Search results for: learning strategies
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11755

Search results for: learning strategies

205 Improving Working Memory in School Children through Chess Training

Authors: Veena Easvaradoss, Ebenezer Joseph, Sumathi Chandrasekaran, Sweta Jain, Aparna Anna Mathai, Senta Christy

Abstract:

Working memory refers to a cognitive processing space where information is received, managed, transformed, and briefly stored. It is an operational process of transforming information for the execution of cognitive tasks in different and new ways. Many class room activities require children to remember information and mentally manipulate it. While the impact of chess training on intelligence and academic performance has been unequivocally established, its impact on working memory needs to be studied. This study, funded by the Cognitive Science Research Initiative, Department of Science & Technology, Government of India, analyzed the effect of one-year chess training on the working memory of children. A pretest–posttest with control group design was used, with 52 children in the experimental group and 50 children in the control group. The sample was selected from children studying in school (grades 3 to 9), which included both the genders. The experimental group underwent weekly chess training for one year, while the control group was involved in extracurricular activities. Working memory was measured by two subtests of WISC-IV INDIA. The Digit Span Subtest involves recalling a list of numbers of increasing length presented orally in forward and in reverse order, and the Letter–Number Sequencing Subtest involves rearranging jumbled alphabets and numbers presented orally following a given rule. Both tasks require the child to receive and briefly store information, manipulate it, and present it in a changed format. The Children were trained using Winning Moves curriculum, audio- visual learning method, hands-on- chess training and recording the games using score sheets, analyze their mistakes, thereby increasing their Meta-Analytical abilities. They were also trained in Opening theory, Checkmating techniques, End-game theory and Tactical principles. Pre equivalence of means was established. Analysis revealed that the experimental group had significant gains in working memory compared to the control group. The present study clearly establishes a link between chess training and working memory. The transfer of chess training to the improvement of working memory could be attributed to the fact that while playing chess, children evaluate positions, visualize new positions in their mind, analyze the pros and cons of each move, and choose moves based on the information stored in their mind. If working-memory’s capacity could be expanded or made to function more efficiently, it could result in the improvement of executive functions as well as the scholastic performance of the child.

Keywords: chess training, cognitive development, executive functions, school children, working memory

Procedia PDF Downloads 260
204 A Case Report on the Course and Outcome of a Patient Diagnosed with Trichotillomania and Major Depressive Disorder

Authors: Ziara Carmelli G. Tan, Irene Carmelle S. Tan

Abstract:

Background: Trichotillomania (TTM) and Major Depressive Disorder (MDD) are two psychiatric conditions that frequently co-occur, presenting a significant challenge for treatment due to their complex interplay. TTM involves repetitive hair-pulling, leading to noticeable hair loss and distress, while MDD is characterized by persistent low mood and loss of interest or pleasure, leading to dysfunctionality. This case report examines the intricate relationship between TTM and MDD in a young adult female, emphasizing the need for a comprehensive, multifaceted therapeutic approach to address both disorders effectively. Case Presentation: The patient is a 21-year-old female college student and youth church leader who presented with chronic hair-pulling and depressive symptoms. Her premorbid personality was marked by low self-esteem and a strong need for external validation. Despite her academic and social responsibilities and achievements, she struggled with managing her emotional distress, which was exacerbated by her family dynamics and her role within her church community. Her hair-pulling and mood symptoms were particularly triggered by self-esteem threats and feelings of inadequacy. She was diagnosed with Trichotillomania, Scalp and Major Depressive Disorder. Intervention/Management: The patient’s treatment plan was comprehensive, incorporating both pharmacological and non-pharmacological interventions. Initial pharmacologic management was Fluoxetine 20mg/day up, titrated to 40mg/day with no improvement; hence, shifted to Escitalopram 20mg/day and started with N-acetylcysteine 600mg/day with noted significant improvement in symptoms. Psychotherapeutic strategies played a crucial role in her treatment. These included supportive-expressive psychodynamic psychotherapy, which helped her explore and understand underlying emotional conflicts. Cognitive-behavioral techniques were employed to modify her maladaptive thoughts and behaviors. Grief processing was integrated to help her cope with significant losses. Family therapy was done to address conflicts and collaborate with the treatment process. Psychoeducation was provided to enhance her understanding of her condition and to empower her in her treatment journey. A suicide safety plan was developed to ensure her safety during critical periods. An interprofessional approach, which involved coordination with the Dermatology service for co-management, was also a key component of her treatment. Outcome: Over the course of 15 therapy sessions, the patient demonstrated significant improvement in both her depressive symptoms and hair-pulling behavior. Her active engagement in therapy, combined with pharmacological support, facilitated better emotional regulation and a more cohesive sense of self. Her adherence to the treatment plan, along with the collaborative efforts of the interprofessional team, contributed to her positive outcomes. Discussion: This case underscores the significance of addressing both TTM and its comorbid conditions to achieve effective treatment outcomes. The intricate interplay between TTM and MDD in the patient’s case highlights the importance of a comprehensive treatment plan that includes both pharmacological and psychotherapeutic approaches. Supportive-expressive psychodynamic psychotherapy, Cognitive-behavioral techniques, and Family therapy were particularly beneficial in addressing the complex emotional and behavioral aspects of her condition. The involvement of an interprofessional team, including dermatology co-management, was crucial in providing holistic care. Future practice should consider the benefits of such a multidisciplinary approach to managing complex cases like this, ensuring that both the psychological and physiological aspects of the disorders are adequately addressed.

Keywords: cognitive-behavioral therapy, interprofessional approach, major depressive disorder, psychodynamic psychotherapy, trichotillomania

Procedia PDF Downloads 30
203 Towards Bridging the Gap between the ESP Classroom and the Workplace: Content and Language Needs Analysis in English for an Administrative Studies Course

Authors: Vesna Vulić

Abstract:

