Search results for: Ductile metal pipes
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2790

Search results for: Ductile metal pipes

1650 Durability of Slurry Infiltrated Fiber Concrete to Corrosion in Chloride Environment: An Experimental Study, Part I

Authors: M. F. Alrubaie, S. A. Salih, W. A. Abbas

Abstract:

Slurry infiltrated fiber concrete (SIFCON) is considered as a special type of high strength high-performance fiber reinforced concrete, extremely strong, and ductile. The objective of this study is to investigate the durability of SIFCON to corrosion in chloride environments. Six different SIFCON mixes were made in addition to two refinance mixes with 0% and 1.5% steel fiber content. All mixes were exposed to 10% chloride solution for 180 days. Half of the specimens were partially immersed in chloride solution, and the others were exposed to weekly cycles of wetting and drying in 10% chloride solution. The effectiveness of using corrosion inhibitors, mineral admixture, and epoxy protective coating were also evaluated as protective measures to reduce the effect of chloride attack and to improve the corrosion resistance of SIFCON mixes. Corrosion rates, half-cell potential, electrical resistivity, total permeability tests had been monitored monthly. The results indicated a significant improvement in performance for SIFCON mixes exposed to chloride environment, when using corrosion inhibitor or epoxy protective coating, whereas SIFCON mix contained mineral admixture (metakaolin) did not improve the corrosion resistance at the same level. The cyclic wetting and drying exposure were more aggressive to the specimens than the partial immersion in chloride solution although the observed surface corrosion for the later was clearer.

Keywords: chloride attack, chloride environments, corrosion inhibitor, corrosion resistance, durability, SIFCON, slurry infiltrated fiber concrete

Procedia PDF Downloads 137
1649 Room Temperature Electron Spin Resonance and Raman Study of Nanocrystalline Zn(1-x)Cu(x)O (0.005 < x < 0.05) Synthesized by Pyrophoric Method

Authors: Jayashree Das, V. V. Srinivasu , D. K. Mishra, A. Maity

Abstract:

Owing to the important potential applications over decades, transition metal (TM: Mn, Fe, Ni, Cu, Cr, V etc.) doped ZnO-based diluted magnetic semiconductors (DMS) always attract research attention for more and newer investigations. One of the interesting aspects of these materials is to study and understand the magnetic property at room temperature properly, which is very crucial to select a material for any related application. In this regard, Electron spin resonance (ESR) study has been proven to be a powerful technique to investigate the spin dynamics of electrons inside the system, which are responsible for the magnetic behaviour of any system. ESR as well as the Raman and Photoluminescence spectroscopy studies are also helpful to study the defects present or created inside the system in the form of oxygen vacancy or cluster instrumental in determining the room temperature ferromagnetic property of transition metal doped ZnO system, which can be controlled through varying dopant concentration, appropriate synthesis technique and sintering of the samples. For our investigation, we synthesised Cu-doped ZnO nanocrystalline samples with composition Zn1-xCux ( 0.005< x < 0.05) by pyrophoric method and sintered at a low temperature of 650 0C. The microwave absorption is studied by the Electron Spin Resonance (ESR) of X-band (9.46 GHz) at room temperature. Systematic analysis of the obtained ESR spectra reveals that all the compositions of Cu-doped ZnO samples exhibit resonance signals of appreciable line widths and g value ~ 2.2, typical characteristic of ferromagnetism in the sample. Raman scattering and the photoluminescence study performed on the samples clearly indicated the presence of pronounced defect related peaks in the respective spectra. Cu doping in ZnO with varying concentration also observed to affect the optical band gap and the respective absorption edges in the UV-Vis spectra. FTIR spectroscopy reveals the Cu doping effect on the stretching bonds of ZnO. To probe into the structural and morphological changes incurred by Cu doping, we have performed XRD, SEM and EDX study, which confirms adequate Cu substitution without any significant impurity phase formation or lattice disorder. With proper explanation, we attempt to correlate the results observed for the structural optical and magnetic behaviour of the Cu-doped ZnO samples. We also claim that our result can be instrumental for appropriate applications of transition metal doped ZnO based DMS in the field of optoelectronics and Spintronics.

Keywords: diluted magnetic semiconductors, electron spin resonance, raman scattering, spintronics.

Procedia PDF Downloads 313
1648 A Photoemission Study of Dye Molecules Deposited by Electrospray on rutile TiO2 (110)

Authors: Nouf Alharbi, James O'shea

Abstract:

For decades, renewable energy sources have received considerable global interest due to the increase in fossil fuel consumption. The abundant energy produced by sunlight makes dye-sensitised solar cells (DSSCs) a promising alternative compared to conventional silicon and thin film solar cells due to their transparency and tunable colours, which make them suitable for applications such as windows and glass facades. The transfer of an excited electron onto the surface is an important procedure in the DSSC system, so different groups of dye molecules were studied on the rutile TiO2 (110) surface. Currently, the study of organic dyes has become an interest of researchers due to ruthenium being a rare and expensive metal, and metal-free organic dyes have many features, such as high molar extinction coefficients, low manufacturing costs, and ease of structural modification and synthesis. There are, of course, some groups that have developed organic dyes and exhibited lower light-harvesting efficiency ranging between 4% and 8%. Since most dye molecules are complicated or fragile to be deposited by thermal evaporation or sublimation in the ultra-high vacuum (UHV), all dyes (i.e, D5, SC4, and R6) in this study were deposited in situ using the electrospray deposition technique combined with X-ray photoelectron spectroscopy (XPS) as an alternative method to obtain high-quality monolayers of titanium dioxide. These organic molecules adsorbed onto rutile TiO2 (110) are explored by XPS, which can be used to obtain element-specific information on the chemical structure and study bonding and interaction sites on the surface.

Keywords: dyes, deposition, electrospray, molecules, organic, rutile, sensitised, XPS

Procedia PDF Downloads 74
1647 Optimization of Lead Bioremediation by Marine Halomonas sp. ES015 Using Statistical Experimental Methods

Authors: Aliaa M. El-Borai, Ehab A. Beltagy, Eman E. Gadallah, Samy A. ElAssar

Abstract:

Bioremediation technology is now used for treatment instead of traditional metal removal methods. A strain was isolated from Marsa Alam, Red sea, Egypt showed high resistance to high lead concentration and was identified by the 16S rRNA gene sequencing technique as Halomonas sp. ES015. Medium optimization was carried out using Plackett-Burman design, and the most significant factors were yeast extract, casamino acid and inoculums size. The optimized media obtained by the statistical design raised the removal efficiency from 84% to 99% from initial concentration 250 ppm of lead. Moreover, Box-Behnken experimental design was applied to study the relationship between yeast extract concentration, casamino acid concentration and inoculums size. The optimized medium increased removal efficiency to 97% from initial concentration 500 ppm of lead. Immobilized Halomonas sp. ES015 cells on sponge cubes, using optimized medium in loop bioremediation column, showed relatively constant lead removal efficiency when reused six successive cycles over the range of time interval. Also metal removal efficiency was not affected by flow rate changes. Finally, the results of this research refer to the possibility of lead bioremediation by free or immobilized cells of Halomonas sp. ES015. Also, bioremediation can be done in batch cultures and semicontinuous cultures using column technology.

