were identified. Subjects’ social economic status (SES) was provided by school administration. Results show that all the adolescents did not meet the recommended PA guidelines even though boys were engaged in more MVPA than girls. No relationships were found between BMI and all PALs in both boys and girls. BMI was significantly related to the PACES scores (r = -.22, p = 0.01), fun factors (r = -.20, p = 0.05) and positive perceptions (r =-.21, p < 0.05). The PACES scores were significantly related to LPA (r = .18, p = 0.01) but not related to MVPA (r = .04, p > 0.05). After controlling for age and SES, BMI was only significantly related to the PACES scores in girls (r = -.27, p < .01) but boys (r = -.06, p > 0.05). Fun factors were significantly related to LPA and MVPA (p < .01) in girls while negative perceptions were significantly related to LPA and MVPA (p < .01) in boys. This study provides evidence that enjoyment may be a trigger of LPA but MVPA and may be influenced by their BMI status particularly in girls. Based on these findings, physical and health educators are suggested to not only make PA more enjoyable, but also consider gender differences in promoting adolescents' participation in MVPA.

Keywords: accelerometer, body mass index, enjoyment of physical activity, moderate to vigorous physical activity

Procedia PDF Downloads 376
5937 Assessing the NYC's Single-Family Housing Typology for Urban Heat Vulnerability and Occupants’ Health Risk under the Climate Change Emergency

Authors: Eleni Stefania Kalapoda

Abstract:

Recurring heat waves due to the global climate change emergency pose continuous risks to human health and urban resources. Local and state decision-makers incorporate Heat Vulnerability Indices (HVIs) to quantify and map the relative impact on human health in emergencies. These maps enable government officials to identify the highest-risk districts and to concentrate emergency planning efforts and available resources accordingly (e.g., to reevaluate the location and the number of heat-relief centers). Even though the framework of conducting an HVI is unique per municipality, its accuracy in assessing the heat risk is limited. To resolve this issue, varied housing-related metrics should be included. This paper quantifies and classifies NYC’s single detached housing typology within high-vulnerable NYC districts using detailed energy simulations and post-processing calculations. The results show that the variation in indoor heat risk depends significantly on the dwelling’s design/operation characteristics, concluding that low-ventilated dwellings are the most vulnerable ones. Also, it confirmed that when building-level determinants of exposure are excluded from the assessment, HVI fails to capture important components of heat vulnerability. Lastly, the overall vulnerability ratio of the housing units was calculated between 0.11 to 1.6 indoor heat degrees in terms of ventilation and shading capacity, insulation degree, and other building attributes.

Keywords: heat vulnerability index, energy efficiency, urban heat, resiliency to heat, climate adaptation, climate mitigation, building energy

Procedia PDF Downloads 80
5936 On the Solution of Boundary Value Problems Blended with Hybrid Block Methods

Authors: Kizito Ugochukwu Nwajeri

Abstract:

This paper explores the application of hybrid block methods for solving boundary value problems (BVPs), which are prevalent in various fields such as science, engineering, and applied mathematics. Traditionally, numerical approaches such as finite difference and shooting methods, often encounter challenges related to stability and convergence, particularly in the context of complex and nonlinear BVPs. To address these challenges, we propose a hybrid block method that integrates features from both single-step and multi-step techniques. This method allows for the simultaneous computation of multiple solution points while maintaining high accuracy. Specifically, we employ a combination of polynomial interpolation and collocation strategies to derive a system of equations that captures the behavior of the solution across the entire domain. By directly incorporating boundary conditions into the formulation, we enhance the stability and convergence properties of the numerical solution. Furthermore, we introduce an adaptive step-size mechanism to optimize performance based on the local behavior of the solution. This adjustment allows the method to respond effectively to variations in solution behavior, improving both accuracy and computational efficiency. Numerical tests on a variety of boundary value problems demonstrate the effectiveness of the hybrid block methods. These tests showcase significant improvements in accuracy and computational efficiency compared to conventional methods, indicating that our approach is robust and versatile. The results suggest that this hybrid block method is suitable for a wide range of applications in real-world problems, offering a promising alternative to existing numerical techniques.