Croatia has made large steps forward in the development of higher education over the past 10 years. Purposes and objectives of the tertiary education system are focused on the personal development of young people so that they obtain competences for employment on a flexible labour market. The most frequent tensions between the tertiary institutions and employers are complaints that the current tertiary education system still supplies students with an abundance of theoretical knowledge and not enough practical skills. Polytechnics and schools of professional higher education should deliver professional education and training that will satisfy the needs of their local communities. The 21st century sets demand on undergraduates as well as their lecturers to strive for the highest standards. The skills students acquire during their studies should serve the needs of their future professional careers. In this context, teaching English for Specific Purposes (ESP) presents an enormous challenge for teachers. They have to cope with teaching the language in classes with a large number of students, limitations of time, inadequate equipment and teaching material; most frequently, this leads to focusing on specialist vocabulary neglecting the development of skills and competences required for future employment. Globalization has transformed the labour market and set new standards a perspective employee should meet. When knowledge of languages is considered, new generic skills and competences are required. Not only skillful written and oral communication is needed, but also information, media, and technology literacy, learning skills which include critical and creative thinking, collaborating and communicating, as well as social skills. The aim of this paper is to evaluate the needs of two groups of ESP first year Undergraduate Professional Administrative Study students taking ESP as a mandatory course: 47 first-year Undergraduate Professional Administrative Study students, 21 first-year employed part-time Undergraduate Professional Administrative Study students and 30 graduates with a degree in Undergraduate Professional Administrative Study with various amounts of work experience. The survey adopted a quantitative approach with the aim to determine the differences between the groups in their perception of the four language skills and different areas of law, as well as getting the insight into students' satisfaction with the current course and their motivation for studying ESP. Their perceptions will be compared to the results of the questionnaire conducted among sector professionals in order to examine how they perceive the same elements of the ESP course content and to what extent it fits into their working environment. The results of the survey indicated that there is a strong correlation between acquiring work experience and the level of importance given to particular areas of law studied in an ESP course which is in line with our initial hypothesis. In conclusion, the results of the survey should help lecturers in re-evaluating and updating their ESP course syllabi.

Keywords: English for Specific Purposes (ESP), language skills, motivation, needs analysis

Procedia PDF Downloads 300
202 “Divorced Women are Like Second-Hand Clothes” - Hate Language in Media Discourse (Using the Example of Electronic Media Platforms)

Authors: Sopio Totibadze

Abstract:

Although the legal framework of Georgia reflects the main principles of gender equality and is in line with the international situation (UNDP, 2018), Georgia remains a male-dominated society. This means that men prevail in many areas of social, economic, and political life, which frequently gives women a subordinate status in society and the family (UN women). According to the latest study, “violence against women and girls in Georgia is also recognized as a public problem, and it is necessary to focus on it” (UN women). Moreover, the Public Defender's report on the protection of human rights in Georgia (2019) reveals that “in the last five years, 151 women were killed in Georgia due to gender and family violence”. Sadly, these statistics have increased significantly since that time. The issue was acutely reflected in the document published by the Organization for Security and Cooperation in Europe, “Gender Hate Crime” (March 10, 2021). “Unfortunately, the rates of femicide ..... are still high in the country, and distrust of law enforcement agencies often makes such cases invisible, which requires special attention from the state.” More precisely, the cited document considers that there are frequent cases of crimes based on gender-based oppression in Georgia, which pose a threat not only to women but also to people of any gender whose desires and aspirations do not correspond to the gender norms and roles prevailing in society. According to the study, this type of crime has a “significant and lasting impact on the victim(s) and also undermines the safety and cohesion of society and gender equality”. It is well-known that language is often used as a tool for gender oppression (Rusieshvili-Cartledge and Dolidze, 2021; Totibadze, 2021). Therefore, feminist and gender studies in linguistics ultimately serve to represent the problem, reflect on it, and propose ways to solve it. Together with technical advancement in communication, a new form of discrimination has arisen- hate language against women in electronic media discourse. Due to the nature of social media and the internet, messages containing hate language can spread in seconds and reach millions of people. However, only a few know about the detrimental effects they may have on the addressee and society. This paper aims to analyse the hateful comments directed at women on various media platforms to determine (1) the linguistic strategies used while attacking women and (2) the reasons why women may fall victim to this type of hate language. The data have been collected over six months, and overall, 500 comments will be examined for the paper. Qualitative and quantitative analysis was chosen for the methodology of the study. The comments posted on various media platforms, including social media posts, articles, or pictures, have been selected manually due to several reasons, the most important being the problem of identifying hate speech as it can disguise itself in different ways- humour, memes, etc. The comments on the articles, posts, pictures, and videos selected for sociolinguistic analysis depict a woman, a taboo topic, or a scandalous event centred on a woman that triggered a lot of hatred and hate language towards the person to whom the post/article was dedicated. The study has revealed that a woman can become a victim of hatred directed at them if they do something considered to be a deviation from a societal norm, namely, get a divorce, be sexually active, be vocal about feministic values, and talk about taboos. Interestingly, people who utilize hate language are not only men trying to “normalize” the prejudiced patriarchal values but also women who are equally active in bringing down a "strong" woman. The paper also aims to raise awareness about the hate language directed at women, as being knowledgeable about the issue at hand is the first step to tackling it.

Keywords: femicide, hate language, media discourse, sociolinguistics

Procedia PDF Downloads 82
201 Improving Patient Outcomes for Aspiration Pneumonia

Authors: Mary Farrell, Maria Soubra, Sandra Vega, Dorothy Kakraba, Joanne Fontanilla, Moira Kendra, Danielle Tonzola, Stephanie Chiu

Abstract:

Pneumonia is the most common infectious cause of hospitalizations in the United States, with more than one million admissions annually and costs of $10 billion every year, making it the 8th leading cause of death. Aspiration pneumonia is an aggressive type of pneumonia that results from inhalation of oropharyngeal secretions and/or gastric contents and is preventable. The authors hypothesized that an evidence-based aspiration pneumonia clinical care pathway could reduce 30-day hospital readmissions and mortality rates, while improving the overall care of patients. We conducted a retrospective chart review on 979 patients discharged with aspiration pneumonia from January 2021 to December 2022 at Overlook Medical Center. The authors identified patients who were coded with aspiration pneumonia and/or stable sepsis. Secondarily, we identified 30-day readmission rates for aspiration pneumonia from a SNF. The Aspiration Pneumonia Clinical Care Pathway starts in the emergency department (ED) with the initiation of antimicrobials within 4 hours of admission and early recognition of aspiration. Once this is identified, a swallow test is initiated by the bedside nurse, and if the patient demonstrates dysphagia, they are maintained on strict nothing by mouth (NPO) followed by a speech and language pathologist (SLP) referral for an appropriate modified diet recommendation. Aspiration prevention techniques included the avoidance of straws, 45-degree positioning, no talking during meals, taking small bites, placement of the aspiration wrist band, and consuming meals out of the bed in a chair. Nursing education was conducted with a newly created online learning module about aspiration pneumonia. The authors identified 979 patients, with an average age of 73.5 years old, who were diagnosed with aspiration pneumonia on the index hospitalization. These patients were reviewed for a 30-day readmission for aspiration pneumonia or stable sepsis, and mortality rates from January 2021 to December 2022 at Overlook Medical Center (OMC). The 30-day readmission rates were significantly lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011). When evaluating the mortality rates in the pre and post intervention cohort the authors discovered the mortality rates were lower in the post intervention cohort (23.7% vs 22.4%, p = 0.61) Mortality among non-white (self-reported as non-white) patients were lower in the post intervention cohort (34.4% vs. 21.0% , p = 0.05). Patients who reported as a current smoker/vaper in the pre and post cohorts had increased mortality rates (5.9% vs 22%). There was a decrease in mortality for the male population but an increase in mortality for women in the pre and post cohorts (19% vs. 25%). The authors attributed this increase in mortality in the post intervention cohort to more active smokers, more former smokers, and more being admitted from a SNF. This research identified that implementation of an Aspiration Pneumonia Clinical Care Pathway showed a statistically significant decrease in readmission rates and mortality rates in non-whites. The 30-day readmission rates were lower in the cohort that received the clinical care pathway (35.0% vs. 27.5%, p = 0.011).