Keywords: bioremediation, lead, Box–Behnken, Halomonas sp. ES015, loop bioremediation, Plackett-Burman

Procedia PDF Downloads 197
1646 Interaction Evaluation of Silver Ion and Silver Nanoparticles with Dithizone Complexes Using DFT Calculations and NMR Analysis

Authors: W. Nootcharin, S. Sujittra, K. Mayuso, K. Kornphimol, M. Rawiwan

Abstract:

Silver has distinct antibacterial properties and has been used as a component of commercial products with many applications. An increasing number of commercial products cause risks of silver effects for human and environment such as the symptoms of Argyria and the release of silver to the environment. Therefore, the detection of silver in the aquatic environment is important. The colorimetric chemosensor is designed by the basic of ligand interactions with a metal ion, leading to the change of signals for the naked-eyes which are very useful method to this application. Dithizone ligand is considered as one of the effective chelating reagents for metal ions due to its high selectivity and sensitivity of a photochromic reaction for silver as well as the linear backbone of dithizone affords the rotation of various isomeric forms. The present study is focused on the conformation and interaction of silver ion and silver nanoparticles (AgNPs) with dithizone using density functional theory (DFT). The interaction parameters were determined in term of binding energy of complexes and the geometry optimization, frequency of the structures and calculation of binding energies using density functional approaches B3LYP and the 6-31G(d,p) basis set. Moreover, the interaction of silver–dithizone complexes was supported by UV–Vis spectroscopy, FT-IR spectrum that was simulated by using B3LYP/6-31G(d,p) and 1H NMR spectra calculation using B3LYP/6-311+G(2d,p) method compared with the experimental data. The results showed the ion exchange interaction between hydrogen of dithizone and silver atom, with minimized binding energies of silver–dithizone interaction. However, the result of AgNPs in the form of complexes with dithizone. Moreover, the AgNPs-dithizone complexes were confirmed by using transmission electron microscope (TEM). Therefore, the results can be the useful information for determination of complex interaction using the analysis of computer simulations.

Keywords: silver nanoparticles, dithizone, DFT, NMR

Procedia PDF Downloads 210
1645 Thermographic Tests of Curved GFRP Structures with Delaminations: Numerical Modelling vs. Experimental Validation

Authors: P. D. Pastuszak

Abstract:

The present work is devoted to thermographic studies of curved composite panels (unidirectional GFRP) with subsurface defects. Various artificial defects, created by inserting PTFE stripe between individual layers of a laminate during manufacturing stage are studied. The analysis is conducted both with the use finite element method and experiments. To simulate transient heat transfer in 3D model with embedded various defect sizes, the ANSYS package is used. Pulsed Thermography combined with optical excitation source provides good results for flat surfaces. Composite structures are mostly used in complex components, e.g., pipes, corners and stiffeners. Local decrease of mechanical properties in these regions can have significant influence on strength decrease of the entire structure. Application of active procedures of thermography to defect detection and evaluation in this type of elements seems to be more appropriate that other NDT techniques. Nevertheless, there are various uncertainties connected with correct interpretation of acquired data. In this paper, important factors concerning Infrared Thermography measurements of curved surfaces in the form of cylindrical panels are considered. In addition, temperature effects on the surface resulting from complex geometry and embedded and real defect are also presented.

Keywords: active thermography, composite, curved structures, defects

Procedia PDF Downloads 319
1644 Loop Heat Pipe Two-Phase Heat Transports: Guidelines for Technology Utilization

Authors: Triem T. Hoang

Abstract:

Loop heat pipes (LHPs) are two-phase capillary-pumped heat transports. An appropriate working fluid is selected for the intended application temperature range. A closed-loop is evacuated to a high vacuum, back-filled partially with the working fluid, and then hermetically sealed under the fluid own pressure. Heat from a heat source conducts through the evaporator casing to vaporize liquid on the outer surface of the wick structure inside the evaporator. The generated vapor is compelled to vent out of the evaporator and into the vapor line for transport to the condenser assembly. There, heat is removed and rejected to a heat sink to condensed vapor back to liquid. The liquid exits the condenser and travels in the liquid line to return to the evaporator to complete the cycle. The circulation of fluid, and thus the heat transport in the LHP, is accomplished entirely by capillary action. The LHP contains no mechanical moving part to wear out or break down and, therefore possesses, reliability and a long life even without maintenance. In this paper, the author not only attempts to introduce the LHP technology in simplistic terms to those who are not familiar with it but also provides necessary technical information to potential users for the proper design and analysis of the LHP system.

Keywords: two-phase heat transfer, loop heat pipe, capillary pumped technology, thermal-fluid modeling

Procedia PDF Downloads 141
1643 Structural Behaviour of Small-Scale Fibre-Filled Steel Tubular Planar Frames

Authors: Sadaf Karkoodi, Hassan Karampour

Abstract:

There is a growing interest in the construction industry towards hybrid systems. The hybrid systems use construction materials such as timber, steel, and concrete smartly, can be prefabricated, and are cost-effective and sustainable solutions to an industry targeting reduced carbon footprint. Moreover, in case of periodical shortage in timber resources, reusable and waste wood such as fibres can be used in the hybrid modules, which facilitates the circular economy. In this research, a hybrid frame is proposed and experimentally validated by introducing dried wood fibre products inside cold-formed steel square hollow sections without using any adhesives. As such, fibre-filled steel tubular (FFST) columns, beams, and 2D frames are manufactured and tested. The results show that the FFST columns have stiffness and strength 44% and 55% higher than cold-formed steel columns, respectively. The bearing strength of the FFST beams shows an increase of 39.5% compared to steel only. The flexural stiffness and strength of the FFST beams are 8.5% and 28% higher than the bare steel beams, respectively. The FFST frame depicted an 18.4% higher ultimate load capacity than the steel-only frame under a mid-point concentrated load. Moreover, the FFST beam-to-column bolted connection showed high ductile performance. The initial results and the proposed simple manufacturing process suggest that the proposed FFST concept can be upscaled and used in real structures.