Keywords: hybrid block methods, boundary value problem, polynomial interpolation, adaptive step-size control, collocation methods

Procedia PDF Downloads 30
5935 The Role of Waqf Forestry for Sustainable Economic Development: A Panel Logit Analysis

Authors: Patria Yunita

Abstract:

Kuznets’ environmental curve analysis suggests sacrificing economic development to reduce environmental problems. However, we hope to achieve sustainable economic development. In this case, Islamic social finance, especially that of waqf in Indonesia, can be used as a solution to bridge the problem of environmental damage to the sustainability of economic development. The Panel Logit Regression method was used to analyze the probability of increasing economic growth and the role of waqf in the environmental impact of CO₂ emissions. This study uses panel data from 33 Indonesian provinces. The data used were the National Waqf Index, Forest Area, Waqf Land Area, Growth Rate of Regional Gross Domestic Product (YoY), and CO₂ Emissions for 2018-2022. Data were obtained from the Indonesian Waqf Board, Climate World Data, the Ministry of the Environment, and the Bank of Indonesia. The results prove that CO₂ emissions have a negative effect on regional economic growth and that waqf governance in the waqf index has a positive effect on regional economic growth in 33 provinces.

Keywords: waqf, CO₂ emissions, panel logit analysis, sustainable economic development

Procedia PDF Downloads 40
5934 An Effective Noise Resistant Frequency Modulation Continuous-Wave Radar Vital Sign Signal Detection Method

Authors: Lu Yang, Meiyang Song, Xiang Yu, Wenhao Zhou, Chuntao Feng

Abstract:

To address the problem that the FM continuous-wave radar (FMCW) extracts human vital sign signals which are susceptible to noise interference and low reconstruction accuracy, a new detection scheme for the sign signals is proposed. Firstly, an improved complete ensemble empirical modal decomposition with adaptive noise (ICEEMDAN) algorithm is applied to decompose the radar-extracted thoracic signals to obtain several intrinsic modal functions (IMF) with different spatial scales, and then the IMF components are optimized by a BP neural network improved by immune genetic algorithm (IGA). The simulation results show that this scheme can effectively separate the noise and accurately extract the respiratory and heartbeat signals and improve the reconstruction accuracy and signal-to-noise ratio of the sign signals.

Keywords: frequency modulated continuous wave radar, ICEEMDAN, BP neural network, vital signs signal

Procedia PDF Downloads 163
5933 Assessing the Indicators Influencing Port Resilience: A Comprehensive Literature Review

Authors: Guo Rui, Cao Xinhu

Abstract:

In recent decades, the world has endured severe challenges in light of climate change, epidemics, geopolitics, terrorism, economic uncertainties, as well as regional conflicts and rivalries. The appropriate use of critical infrastructures (Cis) is confronted. Ports, as typical Cis cover more than 80% of the global freight movement. Within this context, even the minimal disruption of port operations could cause malfunction of the holistic supply chain network and substantial economic losses. Hence, it is crucial to evaluate port performance from the perspective of resilience. Research on resilience and risk/safety management has been increasing, however, it needs more attention, as it could prevent potential socio-economic losses and inspire decision-makers to make resilience-based decisions to answer the challenges, such as COVID-19. To facilitate better moves from decision-makers, ports need to identify proper factors influencing port resilience. Inappropriately influenced factor selection could have a cascading effect on undesirable port performances. Thus, a systematic evaluation of factors is essential to stimulate the improvement process of port resilience investigation. This study zooms into container ports considering their critical role in international trade and global supply chains. 440 articles are selected after relevance ranking, and consequently, 62 articles are scrutinized after the title and abstract screening. Forty-one articles are included for bibliographic analysis in the end. It is found that there is no standardized index system to measure port resilience. And most studies evaluate port resilience merely in the recovery phase. Only two articles cover absorption, adaption and recovery state. However, no literature involves the prevention state. Hence, a uniform resilience index system is expected with a clear resilience definition. And port safety and security should also be considered while evaluating port resilience.