Keywords: aspiration pneumonia, mortality, quality improvement, 30-day pneumonia readmissions

Procedia PDF Downloads 62
200 What Is At Stake When Developing and Using a Rubric to Judge Chemistry Honours Dissertations for Entry into a PhD?

Authors: Moira Cordiner

Abstract:

As a result of an Australian university approving a policy to improve the quality of assessment practices, as an academic developer (AD) with expertise in criterion-referenced assessment commenced in 2008. The four-year appointment was to support 40 'champions' in their Schools. This presentation is based on the experiences of a group of Chemistry academics who worked with the AD to develop and implement an honours dissertation rubric. Honours is a research year following a three-year undergraduate year. If the standard of the student's work is high enough (mainly the dissertation) then the student can commence a PhD. What became clear during the process was that much more was at stake than just the successful development and trial of the rubric, including academics' reputations, university rankings and research outputs. Working with the champion-Head of School(HOS) and the honours coordinator, the AD helped them adapt an honours rubric that she had helped create and trial successfully for another Science discipline. A year of many meetings and complex power plays between the two academics finally resulted in a version that was critiqued by the Chemistry teaching and learning committee. Accompanying the rubric was an explanation of grading rules plus a list of supervisor expectations to explain to students how the rubric was used for grading. Further refinements were made until all staff were satisfied. It was trialled successfully in 2011, then small changes made. It was adapted and implemented for Medicine honours with her help in 2012. Despite coming to consensus about statements of quality in the rubric, a few academics found it challenging matching these to the dissertations and allocating a grade. They had had no time to undertake training to do this, or make overt their implicit criteria and standards, which some admitted they were using - 'I know what a first class is'. Other factors affecting grading included: the small School where all supervisors knew each other and the students, meant that friendships and collegiality were at stake if low grades were given; no external examiners were appointed-all were internal with the potential for bias; supervisors’ reputations were at stake if their students did not receive a good grade; the School's reputation was also at risk if insufficient honours students qualified for PhD entry; and research output was jeopardised without enough honours students to work on supervisors’ projects. A further complication during the study was a restructure of the university and retrenchments, with pressure to increase research output as world rankings assumed greater importance to senior management. In conclusion, much more was at stake than developing a usable rubric. The HOS had to be seen to champion the 'new' assessment practice while balancing institutional demands for increased research output and ensuring as many honours dissertations as possible met high standards, so that eventually the percentage of PhD completions and research output rose. It is therefore in the institution's best interest for this cycle to be maintained as it affects rankings and reputations. In this context, are rubrics redundant?

Keywords: explicit and implicit standards, judging quality, university rankings, research reputations

Procedia PDF Downloads 335
199 Training for Safe Tree Felling in the Forest with Symmetrical Collaborative Virtual Reality

Authors: Irene Capecchi, Tommaso Borghini, Iacopo Bernetti

Abstract:

One of the most common pieces of equipment still used today for pruning, felling, and processing trees is the chainsaw in forestry. However, chainsaw use highlights dangers and one of the highest rates of accidents in both professional and non-professional work. Felling is proportionally the most dangerous phase, both in severity and frequency, because of the risk of being hit by the plant the operator wants to cut down. To avoid this, a correct sequence of chainsaw cuts must be taught concerning the different conditions of the tree. Virtual reality (VR) makes it possible to virtually simulate chainsaw use without danger of injury. The limitations of the existing applications are as follow. The existing platforms are not symmetrical collaborative because the trainee is only in virtual reality, and the trainer can only see the virtual environment on a laptop or PC, and this results in an inefficient teacher-learner relationship. Therefore, most applications only involve the use of a virtual chainsaw, and the trainee thus cannot feel the real weight and inertia of a real chainsaw. Finally, existing applications simulate only a few cases of tree felling. The objectives of this research were to implement and test a symmetrical collaborative training application based on VR and mixed reality (MR) with the overlap between real and virtual chainsaws in MR. The research and training platform was developed for the Meta quest 2 head-mounted display. The research and training platform application is based on the Unity 3D engine, and Present Platform Interaction SDK (PPI-SDK) developed by Meta. PPI-SDK avoids the use of controllers and enables hand tracking and MR. With the combination of these two technologies, it was possible to overlay a virtual chainsaw with a real chainsaw in MR and synchronize their movements in VR. This ensures that the user feels the weight of the actual chainsaw, tightens the muscles, and performs the appropriate movements during the test allowing the user to learn the correct body posture. The chainsaw works only if the right sequence of cuts is made to felling the tree. Contact detection is done by Unity's physics system, which allows the interaction of objects that simulate real-world behavior. Each cut of the chainsaw is defined by a so-called collider, and the felling of the tree can only occur if the colliders are activated in the right order simulating a safe technique felling. In this way, the user can learn how to use the chainsaw safely. The system is also multiplayer, so the student and the instructor can experience VR together in a symmetrical and collaborative way. The platform simulates the following tree-felling situations with safe techniques: cutting the tree tilted forward, cutting the medium-sized tree tilted backward, cutting the large tree tilted backward, sectioning the trunk on the ground, and cutting branches. The application is being evaluated on a sample of university students through a special questionnaire. The results are expected to test both the increase in learning compared to a theoretical lecture and the immersive and telepresence of the platform.