Keywords: wood fibre, reusing wood, fibre-filled steel, hybrid construction

Procedia PDF Downloads 79
1642 Quorum-Sensing Driven Inhibitors for Mitigating Microbial Influenced Corrosion

Authors: Asma Lamin, Anna H. Kaksonen, Ivan Cole, Paul White, Xiao-Bo Chen

Abstract:

Microbiologically influenced corrosion (MIC) is a process in which microorganisms initiate, facilitate, or accelerate the electrochemical corrosion reactions of metallic components. Several reports documented that MIC accounts for about 20 to 40 % of the total cost of corrosion. Biofilm formation due to the presence of microorganisms on the surface of metal components is known to play a vital role in MIC, which can lead to severe consequences in various environmental and industrial settings. Quorum sensing (QS) system plays a major role in regulating biofilm formation and control the expression of some microbial enzymes. QS is a communication mechanism between microorganisms that involves the regulation of gene expression as a response to the microbial cell density within an environment. This process is employed by both Gram-positive and Gram-negative bacteria to regulate different physiological functions. QS involves production, detection, and responses to signalling chemicals, known as auto-inducers. QS controls specific processes important for the microbial community, such as biofilm formation, virulence factor expression, production of secondary metabolites and stress adaptation mechanisms. The use of QS inhibitors (QSIs) has been proposed as a possible solution to biofilm related challenges in many different applications. Although QSIs have demonstrated some strength in tackling biofouling, QSI-based strategies to control microbially influenced corrosion have not been thoroughly investigated. As such, our research aims to target the QS mechanisms as a strategy for mitigating MIC on metal surfaces in engineered systems.

Keywords: quorum sensing, quorum quenching, biofilm, biocorrosion

Procedia PDF Downloads 91
1641 Stereoselective Glycosylation and Functionalization of Unbiased Site of Sweet System via Dual-Catalytic Transition Metal Systems/Wittig Reaction

Authors: Mukul R. Gupta, Rajkumar Gandhi, Rajitha Sachan, Naveen K. Khare

Abstract:

The field of glycoscience has burgeoned in the last several decades, leading to the identification of many glycosides which could serve critical roles in a wide range of biological processes. This has prompted a resurgence in synthetic interest, with a particular focus on new approaches to construct the selective glycosidic bond. Despite the numerous elegant strategies and methods developed for the formation of glycosidic bonds, stereoselective construction of glycosides remains challenging. Here, we have recently developed the novel Hexafluoroisopropanol (HFIP) catalyzed stereoselective glycosylation methods by using KDN imidate glycosyl donor and a variety of alcohols in excellent yield. This method is broadly applicable to a wide range of substrates and with excellent selectivity of glycoside. Also, herein we are reporting the functionalization of the unbiased side of newly formed glycosides by dual-catalytic transition metal systems (Ru- or Fe-). We are using the innovative Reverse & Catalyst strategy, i.e., a reversible activation reaction by one catalyst with a functionalization reaction by another catalyst, together with enabling functionalization of substrates at their inherently unreactive sites. As well, we are targeting the diSia derivative synthesis by Wittig reaction. This synthetic method is applicable in mild conditions, functional group tolerance of the dual-catalytic systems and also highlights the potential of the multicatalytic approach to address challenging transformations to avoid multistep procedures in carbohydrate synthesis.

Keywords: KDN, stereoselective glycosylation, dual-catalytic functionalization, Wittig reaction

Procedia PDF Downloads 195
1640 Surface Characterization and Femtosecond-Nanosecond Transient Absorption Dynamics of Bioconjugated Gold Nanoparticles: Insight into the Warfarin Drug-Binding Site of Human Serum Albumin

Authors: Osama K. Abou-Zied, Saba A. Sulaiman

Abstract:

We studied the spectroscopy of 25-nm diameter gold nanoparticles (AuNPs), coated with human serum albumin (HSA) as a model drug carrier. The morphology and coating of the AuNPs were examined using transmission electron microscopy and dynamic light scattering. Resonance energy transfer from the sole tryptophan of HSA (Trp214) to the AuNPs was observed in which the fluorescence quenching of Trp214 is dominated by a static mechanism. Using fluorescein (FL) to probe the warfarin drug-binding site in HSA revealed the unchanged nature of the binding cavity on the surface of the AuNPs, indicating the stability of the protein structure on the metal surface. The transient absorption results of the surface plasmonic resonance (SPR) band of the AuNPs show three ultrafast dynamics that are involved in the relaxation process after excitation at 460 nm. The three decay components were assigned to the electron-electron (~ 400 fs), electron-phonon (~ 2.0 ps) and phonon-phonon (200–250 ps) interactions. These dynamics were not changed upon coating the AuNPs with HSA which indicates the chemical and physical stability of the AuNPs upon bioconjugation. Binding of FL in HSA did not have any measurable effect on the bleach recovery dynamics of the SPR band, although both FL and AuNPs were excited at 460 nm. The current study is important for a better understanding of the physical and dynamical properties of protein-coated metal nanoparticles which are expected to help in optimizing their properties for critical applications in nanomedicine.

Keywords: gold nanoparticles, human serum albumin, fluorescein, femtosecond transient absorption

Procedia PDF Downloads 333
1639 Experimental Recovery of Gold, Silver and Palladium from Electronic Wastes Using Ionic Liquids BmimHSO4 and BmimCl as Solvents

Authors: Lisa Shambare, Jean Mulopo, Sehliselo Ndlovu

Abstract:

One of the major challenges of sustainable development is promoting an industry which is both ecologically durable and economically viable. This requires processes that are material and energy efficient whilst also being able to limit the production of waste and toxic effluents through effective methods of process synthesis and intensification. In South Africa and globally, both miniaturisation and technological advances have substantially increased the amount of electronic wastes (e-waste) generated annually. Vast amounts of e-waste are being generated yearly with only a minute quantity being recycled officially. The passion for electronic devices cannot ignore the scarcity and cost of mining the noble metal resources which contribute significantly to the efficiency of most electronic devices. It has hence become imperative especially in an African context that sustainable strategies which are environmentally friendly be developed for recycling of the noble metals from e-waste. This paper investigates the recovery of gold, silver and palladium from electronic wastes, which consists of a vast array of metals, using ionic liquids which have the potential of reducing the gaseous and aqueous emissions associated with existing hydrometallurgical and pyrometallurgical technologies while also maintaining the economy of the overall recycling scheme through solvent recovery. The ionic liquids 1-butyl-3-methyl imidazolium hydrogen sulphate (BmimHSO4) which behaves like a protic acid and was used in the present research for the selective leaching of gold and silver from e-waste. Different concentrations of the aqueous ionic liquid were used in the experiments ranging from 10% to 50%. Thiourea was used as the complexing agent in the investigation with Fe3+ as the oxidant. The pH of the reaction was maintained in the range of 0.8 to 1.5. The preliminary investigations conducted were successful in the leaching of silver and palladium at room temperature with optimum results being at 48hrs. The leaching results could not be explained because of the leaching of palladium with the absence of gold. Hence a conclusion could not be drawn and there was the need for further experiments to be run. The leaching of palladium was carried out with hydrogen peroxide as oxidant and 1-butyl-3-methyl imidazolium chloride (BmimCl) as the solvent. The experiments at carried out at a temperature of 60 degrees celsius and a very low pH. The chloride ion was used to complex with palladium metal. From the preliminary results, it could be concluded that pretreatment of the treatment e-waste was necessary to improve the efficiency of the metal recovery process. A conclusion could not be drawn for the leaching experiments.