Keywords: port resilience, port safety and security, literature review, index system, port performance

Procedia PDF Downloads 124
5932 Assessment of the High-Speed Ice Friction of Bob Skeleton Runners

Authors: Agata Tomaszewska, Timothy Kamps, Stephan R. Turnock, Nicola Symonds

Abstract:

Bob skeleton is a highly competitive sport in which an athlete reaches speeds up to 40 m/s sliding, head first, down an ice track. It is believed that the friction between the runners and ice significantly contributes to the amount of the total energy loss during a bob skeleton descent. There is only limited available experimental data regarding the friction of bob skeleton runners or indeed steel on the ice at high sliding speeds ( > 20 m/s). Testing methods used to investigate the friction of steel on ice in winter sports have been outlined, and their accuracy and repeatability discussed. A system thinking approach was used to investigate the runner-ice interaction during sliding and create concept designs of three ice tribometers. The operational envelope of the bob skeleton system has been defined through mathematical modelling. Designs of a drum, linear and inertia pin-on-disk tribometers were developed specifically for bob skeleton runner testing with the requirement of reaching up to 40 m/s speed and facilitate fresh ice sliding. The design constraints have been outline and the proposed solutions compared based on the ease of operation, accuracy and the development cost.

Keywords: bob skeleton, ice friction, high-speed tribometers, sliding friction

Procedia PDF Downloads 259
5931 Relation between Pavement Roughness and Distress Parameters for Highways

Authors: Suryapeta Harini

Abstract:

Road surface roughness is one of the essential aspects of the road's functional condition, indicating riding comfort in both the transverse and longitudinal directions. The government of India has made maintaining good surface evenness a prerequisite for all highway projects. Pavement distress data was collected with a Network Survey Vehicle (NSV) on a National Highway. It determines the smoothness and frictional qualities of the pavement surface, which are related to driving safety and ease. Based on the data obtained in the field, a regression equation was created with the IRI value and the visual distresses. The suggested system can use wireless acceleration sensors and GPS to gather vehicle status and location data, as well as calculate the international roughness index (IRI). Potholes, raveling, rut depth, cracked area, and repair work are all affected by pavement roughness, according to the current study. The study was carried out in one location. Data collected through using Bump integrator was used for the validation. The bump integrator (BI) obtained using deflection from the network survey vehicle was correlated with the distress parameter to establish an equation.

Keywords: roughness index, network survey vehicle, regression, correlation

Procedia PDF Downloads 175
5930 Evaluation of Trapping Efficiency of Slow Released Formulations of Methyl Eugenol with Lanolin Wax against Bactrocera zonata

Authors: Waleed Afzal Naveed, Muhammd Dildar Gogi, Muhammad Sufian, Muhammad Amjad Ali, Muhammad Junaid Nisar, Mubashar Iqbal, Amna Jalal, Faisal Munir

Abstract:

The study was carried out to evaluate the performance of Slow-Released Formulations (SRF) of Methyl eugenol with Lanolin wax in orchard of the University of Agriculture Faisalabad, Pakistan against fruit flies. Lanolin wax was mixed with methyl eugenol in nine ratios (10:90, 20:80, 30:70, 40:60, 50:50, 60:40, 70:30, 80:20 and 90:10). The results revealed that SRFₗₗ-7 trapped 42.1 flies /day/trap, exhibited an attractancy index (AI) of 51.71%, proved strongly attractive SRFₗₗ for B. zonata and was categorized as Class-III slow-released formulation (AI > 50%). The SRFₗₗ-2, SRFₗₗ-3, SRFₗₗ-4, SRFₗₗ-5, SRFₗₗ-6, SRFₗₗ-8 and SRFₗₗ-9 trapped 17.7, 27.9, 32.3, 23.8, 28.3, 37.8 and 19.9 flies /day/trap, exhibited an attractancy index (AI) of 20.54%, 41.02%, 26.00%, 34.15%, 43.50%, 49.86% and 46.07% AI respectively, proved moderately attractive slow-released formulations for B. zonata and were categorized as Class-II slow-released formulations (AI = 11-50%). However, SRFₗₗ-1 trapped 14.8 flies /day/trap, exhibited 0.71% AI proved little or nonattractive slow-released formulation and was categorized as Class-I slow-released formulation for B. zonata (AI < 11%).

Keywords: Bactrocera zonata, slow-released formulation, lenoline wax, methyl euginol

Procedia PDF Downloads 235