Keywords: chainsaw, collaborative symmetric virtual reality, mixed reality, operator training

Procedia PDF Downloads 105
198 A Top-down vs a Bottom-up Approach on Lower Extremity Motor Recovery and Balance Following Acute Stroke: A Randomized Clinical Trial

Authors: Vijaya Kumar, Vidayasagar Pagilla, Abraham Joshua, Rakshith Kedambadi, Prasanna Mithra

Abstract:

Background: Post stroke rehabilitation are aimed to accelerate for optimal sensorimotor recovery, functional gain and to reduce long-term dependency. Intensive physical therapy interventions can enhance this recovery as experience-dependent neural plastic changes either directly act at cortical neural networks or at distal peripheral level (muscular components). Neuromuscular Electrical Stimulation (NMES), a traditional bottom-up approach, mirror therapy (MT), a relatively new top down approach have found to be an effective adjuvant treatment methods for lower extremity motor and functional recovery in stroke rehabilitation. However there is a scarcity of evidence to compare their therapeutic gain in stroke recovery.Aim: To compare the efficacy of neuromuscular electrical stimulation (NMES) and mirror therapy (MT) in very early phase of post stroke rehabilitation addressed to lower extremity motor recovery and balance. Design: observer blinded Randomized Clinical Trial. Setting: Neurorehabilitation Unit, Department of Physical Therapy, Tertiary Care Hospitals. Subjects: 32 acute stroke subjects with first episode of unilateral stroke with hemiparesis, referred for rehabilitation (onset < 3 weeks), Brunnstorm lower extremity recovery stages ≥3 and MMSE score more than 24 were randomized into two group [Group A-NMES and Group B-MT]. Interventions: Both the groups received eclectic approach to remediate lower extremity recovery which includes treatment components of Roods, Bobath and Motor learning approaches for 30 minutes a day for 6 days. Following which Group A (N=16) received 30 minutes of surface NMES training for six major paretic muscle groups (gluteus maximus and medius,quadriceps, hamstrings, tibialis anterior and gastrocnemius). Group B (N=16) was administered with 30 minutes of mirror therapy sessions to facilitate lower extremity motor recovery. Outcome measures: Lower extremity motor recovery, balance and activities of daily life (ADLs) were measured by Fugyl Meyer Assessment (FMA-LE), Berg Balance Scale (BBS), Barthel Index (BI) before and after intervention. Results: Pre Post analysis of either group across the time revealed statistically significant improvement (p < 0.001) for all the outcome variables for the either group. All parameters of NMES had greater change scores compared to MT group as follows: FMA-LE (25.12±3.01 vs. 23.31±2.38), BBS (35.12±4.61 vs. 34.68±5.42) and BI (40.00±10.32 vs. 37.18±7.73). Between the groups comparison of pre post values showed no significance with FMA-LE (p=0.09), BBS (p=0.80) and BI (p=0.39) respectively. Conclusion: Though either groups had significant improvement (pre to post intervention), none of them were superior to other in lower extremity motor recovery and balance among acute stroke subjects. We conclude that eclectic approach is an effective treatment irrespective of NMES or MT as an adjunct.

Keywords: balance, motor recovery, mirror therapy, neuromuscular electrical stimulation, stroke

Procedia PDF Downloads 281
197 Exploiting Charges on Medicinal Synthetic Aluminum Magnesium Silicate's {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃} Nanoparticles in Treating Viral Diseases, Tumors, Antimicrobial Resistant Infections

Authors: M. C. O. Ezeibe, F. I. O. Ezeibe

Abstract:

Reasons viral diseases (including AI, HIV/AIDS, and COVID-19), tumors (including Cancers and Prostrate enlargement), and antimicrobial-resistant infections (AMR) are difficult to cure are features of the pathogens which normal cells do not have or need (biomedical markers) have not been identified; medicines that can counter the markers have not been invented; strategies and mechanisms for their treatments have not been developed. When cells become abnormal, they acquire negative electrical charges, and viruses are either positively charged or negatively charged, while normal cells remain neutral (without electrical charges). So, opposite charges' electrostatic attraction is a treatment mechanism for viral diseases and tumors. Medicines that have positive electrical charges would mop abnormal (infected and tumor) cells and DNA viruses (negatively charged), while negatively charged medicines would mop RNA viruses (positively charged). Molecules of Aluminum-magnesium silicate [AMS: Al₂Mg₃ (SiO₄)₃], an approved medicine and pharmaceutical stabilizing agent, consist of nanoparticles which have both positive electrically charged ends and negative electrically charged ends. The very small size (0.96 nm) of the nanoparticles allows them to reach all cells in every organ. By stabilizing antimicrobials, AMS reduces the rate at which the body metabolizes them so that they remain at high concentrations for extended periods. When drugs remain at high concentrations for longer periods, their efficacies improve. Again, nanoparticles enhance the delivery of medicines to effect targets. Both remaining at high concentrations for longer periods and better delivery to effect targets improve efficacy and make lower doses achieve desired effects so that side effects of medicines are reduced to allow the immunity of patients to be enhanced. Silicates also enhance the immune responses of treated patients. Improving antimicrobial efficacies and enhancing patients` immunity terminate infections so that none remains that could develop resistance. Some countries do not have natural deposits of AMS, but they may have Aluminum silicate (AS: Al₄ (SiO₄)₃) and Magnesium silicate (MS: Mg₂SiO₄), which are also approved medicines. So, AS and MS were used to formulate an AMS-brand, named Medicinal synthetic AMS {Al₄ (SiO₄)₃ + 3Mg₂SiO₄ → 2Al₂Mg₃ (SiO₄)₃}. To overcome the challenge of AMS, AS, and MS being un-absorbable, Dextrose monohydrate is incorporated in MSAMS-formulations for the simple sugar to convey the electrically charged nanoparticles into blood circulation by the principle of active transport so that MSAMS-antimicrobial formulations function systemically. In vitro, MSAMS reduced (P≤0.05) titers of viruses, including Avian influenza virus and HIV. When used to treat virus-infected animals, it cured Newcastle disease and Infectious bursa disease of chickens, Parvovirus disease of dogs, and Peste des petits ruminants disease of sheep and goats. A number of HIV/AIDS patients treated with it have been reported to become HIV-negative (antibody and antigen). COVID-19 patients are also reported to recover and test virus negative when treated with MSAMS. PSA titers of prostate cancer/enlargement patients normalize (≤4) following treatment with MSAMS. MSAMS has also potentiated ampicillin trihydrate, sulfadimidin, cotrimoxazole, piparazine citrate and chloroquine phosphate to achieve ≥ 95 % infection-load reductions (AMR-prevention). At 75 % of doses of ampicillin, cotrimoxazole, and streptomycin, supporting MSAMS-formulations' treatments with antioxidants led to the termination of even already resistant infections.