Keywords: BmimCl, BmimHSO4, gold, palladium, silver

Procedia PDF Downloads 291
1638 New Hybrid Process for Converting Small Structural Parts from Metal to CFRP

Authors: Yannick Willemin

Abstract:

Carbon fibre-reinforced plastic (CFRP) offers outstanding value. However, like all materials, CFRP also has its challenges. Many forming processes are largely manual and hard to automate, making it challenging to control repeatability and reproducibility (R&R); they generate significant scrap and are too slow for high-series production; fibre costs are relatively high and subject to supply and cost fluctuations; the supply chain is fragmented; many forms of CFRP are not recyclable, and many materials have yet to be fully characterized for accurate simulation; shelf life and outlife limitations add cost; continuous-fibre forms have design limitations; many materials are brittle; and small and/or thick parts are costly to produce and difficult to automate. A majority of small structural parts are metal due to high CFRP fabrication costs for the small-size class. The fact that CFRP manufacturing processes that produce the highest performance parts also tend to be the slowest and least automated is another reason CFRP parts are generally higher in cost than comparably performing metal parts, which are easier to produce. Fortunately, business is in the midst of a major manufacturing evolution—Industry 4.0— one technology seeing rapid growth is additive manufacturing/3D printing, thanks to new processes and materials, plus an ability to harness Industry 4.0 tools. No longer limited to just prototype parts, metal-additive technologies are used to produce tooling and mold components for high-volume manufacturing, and polymer-additive technologies can incorporate fibres to produce true composites and be used to produce end-use parts with high aesthetics, unmatched complexity, mass customization opportunities, and high mechanical performance. A new hybrid manufacturing process combines the best capabilities of additive—high complexity, low energy usage and waste, 100% traceability, faster to market—and post-consolidation—tight tolerances, high R&R, established materials, and supply chains—technologies. The platform was developed by Zürich-based 9T Labs AG and is called Additive Fusion Technology (AFT). It consists of a design software offering the possibility to determine optimal fibre layup, then exports files back to check predicted performance—plus two pieces of equipment: a 3d-printer—which lays up (near)-net-shape preforms using neat thermoplastic filaments and slit, roll-formed unidirectional carbon fibre-reinforced thermoplastic tapes—and a post-consolidation module—which consolidates then shapes preforms into final parts using a compact compression press fitted with a heating unit and matched metal molds. Matrices—currently including PEKK, PEEK, PA12, and PPS, although nearly any high-quality commercial thermoplastic tapes and filaments can be used—are matched between filaments and tapes to assure excellent bonding. Since thermoplastics are used exclusively, larger assemblies can be produced by bonding or welding together smaller components, and end-of-life parts can be recycled. By combining compression molding with 3D printing, higher part quality with very-low voids and excellent surface finish on A and B sides can be produced. Tight tolerances (min. section thickness=1.5mm, min. section height=0.6mm, min. fibre radius=1.5mm) with high R&R can be cost-competitively held in production volumes of 100 to 10,000 parts/year on a single set of machines.

Keywords: additive manufacturing, composites, thermoplastic, hybrid manufacturing

Procedia PDF Downloads 96
1637 Performance of Fiber-Reinforced Polymer as an Alternative Reinforcement

Authors: Salah E. El-Metwally, Marwan Abdo, Basem Abdel Wahed

Abstract:

Fiber-reinforced polymer (FRP) bars have been proposed as an alternative to conventional steel bars; hence, the use of these non-corrosive and nonmetallic reinforcing bars has increased in various concrete projects. This concrete material is lightweight, has a long lifespan, and needs minor maintenance; however, its non-ductile nature and weak bond with the surrounding concrete create a significant challenge. The behavior of concrete elements reinforced with FRP bars has been the subject of several experimental investigations, even with their high cost. This study aims to numerically assess the viability of using FRP bars, as longitudinal reinforcement, in comparison with traditional steel bars, and also as prestressing tendons instead of the traditional prestressing steel. The nonlinear finite element analysis has been utilized to carry out the current study. Numerical models have been developed to examine the behavior of concrete beams reinforced with FRP bars or tendons against similar models reinforced with either conventional steel or prestressing steel. These numerical models were verified by experimental test results available in the literature. The obtained results revealed that concrete beams reinforced with FRP bars, as passive reinforcement, exhibited less ductility and less stiffness than similar beams reinforced with steel bars. On the other hand, when FRP tendons are employed in prestressing concrete beams, the results show that the performance of these beams is similar to those beams prestressed by conventional active reinforcement but with a difference caused by the two tendon materials’ moduli of elasticity.

Keywords: reinforced concrete, prestressed concrete, nonlinear finite element analysis, fiber-reinforced polymer, ductility

Procedia PDF Downloads 18
1636 The Effect of Additive Acid on the Phytoremediation Efficiency

Authors: G. Hosseini, A. Sadighzadeh, M. Rahimnejad, N. Hosseini, Z. Jamalzadeh

Abstract:

Metal pollutants, especially heavy metals from anthropogenic sources such as metallurgical industries’ waste including mining, smelting, casting or production of nuclear fuel, including mining, concentrate production and uranium processing ends in the environment contamination (water and soil) and risk to human health around the facilities of this type of industrial activity. There are different methods that can be used to remove these contaminants from water and soil. These are very expensive and time-consuming. In this case, the people have been forced to leave the area and the decontamination is not done. For example, in the case of Chernobyl accident, an area of 30 km around the plant was emptied of human life. A very efficient and cost-effective method for decontamination of the soil and the water is phytoremediation. In this method, the plants preferentially native plants which are more adaptive to the regional climate are well used. In this study, three types of plants including Alfalfa, Sunflower and wheat were used to Barium decontamination. Alfalfa and Sunflower were not grown good enough in Saghand mine’s soil sample. This can be due to non-native origin of these plants. But, Wheat rise in Saghand Uranium Mine soil sample was satisfactory. In this study, we have investigated the effect of 4 types of acids inclusive nitric acid, oxalic acid, acetic acid and citric acid on the removal efficiency of Barium by Wheat. Our results indicate the increase of Barium absorption in the presence of citric acid in the soil. In this paper, we will present our research and laboratory results.