Keywords: electrical charges, viruses, abnormal cells, aluminum-magnesium silicate

Procedia PDF Downloads 62
196 The Effectiveness of Therapeutic Exercise on Motor Skills and Attention of Male Students with Autism Spectrum Disorder

Authors: Masoume Pourmohamadreza-Tajrishi, Parviz Azadfallah

Abstract:

Autism spectrum disorders (ASD) involve myriad aberrant perceptual, cognitive, linguistic, and social behaviors. The term spectrum emphasizes that the disabilities associated with ASD fall on a continuum from relatively mild to severe. People with ASD may display stereotyped behaviors such as twirling, spinning objects, flapping the hands, and rocking. The individuals with ASD exhibit communication problems due to repetitive/restricted behaviors. Children with ASD who lack the motivation to learn, who do not enjoy physical challenges, or whose sensory perception results in confusing or unpleasant feedback from movement may not become sufficiently motivated to practice motor activities. As a result, they may show both a delay in developing certain motor skills. Additionally, attention is an important component of learning. As far as children with ASD have problems in joint attention, many education-based programs are needed to consider some aspects of attention and motor activities development for students with ASD. These programs focus on the basic movement skills that are crucial for the future development of the more complex skills needed in games, dance, sports, gymnastics, active play, and recreational physical activities. The purpose of the present research was to determine the effectiveness of therapeutic exercise on motor skills and attention of male students with ASD. This was an experimental study with a control group. The population consisted of 8-10 year-old male students with ASD and 30 subjects were selected randomly from an available center suitable for the children with ASD. They were evaluated by the Basic Motor Ability Test (BMAT) and Persian version of computerized Stroop color-word test and randomly assigned to an experimental and control group (15 students in per group). The experimental group participated in 16 therapeutic exercise sessions and received therapeutic exercise program (twice a week; each lasting for 45 minutes) designed based on the Spark motor program while the control group did not. All subjects were evaluated by BMAT and Stroop color-word test after the last session again. The collected data were analyzed by using multivariate analysis of covariance (MANCOVA). The results of MANCOVA showed that experimental and control groups had a significant difference in motor skills and at least one of the components of attention (correct responses, incorrect responses, no responses, the reaction time of congruent words and reaction time of incongruent words in the Stroop test). The findings showed that the therapeutic exercise had a significant effect on motor skills and all components of attention in students with ASD. We can conclude that the therapeutic exercise led to promote the motor skills and attention of students with ASD, so it is necessary to design or plan such programs for ASD students to prevent their communication or academic problems.

Keywords: Attention, autism spectrum disorder, motor skills, therapeutic exercise

Procedia PDF Downloads 130
195 Parents as a Determinant for Students' Attitudes and Intentions toward Higher Education

Authors: Anna Öqvist, Malin Malmström

Abstract:

Attaining a higher level of education has become an increasingly important prerequisite for people’s economic and social independence and mobility. Young people who do not pursue higher education are not as attractive as potential employees in the modern work environment. Although completing a higher education degree is not a guarantee for getting a job, it substantially increases the chances for employment and, consequently, the chances for a better life. Despite this, it’s a fact that in several regions in Sweden, fewer students are choosing to engage in higher education. Similar trends have been emphasized in, for instance, the US where high dropout patterns among young people have been noted. This is a threat to future employment and industry development in these regions because the future employment base for society is dependent upon students’ willingness to invest in higher education. Much of prior studies have focused on the role of parents’ involvement in their children’s’ school work and the positive influence parents involvement have on their children’s school performance. Parental influence on education in general has been a topic of interest among those concerned with optimal developmental and educational outcomes for children and youth in pre-, secondary- and high school. Across a range of studies, there has emerged a strong conclusion that parental influence on child and youths education generally benefits children's and youths learning and school success. Arguably then, we could expect that parents influence on whether or not to pursue a higher education would be of importance to understand young people’s choice to engage in higher education. Accordingly, understanding what drives students’ intentions to pursue higher education is an essential component of motivating students to aspire to make the most of their potential in their future work life. Drawing on the theory of planned behavior, this study examines the role of parents influence on students’ attitudes about whether higher education can be beneficial to their future work life. We used a qualitative approach by collecting interview data from 18 high school students in Sweden to capture students’ cognitive and motivational mechanisms (attitudes) to influence intentions to engage in higher education. We found that parents may positively or negatively influence students’ attitudes and subsequently a student's intention to pursue higher education. Accordingly, our results show that parents’ own attitudes and expectations on their children are keys for influencing students’ attitudes and intentions for higher education. Further, our finding illuminates the mechanisms that drive students in one direction or the other. As such, our findings show that the same categories of arguments are used for driving students’ attitudes and intentions in two opposite directions, namely; financial arguments and work life benefits arguments. Our results contribute to existing literature by showing that parents do affect young people’s intentions to engage in higher studies. The findings contribute to the theory of planned behavior and have implications for the literature on higher education and educational psychology and also provide guidance on how to inform students about facts of higher studies in school.

Keywords: higher studies, intentions, parents influence, theory of planned behavior

Procedia PDF Downloads 256
194 Exploring Nature and Pattern of Mentoring Practices: A Study on Mentees' Perspectives

Authors: Nahid Parween Anwar, Sadia Muzaffar Bhutta, Takbir Ali

Abstract:

Mentoring is a structured activity which is designed to facilitate engagement between mentor and mentee to enhance mentee’s professional capability as an effective teacher. Both mentor and mentee are important elements of the ‘mentoring equation’ and play important roles in nourishing this dynamic, collaborative and reciprocal relationship. Cluster-Based Mentoring Programme (CBMP) provides an indigenous example of a project which focused on development of primary school teachers in selected clusters with a particular focus on their classroom practice. A study was designed to examine the efficacy of CBMP as part of Strengthening Teacher Education in Pakistan (STEP) project. This paper presents results of one of the components of this study. As part of the larger study, a cross-sectional survey was employed to explore nature and patterns of mentoring process from mentees’ perspectives in the selected districts of Sindh and Balochistan. This paper focuses on the results of the study related to the question: What are mentees’ perceptions of their mentors’ support for enhancing their classroom practice during mentoring process? Data were collected from mentees (n=1148) using a 5-point scale -‘Mentoring for Effective Primary Teaching’ (MEPT). MEPT focuses on seven factors of mentoring: personal attributes, pedagogical knowledge, modelling, feedback, system requirement, development and use of material, and gender equality. Data were analysed using SPSS 20. Mentees perceptions of mentoring practice of their mentors were summarized using mean and standard deviation. Results showed that mean scale scores on mentees’ perceptions of their mentors’ practices fell between 3.58 (system requirement) and 4.55 (personal attributes). Mentees’ perceives personal attribute of the mentor as the most significant factor (M=4.55) towards streamlining mentoring process by building good relationship between mentor and mentees. Furthermore, mentees have shared positive views about their mentors efforts towards promoting gender impartiality (M=4.54) during workshop and follow up visit. Contrary to this, mentees felt that more could have been done by their mentors in sharing knowledge about system requirement (e.g. school policies, national curriculum). Furthermore, some of the aspects in high scoring factors were highlighted by the mentees as areas for further improvement (e.g. assistance in timetabling, written feedback, encouragement to develop learning corners). Mentees’ perceptions of their mentors’ practices may assist in determining mentoring needs. The results may prove useful for the professional development programme for the mentors and mentees for specific mentoring programme in order to enhance practices in primary classrooms in Pakistan. Results would contribute into the body of much-needed knowledge from developing context.