Keywords: phytoremediation, heavy metal, wheat, soil

Procedia PDF Downloads 338
1635 Sewage Sludge Management: A Case Study of Monrovia, Montserrado County, Liberia

Authors: Victor Emery David Jr, Md S. Hossain

Abstract:

Sewage sludge management has been a problem faced by most developing cities as in the case of Monrovia. The management of sewage sludge in Monrovia is still in its infant stage. The city is still struggling with poor sanitation, clogged pipes, shortage of septic tanks, lack of resources/human capacity, inadequate treatment facilities, open defecation, the absence of clear guidelines, etc. The rapid urban population growth of Monrovia has severely stressed Monrovia’s marginally functional urban WSS system caused by the civil conflict which led to break down in many sectors as well as infrastructure. The sewerage system which originally covered 17% of the population of Monrovia was down to serving about 7% because of bursts and blockages causing backflows in other areas. Prior to the Civil War, the average water production for Monrovia was about 68,000 m3/day but has now dropped to about 10,000 m3/day. Only small parts of Monrovia currently have direct access to the piped water supply while most areas depend on trucked water delivered to community collection points or household tanks, and/or on water from unprotected dug wells or hand pumps. There are only two functional treatment plants; The Fiamah Treatment plant and the White Plains Treatment Plant.

Keywords: Fiamah Treatment plant, management, Monrovia/Montserrado County, sewage, sludge

Procedia PDF Downloads 290
1634 O-Functionalized CNT Mediated CO Hydro-Deoxygenation and Chain Growth

Authors: K. Mondal, S. Talapatra, M. Terrones, S. Pokhrel, C. Frizzel, B. Sumpter, V. Meunier, A. L. Elias

Abstract:

Worldwide energy independence is reliant on the ability to leverage locally available resources for fuel production. Recently, syngas produced through gasification of carbonaceous materials provided a gateway to a host of processes for the production of various chemicals including transportation fuels. The basis of the production of gasoline and diesel-like fuels is the Fischer Tropsch Synthesis (FTS) process: A catalyzed chemical reaction that converts a mixture of carbon monoxide (CO) and hydrogen (H2) into long chain hydrocarbons. Until now, it has been argued that only transition metal catalysts (usually Co or Fe) are active toward the CO hydrogenation and subsequent chain growth in the presence of hydrogen. In this paper, we demonstrate that carbon nanotube (CNT) surfaces are also capable of hydro-deoxygenating CO and producing long chain hydrocarbons similar to that obtained through the FTS but with orders of magnitude higher conversion efficiencies than the present state-of-the-art FTS catalysts. We have used advanced experimental tools such as XPS and microscopy techniques to characterize CNTs and identify C-O functional groups as the active sites for the enhanced catalytic activity. Furthermore, we have conducted quantum Density Functional Theory (DFT) calculations to confirm that C-O groups (inherent on CNT surfaces) could indeed be catalytically active towards reduction of CO with H2, and capable of sustaining chain growth. The DFT calculations have shown that the kinetically and thermodynamically feasible route for CO insertion and hydro-deoxygenation are different from that on transition metal catalysts. Experiments on a continuous flow tubular reactor with various nearly metal-free CNTs have been carried out and the products have been analyzed. CNTs functionalized by various methods were evaluated under different conditions. Reactor tests revealed that the hydrogen pre-treatment reduced the activity of the catalysts to negligible levels. Without the pretreatment, the activity for CO conversion as found to be 7 µmol CO/g CNT/s. The O-functionalized samples showed very activities greater than 85 µmol CO/g CNT/s with nearly 100% conversion. Analyses show that CO hydro-deoxygenation occurred at the C-O/O-H functional groups. It was found that while the products were similar to FT products, differences in selectivities were observed which, in turn, was a result of a different catalytic mechanism. These findings now open a new paradigm for CNT-based hydrogenation catalysts and constitute a defining point for obtaining clean, earth abundant, alternative fuels through the use of efficient and renewable catalyst.

Keywords: CNT, CO Hydrodeoxygenation, DFT, liquid fuels, XPS, XTL

Procedia PDF Downloads 348
1633 Removal of Nickel and Vanadium from Crude Oil by Using Solvent Extraction and Electrochemical Process

Authors: Aliya Kurbanova, Nurlan Akhmetov, Abilmansur Yeshmuratov, Yerzhigit Sugurbekov, Ramiz Zulkharnay, Gulzat Demeuova, Murat Baisariyev, Gulnar Sugurbekova

Abstract:

Last decades crude oils have tended to become more challenge to process due to increasing amounts of sour and heavy crude oils. Some crude oils contain high vanadium and nickel content, for example Pavlodar LLP crude oil, which contains more than 23.09 g/t nickel and 58.59 g/t vanadium. In this study, we used two types of metal removing methods such as solvent extraction and electrochemical. The present research is conducted for comparative analysis of the deasphalting with organic solvents (cyclohexane, carbon tetrachloride, chloroform) and electrochemical method. Applying the cyclic voltametric analysis (CVA) and Inductively coupled plasma mass spectrometry (ICP MS), these mentioned types of metal extraction methods were compared in this paper. Maximum efficiency of deasphalting, with cyclohexane as the solvent, in Soxhlet extractor was 66.4% for nickel and 51.2% for vanadium content from crude oil. Percentage of Ni extraction reached maximum of approximately 55% by using the electrochemical method in electrolysis cell, which was developed for this research and consists of three sections: oil and protonating agent (EtOH) solution between two conducting membranes which divides it from two capsules of 10% sulfuric acid and two graphite electrodes which cover all three parts in electrical circuit. Ions of metals pass through membranes and remain in acid solutions. The best result was obtained in 60 minutes with ethanol to oil ratio 25% to 75% respectively, current fits into the range from 0.3A to 0.4A, voltage changed from 12.8V to 17.3V.