Keywords: cluster-based mentoring programme, mentoring for effective primary teaching (MEPT), professional development, survey

Procedia PDF Downloads 232
193 Sensor and Sensor System Design, Selection and Data Fusion Using Non-Deterministic Multi-Attribute Tradespace Exploration

Authors: Matthew Yeager, Christopher Willy, John Bischoff

Abstract:

The conceptualization and design phases of a system lifecycle consume a significant amount of the lifecycle budget in the form of direct tasking and capital, as well as the implicit costs associated with unforeseeable design errors that are only realized during downstream phases. Ad hoc or iterative approaches to generating system requirements oftentimes fail to consider the full array of feasible systems or product designs for a variety of reasons, including, but not limited to: initial conceptualization that oftentimes incorporates a priori or legacy features; the inability to capture, communicate and accommodate stakeholder preferences; inadequate technical designs and/or feasibility studies; and locally-, but not globally-, optimized subsystems and components. These design pitfalls can beget unanticipated developmental or system alterations with added costs, risks and support activities, heightening the risk for suboptimal system performance, premature obsolescence or forgone development. Supported by rapid advances in learning algorithms and hardware technology, sensors and sensor systems have become commonplace in both commercial and industrial products. The evolving array of hardware components (i.e. sensors, CPUs, modular / auxiliary access, etc…) as well as recognition, data fusion and communication protocols have all become increasingly complex and critical for design engineers during both concpetualization and implementation. This work seeks to develop and utilize a non-deterministic approach for sensor system design within the multi-attribute tradespace exploration (MATE) paradigm, a technique that incorporates decision theory into model-based techniques in order to explore complex design environments and discover better system designs. Developed to address the inherent design constraints in complex aerospace systems, MATE techniques enable project engineers to examine all viable system designs, assess attribute utility and system performance, and better align with stakeholder requirements. Whereas such previous work has been focused on aerospace systems and conducted in a deterministic fashion, this study addresses a wider array of system design elements by incorporating both traditional tradespace elements (e.g. hardware components) as well as popular multi-sensor data fusion models and techniques. Furthermore, statistical performance features to this model-based MATE approach will enable non-deterministic techniques for various commercial systems that range in application, complexity and system behavior, demonstrating a significant utility within the realm of formal systems decision-making.

Keywords: multi-attribute tradespace exploration, data fusion, sensors, systems engineering, system design

Procedia PDF Downloads 183
192 Constructing and Circulating Knowledge in Continuous Education: A Study of Norwegian Educational-Psychological Counsellors' Reflection Logs in Post-Graduate Education

Authors: Moen Torill, Rismark Marit, Astrid M. Solvberg

Abstract:

In Norway, every municipality shall provide an educational psychological service, EPS, to support kindergartens and schools in their work with children and youths with special needs. The EPS focus its work on individuals, aiming to identify special needs and to give advice to teachers and parents when they ask for it. In addition, the service also give priority to prevention and system intervention in kindergartens and schools. To master these big tasks university courses are established to support EPS counsellors' continuous learning. There is, however, a need for more in-depth and systematic knowledge on how they experience the courses they attend. In this study, EPS counsellors’ reflection logs during a particular course are investigated. The research question is: what are the content and priorities of the reflections that are communicated in the logs produced by the educational psychological counsellors during a post-graduate course? The investigated course is a credit course organized over a one-year period in two one-semester modules. The altogether 55 students enrolled in the course work as EPS counsellors in various municipalities across Norway. At the end of each day throughout the course period, the participants wrote reflection logs about what they had experienced during the day. The data material consists of 165 pages of typed text. The collaborating researchers studied the data material to ascertain, differentiate and understand the meaning of the content in each log. The analysis also involved the search for similarity in content and development of analytical categories that described the focus and primary concerns in each of the written logs. This involved constant 'critical and sustained discussions' for mutual construction of meaning between the co-researchers in the developing categories. The process is inspired by Grounded Theory. This means that the concepts developed during the analysis derived from the data material and not chosen prior to the investigation. The analysis revealed that the concept 'Useful' frequently appeared in the participants’ reflections and, as such, 'Useful' serves as a core category. The core category is described through three major categories: (1) knowledge sharing (concerning direct and indirect work with students with special needs) with colleagues is useful, (2) reflections on models and theoretical concepts (concerning students with special needs) are useful, (3) reflection on the role as EPS counsellor is useful. In all the categories, the notion of useful occurs in the participants’ emphasis on and acknowledgement of the immediate and direct link between the university course content and their daily work practice. Even if each category has an importance and value of its own, it is crucial that they are understood in connection with one another and as interwoven. It is the connectedness that gives the core category an overarching explanatory power. The knowledge from this study may be a relevant contribution when it comes to designing new courses that support continuing professional development for EPS counsellors, whether for post-graduate university courses or local courses at the EPS offices or whether in Norway or other countries in the world.

Keywords: constructing and circulating knowledge, educational-psychological counsellor, higher education, professional development

Procedia PDF Downloads 115
191 Contextual Toxicity Detection with Data Augmentation

Authors: Julia Ive, Lucia Specia

Abstract:

Understanding and detecting toxicity is an important problem to support safer human interactions online. Our work focuses on the important problem of contextual toxicity detection, where automated classifiers are tasked with determining whether a short textual segment (usually a sentence) is toxic within its conversational context. We use “toxicity” as an umbrella term to denote a number of variants commonly named in the literature, including hate, abuse, offence, among others. Detecting toxicity in context is a non-trivial problem and has been addressed by very few previous studies. These previous studies have analysed the influence of conversational context in human perception of toxicity in controlled experiments and concluded that humans rarely change their judgements in the presence of context. They have also evaluated contextual detection models based on state-of-the-art Deep Learning and Natural Language Processing (NLP) techniques. Counterintuitively, they reached the general conclusion that computational models tend to suffer performance degradation in the presence of context. We challenge these empirical observations by devising better contextual predictive models that also rely on NLP data augmentation techniques to create larger and better data. In our study, we start by further analysing the human perception of toxicity in conversational data (i.e., tweets), in the absence versus presence of context, in this case, previous tweets in the same conversational thread. We observed that the conclusions of previous work on human perception are mainly due to data issues: The contextual data available does not provide sufficient evidence that context is indeed important (even for humans). The data problem is common in current toxicity datasets: cases labelled as toxic are either obviously toxic (i.e., overt toxicity with swear, racist, etc. words), and thus context does is not needed for a decision, or are ambiguous, vague or unclear even in the presence of context; in addition, the data contains labeling inconsistencies. To address this problem, we propose to automatically generate contextual samples where toxicity is not obvious (i.e., covert cases) without context or where different contexts can lead to different toxicity judgements for the same tweet. We generate toxic and non-toxic utterances conditioned on the context or on target tweets using a range of techniques for controlled text generation(e.g., Generative Adversarial Networks and steering techniques). On the contextual detection models, we posit that their poor performance is due to limitations on both of the data they are trained on (same problems stated above) and the architectures they use, which are not able to leverage context in effective ways. To improve on that, we propose text classification architectures that take the hierarchy of conversational utterances into account. In experiments benchmarking ours against previous models on existing and automatically generated data, we show that both data and architectural choices are very important. Our model achieves substantial performance improvements as compared to the baselines that are non-contextual or contextual but agnostic of the conversation structure.

Keywords: contextual toxicity detection, data augmentation, hierarchical text classification models, natural language processing

Procedia PDF Downloads 169
190 Teachers' and Learners' Experiences of Learners' Writing in English First Additional Language

Authors: Jane-Francis A. Abongdia, Thandiswa Mpiti

Abstract:

There is an international concern to develop children’s literacy skills. In many parts of the world, the need to become fluent in a second language is essential for gaining meaningful access to education, the labour market and broader social functioning. In spite of these efforts, the problem still continues. The level of English language proficiency is far from satisfactory and these goals are unattainable by others. The issue is more complex in South Africa as learners are immersed in a second language (L2) curriculum. South Africa is a prime example of a country facing the dilemma of how to effectively equip a majority of its population with English as a second language or first additional language (FAL). Given the multilingual nature of South Africa with eleven official languages, and the position and power of English, the study investigates teachers’ and learners’ experiences on isiXhosa and Afrikaans background learners’ writing in English First Additional Language (EFAL). Moreover, possible causes of writing difficulties and teacher’s practices for writing are explored. The theoretical and conceptual framework for the study is provided by studies on constructivist theories and sociocultural theories. In exploring these issues, a qualitative approach through semi-structured interviews, classroom observations, and document analysis were adopted. This data is analysed by critical discourse analysis (CDA). The study identified a weak correlation between teachers’ beliefs and their actual teaching practices. Although the teachers believe that writing is as important as listening, speaking, reading, grammar and vocabulary, and that it needs regular practice, the data reveal that they fail to put their beliefs into practice. Moreover, the data revealed that learners were disturbed by their home language because when they do not know a word they would write either the isiXhosa or the Afrikaans equivalent. Code-switching seems to have instilled a sense of “dependence on translations” where some learners would not even try to answer English questions but would wait for the teacher to translate the questions into isiXhosa or Afrikaans before they could attempt to give answers. The findings of the study show a marked improvement in the writing performance of learners who used the process approach in writing. These findings demonstrate the need for assisting teachers to shift away from focusing only on learners’ performance (testing and grading) towards a stronger emphasis on the process of writing. The study concludes that the process approach to writing could enable teachers to focus on the various parts of the writing process which can give more freedom to learners to experiment their language proficiency. It would require that teachers develop a deeper understanding of the process/genre approaches to teaching writing advocated by CAPS. All in all, the study shows that both learners and teachers face numerous challenges relating to writing. This means that more work still needs to be done in this area. The present study argues that teachers teaching EFAL learners should approach writing as a critical and core aspect of learners’ education. Learners should be exposed to intensive writing activities throughout their school years.

Keywords: constructivism, English second language, language of learning and teaching, writing

Procedia PDF Downloads 217
189 Analyzing Data Protection in the Era of Big Data under the Framework of Virtual Property Layer Theory

Authors: Xiaochen Mu

Abstract:

Data rights confirmation, as a key legal issue in the development of the digital economy, is undergoing a transition from a traditional rights paradigm to a more complex private-economic paradigm. In this process, data rights confirmation has evolved from a simple claim of rights to a complex structure encompassing multiple dimensions of personality rights and property rights. Current data rights confirmation practices are primarily reflected in two models: holistic rights confirmation and process rights confirmation. The holistic rights confirmation model continues the traditional "one object, one right" theory, while the process rights confirmation model, through contractual relationships in the data processing process, recognizes rights that are more adaptable to the needs of data circulation and value release. In the design of the data property rights system, there is a hierarchical characteristic aimed at decoupling from raw data to data applications through horizontal stratification and vertical staging. This design not only respects the ownership rights of data originators but also, based on the usufructuary rights of enterprises, constructs a corresponding rights system for different stages of data processing activities. The subjects of data property rights include both data originators, such as users, and data producers, such as enterprises, who enjoy different rights at different stages of data processing. The intellectual property rights system, with the mission of incentivizing innovation and promoting the advancement of science, culture, and the arts, provides a complete set of mechanisms for protecting innovative results. However, unlike traditional private property rights, the granting of intellectual property rights is not an end in itself; the purpose of the intellectual property system is to balance the exclusive rights of the rights holders with the prosperity and long-term development of society's public learning and the entire field of science, culture, and the arts. Therefore, the intellectual property granting mechanism provides both protection and limitations for the rights holder. This perfectly aligns with the dual attributes of data. In terms of achieving the protection of data property rights, the granting of intellectual property rights is an important institutional choice that can enhance the effectiveness of the data property exchange mechanism. Although this is not the only path, the granting of data property rights within the framework of the intellectual property rights system helps to establish fundamental legal relationships and rights confirmation mechanisms and is more compatible with the classification and grading system of data. The modernity of the intellectual property rights system allows it to adapt to the needs of big data technology development through special clauses or industry guidelines, thus promoting the comprehensive advancement of data intellectual property rights legislation. This paper analyzes data protection under the virtual property layer theory and two-fold virtual property rights system. Based on the “bundle of right” theory, this paper establishes specific three-level data rights. This paper analyzes the cases: Google v. Vidal-Hall, Halliday v Creation Consumer Finance, Douglas v Hello Limited, Campbell v MGN and Imerman v Tchenquiz. This paper concluded that recognizing property rights over personal data and protecting data under the framework of intellectual property will be beneficial to establish the tort of misuse of personal information.