Keywords: demetallization, deasphalting, electrochemical removal, heavy metals, petroleum engineering, solvent extraction

Procedia PDF Downloads 332
1632 Bioremediation Potentials of Some Indigenous Microorganisms Isolated from Auto Mechanic Workshops on Irrigation Water Used in Lokoja Kogi State of Nigeria

Authors: Emmanuel Ekpa, Adaji Andrew, Queen Opaluwa, Isreal Daraobong

Abstract:

Three (3) indigenous bacteria species (Bacillus spp, Acinectobacter spp and Moraxella spp) previously isolated from contaminated soil of some auto mechanic workshops were used for bioremediation studies on some irrigation water used at Sarkin-noma Fadama farms located in Lokoja Kogi State, Nigeria. This was done in order to investigate their bioremediation potentials using a simple pour plate method. The physicochemical parameters and heavy metal analysis (using AAS iCE 3000) of the irrigation water were performed before and after inoculation of the isolated organisms. Nitrate and phosphate concentration were found to be 10.56mg/L and 12.63mg/L prior to inoculation while iron and zinc were 0.9569mg/L and 0.2245mg/L respectively. Other physicochemical parameters were also observed to be high prior to inoculation. After the bioremediation test (inoculation with the isolated organisms), a nitrate and phosphate content of 2.53mg/L and 2.61mg/L were recorded respectively, iron and zinc gave 0.1694mg/L and 0.0174mg/L concentrations while other physicochemical parameters measured were also found to be lower in their respective values. The implication of this present study is that a number of carefully isolated indigenous bacteria species are capable of reducing the amount of heavy metal concentrations in water. Also, non-metallic contaminants like nitrate and phosphate are susceptible to bioremediation in the presence of such efficient system.

Keywords: bioremediation, heavy metals, physicochemical parameters, Bacillus spp, Acinectobacter spp and Moraxella spp, AAS, spectrometer 3000

Procedia PDF Downloads 338
1631 Comparative Study of Tensile Properties of Cast and Hot Forged Alumina Nanoparticle Reinforced Composites

Authors: S. Ghanaraja, Subrata Ray, S. K. Nath

Abstract:

Particle reinforced Metal Matrix Composite (MMC) succeeds in synergizing the metallic matrix with ceramic particle reinforcements to result in improved strength, particularly at elevated temperatures, but adversely it affects the ductility of the matrix because of agglomeration and porosity. The present study investigates the outcome of tensile properties in a cast and hot forged composite reinforced simultaneously with coarse and fine particles. Nano-sized alumina particles have been generated by milling mixture of aluminum and manganese dioxide powders. Milled particles after drying are added to molten metal and the resulting slurry is cast. The microstructure of the composites shows good distribution of both the size categories of particles without significant clustering. The presence of nanoparticles along with coarser particles in a composite improves both strength and ductility considerably. Delay in debonding of coarser particles to higher stress is due to reduced mismatch in extension caused by increased strain hardening in presence of the nanoparticles. However, higher addition of powder mix beyond a limit results in deterioration of mechanical properties, possibly due to clustering of nanoparticles. The porosity in cast composite generally increases with the increasing addition of powder mix as observed during process and on forging it has got reduced. The base alloy and nanocomposites show improvement in flow stress which could be attributed to lowering of porosity and grain refinement as a consequence of forging.

Keywords: aluminium, alumina, nano-particle reinforced composites, porosity

Procedia PDF Downloads 250
1630 Size-Controlled Synthesis of Bismuth Nanoparticles by Temperature Assisted Pulsed Laser Deposition

Authors: Ranjit A. Patil, Yung Liou, Yuan-Ron Ma

Abstract:

It has been observed that when the size of metals such as, Au, Zn, Ag, Cu, Te, and metal oxides is reduced to several nano-meters, it starts to show further interesting properties. These new properties boost the use of nano-structures to produce attractive functional materials or used as promising building blocks in electronic devices. Present work describes the synthesis of bismuth (Bi) nanoparticles (NP’s) having uniform morphology, high crystallinity, and single phase purity by the temperature assisted pulsed laser deposition (TAPLD). Pulsed Laser deposition (PLD) technique is one of the promising methods to synthesize nano-structures. It can provide the stable nucleation sites in orders of magnitudes higher than for MBE and sputtering deposition. The desired size of purely metallic Bi NP’s of can be easily controlled by adjusting the temperature of the substrate varying from 1000 C to 250 0C. When the temperatures of the substrate raised step wise the average size of Bi NP’s appeared to be increased by maintaining the uniform distribution of NP’s on the Si surfaces. The diameter range of NP’s is ~33-84 nm shows size distribution constrained in the limited range. The EDS results show that the 0D Bi NP’s synthesized at high temperature (250 0C) at a high vacuum still remained in a metallic phase. Moreover, XRD, TEM and SAED results showed that these Bi NP’s are hexagonal in crystalline in a space group R -3 m and no traces of bismuth oxide, confirming that Bi NP’s synthesized at wide range of temperatures persisted of the pure Bi-metallic phase.

Keywords: metal nano particles, bismuth, pulsed laser deposition (PLD), nano particles, temperature assisted growth

Procedia PDF Downloads 349
1629 Building Collapse: Factors and Resisting Mechanisms: A Review of Case Studies

Authors: Genevieve D. Fernandes, Nisha P. Naik

Abstract:

All through the ages in all human civilizations, men have been engaged in construction activity, not only to build their dwellings and house their activities, but also roads, bridges to facilitate means of transport, and communication etc. The main concern in this activity was to ensure safety and reduce the collapse of the buildings and other structures. But even after taking all precautions, it is impossible to guarantee safety and collapse because of several unforeseen reasons like faulty constructions, design errors, overloading, soil liquefaction, gas explosion, material degradation, terrorist attacks and economic factors also contributing to the collapse. It is also uneconomical to design the structure for unforeseen events unless they have a reasonable chance of occurrence. In order to ensure safety and prevent collapse, many guidelines have been framed by local bodies and government authorities in many countries like the United States Department of Defence (DOD), United States General Service Administration (GSA) and Euro-Codes in European Nations. Some other practices are followed to incorporate redundancies in the structure like detailing, ductile designs, tying of elements at particular locations, and provision of hinges and interconnections. It is also to be admitted that a full-proof safe design structure for accidental events cannot be prepared and implemented as it is uneconomical and the chances of such occurrences are less. This paper reviews past case studies of the collapse of structures with the aim of developing an understanding of the collapse mechanism. This study will definitely help to bring about a detailed improvement in the design to maximise the quality of the construction at a minimal cost.

Keywords: unforeseen factors, progressive collapse, collapse resisting mechanisms, column removal scenario

Procedia PDF Downloads 137
1628 Optical Analysis of the Plasmon Resonances of Gold Nano-Ring

Authors: Mehrnaz Mostafavi

Abstract:

The current research aims to explore a method for creating nano-ring structures through chemical reduction. By employing a direct reduction process at a controlled, slow pace, and concurrently introducing specific reduction agents, the goal is to fabricate these unique nano-ring formations. The deliberate slow reduction of nanoparticles within this process helps prevent spatial hindrances caused by the reduction agents. The timing of the reduction of metal atoms, facilitated by these agents, emerges as a crucial factor influencing the creation of nano-ring structures. In investigation involves a chemical approach utilizing bovine serum albumin and human serum albumin as organic reducing agents to produce gold nano-rings. The controlled reduction of metal atoms at a slow pace and under specific pH conditions plays a pivotal role in the successful fabrication of these nanostructures. Optical spectroscopic analyses revealed distinctive plasmonic behavior in both visible and infrared spectra, owing to the collective movement of electrons along the inner and outer walls of the gold nano-rings. Importantly, these ring-shaped nanoparticles exhibit customizable plasmon resonances in the near-infrared spectrum, a characteristic absent in solid particles of similar sizes. This unique attribute makes the generated samples valuable for applications in Nanomedicine and Nanobiotechnology, leveraging the distinct optical properties of these nanostructures.

Keywords: nano-ring structure, nano-particles, reductant agents, plasmon resonace

Procedia PDF Downloads 102
1627 Assessment of Fermentative Activity in Heavy Metal Polluted Soils in Alaverdi Region, Armenia

Authors: V. M. Varagyan, G. A. Gevorgyan, K. V. Grigoryan, A. L. Varagyan

Abstract:

Alaverdi region is situated in the northern part of the Republic of Armenia. Previous studies (1989) in Alaverdi region showed that due to soil irrigation with the highly polluted waters of the Debed and Shnogh rivers, the content of heavy metals in the brown forest steppe soils was significantly higher than the maximum permissible concentration as a result of which the fermentative activity in all the layers of the soils was stressed. Compared to the non-polluted soils, the activity of ferments in the plough layers of the highly polluted soils decreased by 44 - 68% (invertase – 60%, phosphatase – 44%, urease – 66%, catalase – 68%). In case of the soil irrigation with the polluted waters, a decrease in the intensity of fermentative reactions was conditioned by the high content of heavy metals in the soils and changes in chemical composition, physical and physicochemical properties. 20-year changes in the fermentative activity in the brown forest steppe soils in Alaverdi region were investigated. The activity of extracellular ferments in the soils was determined by the unification methods. The study has confirmed that self-recovery process occurs in soils previously polluted with heavy metals which can be revealed by fermentative activity. The investigations revealed that during 1989 – 2009, the activity of ferments in the plough layers of the medium and highly polluted soils increased by 31.2 – 52.6% (invertase – 31.2%, urease – 52.6%, phosphatase – 33.3%, catalase – 41.8%) and 24.1 – 87.0% (invertase – 40.4%, urease – 76.9%, phosphatase – 24.1%, catalase – 87.0%) respectively which indicated that the dynamic properties of the soils, which had been broken due to heavy metal pollution, were improved. In 1989, the activity of the Alaverdi copper smelting plant was temporarily stopped due to financial problems caused by the economic crisis and the absence of market, and the factory again started operation in 1997 and isn’t currently running at full capacity. As a result, the Debed river water has obtained a new chemical composition and comparatively good irrigation properties. Due to irrigation with this water, the gradually recovery of the soil dynamic properties, which had been broken due to irrigation with the waters polluted with heavy metals, was occurred. This is also explained by the fact that in case of irrigation with the partially cleaned water, the soil protective function against pollutants rose due to a content increase in humus and silt fractions. It is supposed that in case of the soil irrigation with the partially cleaned water, the intensity of fermentative reactions wasn’t directly affected by heavy metals.

Keywords: alaverdi region, heavy metal pollution, self-recovery, soil fermentative activity

Procedia PDF Downloads 302
1626 Accuracy of VCCT for Calculating Stress Intensity Factor in Metal Specimens Subjected to Bending Load

Authors: Sanjin Kršćanski, Josip Brnić

Abstract:

Virtual Crack Closure Technique (VCCT) is a method used for calculating stress intensity factor (SIF) of a cracked body that is easily implemented on top of basic finite element (FE) codes and as such can be applied on the various component geometries. It is a relatively simple method that does not require any special finite elements to be used and is usually used for calculating stress intensity factors at the crack tip for components made of brittle materials. This paper studies applicability and accuracy of VCCT applied on standard metal specimens containing trough thickness crack, subjected to an in-plane bending load. Finite element analyses were performed using regular 4-node, regular 8-node and a modified quarter-point 8-node 2D elements. Stress intensity factor was calculated from the FE model results for a given crack length, using data available from FE analysis and a custom programmed algorithm based on virtual crack closure technique. Influence of the finite element size on the accuracy of calculated SIF was also studied. The final part of this paper includes a comparison of calculated stress intensity factors with results obtained from analytical expressions found in available literature and in ASTM standard. Results calculated by this algorithm based on VCCT were found to be in good correlation with results obtained with mentioned analytical expressions.

Keywords: VCCT, stress intensity factor, finite element analysis, 2D finite elements, bending

Procedia PDF Downloads 306
1625 Antioxidant Capacity and Total Phenolic Content of Aqueous Acetone and Ethanol Extract of Edible Parts of Moringa oleifera and Sesbania grandiflora

Authors: Perumal Siddhuraju, Arumugam Abirami, Gunasekaran Nagarani, Marimuthu Sangeethapriya

Abstract:

Aqueous ethanol and aqueous acetone extracts of Moringa oleifera (outer pericarp of immature fruit and flower) and Sesbania grandiflora white variety (flower and leaf) were examined for radical scavenging capacities and antioxidant activities. Ethanol extract of S. grandiflora (flower and leaf) and acetone extract of M. oleifera (outer pericarp of immature fruit and flower) contained relatively higher levels of total dietary phenolics than the other extracts. The antioxidant potential of the extracts were assessed by employing different in vitro assays such as reducing power assay, DPPH˙, ABTS˙+ and ˙OH radical scavenging capacities, antihemolytic assay by hydrogen peroxide induced method and metal chelating ability. Though all the extracts exhibited dose dependent reducing power activity, acetone extract of all the samples were found to have more hydrogen donating ability in DPPH˙ (2.3% - 65.03%) and hydroxyl radical scavenging systems (21.6% - 77.4%) than the ethanol extracts. The potential of multiple antioxidant activity was evident as it possessed antihemolytic activity (43.2 % to 68.0 %) and metal ion chelating potency (45.16 - 104.26 mg EDTA/g sample). The result indicate that acetone extract of M. oleifera (OPIF and flower) and S. grandiflora (flower and leaf) endowed with polyphenols, could be utilized as natural antioxidants/nutraceuticals.

Keywords: antioxidant activity, Moringa oleifera, polyphenolics, Sesbania grandiflora, underutilized vegetables

Procedia PDF Downloads 344
1624 Carbonation of Wollastonite (001) competing Hydration: Microscopic Insights from Ion Spectroscopy and Density Functional Theory

Authors: Peter Thissen

Abstract:

In this work, we report about the influence of the chemical potential of water on the carbonation reaction of wollastonite (CaSiO3) as model surface of cement and concrete. Total energy calculations based on density functional theory (DFT) combined with kinetic barrier predictions based on nudge elastic band (NEB) method show that the exposure of the water-free wollastonite surface to CO2 results in a barrier-less carbonation. CO2 reacts with the surface oxygen and forms carbonate (CO32-) complexes together with a major reconstruction of the surface. The reaction comes to a standstill after one carbonate monolayer has been formed. In case one water monolayer is covering the wollastonite surface, the carbonation is no more barrier-less, yet ending in a localized monolayer. Covered with multilayers of water, the thermodynamic ground state of the wollastonite completely changes due to a metal-proton exchange reaction (MPER, also called early stage hydration) and Ca2+ ions are partially removed from solid phase into the H2O/wollastonite interface. Mobile Ca2+ react again with CO2 and form carbonate complexes, ending in a delocalized layer. By means of high resolution time-of-flight secondary-ion mass-spectroscopy images (ToF-SIMS), we confirm that hydration can lead to a partially delocalization of Ca2+ ions on wollastonite surfaces. Finally, we evaluate the impact of our model surface results by means of Low Energy Ion Scattering (LEIS) spectroscopy combined with careful discussion about the competing reactions of carbonation vs. hydration.

Keywords: Calcium-silicate, carbonation, hydration, metal-proton exchange reaction

Procedia PDF Downloads 363
1623 Hybrid Recovery of Copper and Silver from Photovoltaic Ribbon and Ag finger of End-Of-Life Solar Panels

Authors: T. Patcharawit, C. Kansomket, N. Wongnaree, W. Kritsrikan, T. Yingnakorn, S. Khumkoa

Abstract:

Recovery of pure copper and silver from end-of-life photovoltaic panels was investigated in this paper using an effective hybrid pyro-hydrometallurgical process. In the first step of waste treatment, solar panel waste was first dismantled to obtain a PV sheet to be cut and calcined at 500°C, to separate out PV ribbon from glass cullet, ash, and volatile while the silicon wafer containing silver finger was collected for recovery. In the second step of metal recovery, copper recovery from photovoltaic ribbon was via 1-3 M HCl leaching with SnCl₂ and H₂O₂ additions in order to remove the tin-lead coating on the ribbon. The leached copper band was cleaned and subsequently melted as an anode for the next step of electrorefining. Stainless steel was set as the cathode with CuSO₄ as an electrolyte, and at a potential of 0.2 V, high purity copper of 99.93% was obtained at 96.11% recovery after 24 hours. For silver recovery, the silicon wafer containing silver finger was leached using HNO₃ at 1-4 M in an ultrasonic bath. In the next step of precipitation, silver chloride was then obtained and subsequently reduced by sucrose and NaOH to give silver powder prior to oxy-acetylene melting to finally obtain pure silver metal. The integrated recycling process is considered to be economical, providing effective recovery of high purity metals such as copper and silver while other materials such as aluminum, copper wire, glass cullet can also be recovered to be reused commercially. Compounds such as PbCl₂ and SnO₂ obtained can also be recovered to enter the market.

Keywords: electrorefining, leaching, calcination, PV ribbon, silver finger, solar panel

Procedia PDF Downloads 135
1622 The Influence of C Element on the Phase Transformation in Weldment of Complex Stainless Steels 2507/316/316L

Authors: Lin Dong-Yih, Yang S. M., Huang B. W., Lian J. A.

Abstract:

Super duplex stainless steel has excellent mechanical properties and corrosion resistance. It becomes important structural material as its application has been extended to the fields such as renewable energy and the chemical industry because of its excellent properties. As examples are offshore wind power, solar cell machinery, and pipes in the chemical industry. The mechanical properties and corrosion resistance of super duplex stainless steel can be eliminated by welding due to the precipitation of the hard and brittle σ phase, which is rich of chromium, and molybdenum elements. This paper studies the influence of carbon element on the phase transformation of -ferrite and σ phase in 2507 super duplex stainless steel. The 2507 will be under argon gas protection welded with 316 and 316L extra low carbon stainless steel separately. The microstructural phases of stainless steels before and after welding, in fusion, heat affected zones, and base material will be studied via X-ray, OM, SEM, EPMA i.e. their quantity, size, distribution, and morphology. The influences of diffusion by carbon element will be compared according to the microstructures, hardness, and corrosion tests.

Keywords: complex stainless steel, welding, phase formation, carbon element, sigma phase, delta ferrite

Procedia PDF Downloads 99
1621 Copper Price Prediction Model for Various Economic Situations

Authors: Haidy S. Ghali, Engy Serag, A. Samer Ezeldin

Abstract:

Copper is an essential raw material used in the construction industry. During the year 2021 and the first half of 2022, the global market suffered from a significant fluctuation in copper raw material prices due to the aftermath of both the COVID-19 pandemic and the Russia-Ukraine war, which exposed its consumers to an unexpected financial risk. Thereto, this paper aims to develop two ANN-LSTM price prediction models, using Python, that can forecast the average monthly copper prices traded in the London Metal Exchange; the first model is a multivariate model that forecasts the copper price of the next 1-month and the second is a univariate model that predicts the copper prices of the upcoming three months. Historical data of average monthly London Metal Exchange copper prices are collected from January 2009 till July 2022, and potential external factors are identified and employed in the multivariate model. These factors lie under three main categories: energy prices and economic indicators of the three major exporting countries of copper, depending on the data availability. Before developing the LSTM models, the collected external parameters are analyzed with respect to the copper prices using correlation and multicollinearity tests in R software; then, the parameters are further screened to select the parameters that influence the copper prices. Then, the two LSTM models are developed, and the dataset is divided into training, validation, and testing sets. The results show that the performance of the 3-Month prediction model is better than the 1-Month prediction model, but still, both models can act as predicting tools for diverse economic situations.

Keywords: copper prices, prediction model, neural network, time series forecasting

Procedia PDF Downloads 114