Keywords: data protection, property rights, intellectual property, Big data

Procedia PDF Downloads 39
188 Evidence Based Dietary Pattern in South Asian Patients: Setting Goals

Authors: Ananya Pappu, Sneha Mishra

Abstract:

Introduction: The South Asian population experiences unique health challenges that predisposes this demographic to cardiometabolic diseases at lower BMIs. South Asians may therefore benefit from recommendations specific to their cultural needs. Here, we focus on current BMI guidelines for Asians with a discussion of South Asian dietary practices and culturally tailored interventions. By integrating traditional dietary practices with modern nutritional recommendations, this manuscript aims to highlight effective strategies to improving health outcomes among South Asians. Background: The South Asian community, including individuals from India, Pakistan, Bangladesh, and Sri Lanka, experiences high rates of cardiovascular diseases, cancers, diabetes, and strokes. Notably, the prevalence of diabetes and cardiovascular disease among Asians is elevated at BMIs below the WHO's standard overweight threshold. As it stands, a BMI of 25-30 kg/m² is considered overweight in non-Asians, while this cutoff is reduced to 23-27.4 kg/m² in Asians. This discrepancy can be attributed to studies which have shown different associations between BMI and health risks in Asians compared to other populations. Given these significant challenges, optimizing lifestyle management for cardiometabolic risk factors is crucial. Tailored interventions that consider cultural context seem to be the best approach for ensuring the success of both dietary and physical activity interventions in South Asian patients. Adopting a whole food, plant-based diet (WFPD) is one such strategy. The WFPD suggests that half of one meal should consist of non-starchy vegetables. In the South Asian diet, this includes traditional vegetables such as okra, tindora, eggplant, and leafy greens including amaranth, collards, chard, and mustards. A quarter of the meal should include plant-based protein sources like cooked beans, lentils, and paneer, with the remaining quarter comprising healthy grains or starches such as whole wheat breads, millets, tapioca, and barley. Adherence to the WFPD has been shown to improve cardiometabolic risk factors including weight, BMI, total cholesterol, HbA1c, and reduces the risk of developing non-alcoholic fatty liver disease (NAFLD). Another approach to improving dietary habits is timing meals. Many of the major cultures and religions in the Indian subcontinent incorporate religious fasting. Time-restricted eating (TRE), also known as intermittent fasting, is a practice akin to traditional fasting, which involves consuming all daily calories within a specific window. TRE has been shown to improve insulin resistance in prediabetic and diabetic patients. Common regimens include completing all meals within an 8-hour window, consuming a low-calorie diet every other day, and the 5:2 diet, which involves fasting twice weekly. These fasting practices align with the natural circadian rhythm, potentially enhancing metabolic health and reducing obesity and diabetes risks. Conclusion: South Asians develop cardiometabolic disease at lower BMIs; hence, it is important to counsel patients about lifestyle interventions that decrease their risk. Traditional South Asian diets can be made more nutrient-rich by incorporating vegetables, plant proteins like lentils and beans, and substituting refined grains for whole grains. Ultimately, the best diet is one to which a patient can adhere. It is therefore important to find a regimen that aligns with a patient’s cultural and traditional food practices.

Keywords: BMI, diet, obesity, South Asian, time-restricted eating

Procedia PDF Downloads 42
187 Design of a Small and Medium Enterprise Growth Prediction Model Based on Web Mining

Authors: Yiea Funk Te, Daniel Mueller, Irena Pletikosa Cvijikj

Abstract:

Small and medium enterprises (SMEs) play an important role in the economy of many countries. When the overall world economy is considered, SMEs represent 95% of all businesses in the world, accounting for 66% of the total employment. Existing studies show that the current business environment is characterized as highly turbulent and strongly influenced by modern information and communication technologies, thus forcing SMEs to experience more severe challenges in maintaining their existence and expanding their business. To support SMEs at improving their competitiveness, researchers recently turned their focus on applying data mining techniques to build risk and growth prediction models. However, data used to assess risk and growth indicators is primarily obtained via questionnaires, which is very laborious and time-consuming, or is provided by financial institutes, thus highly sensitive to privacy issues. Recently, web mining (WM) has emerged as a new approach towards obtaining valuable insights in the business world. WM enables automatic and large scale collection and analysis of potentially valuable data from various online platforms, including companies’ websites. While WM methods have been frequently studied to anticipate growth of sales volume for e-commerce platforms, their application for assessment of SME risk and growth indicators is still scarce. Considering that a vast proportion of SMEs own a website, WM bears a great potential in revealing valuable information hidden in SME websites, which can further be used to understand SME risk and growth indicators, as well as to enhance current SME risk and growth prediction models. This study aims at developing an automated system to collect business-relevant data from the Web and predict future growth trends of SMEs by means of WM and data mining techniques. The envisioned system should serve as an 'early recognition system' for future growth opportunities. In an initial step, we examine how structured and semi-structured Web data in governmental or SME websites can be used to explain the success of SMEs. WM methods are applied to extract Web data in a form of additional input features for the growth prediction model. The data on SMEs provided by a large Swiss insurance company is used as ground truth data (i.e. growth-labeled data) to train the growth prediction model. Different machine learning classification algorithms such as the Support Vector Machine, Random Forest and Artificial Neural Network are applied and compared, with the goal to optimize the prediction performance. The results are compared to those from previous studies, in order to assess the contribution of growth indicators retrieved from the Web for increasing the predictive power of the model.

Keywords: data mining, SME growth, success factors, web mining

Procedia PDF Downloads 266
186 Metal-Organic Frameworks-Based Materials for Volatile Organic Compounds Sensing Applications: Strategies to Improve Sensing Performances

Authors: Claudio Clemente, Valentina Gargiulo, Alessio Occhicone, Giovanni Piero Pepe, Giovanni Ausanio, Michela Alfè

Abstract:

Volatile organic compound (VOC) emissions represent a serious risk to human health and the integrity of the ecosystems, especially at high concentrations. For this reason, it is very important to continuously monitor environmental quality and develop fast and reliable portable sensors to allow analysis on site. Chemiresistors have become promising candidates for VOC sensing as their ease of fabrication, variety of suitable sensitive materials, and simple sensing data. A chemoresistive gas sensor is a transducer that allows to measure the concentration of an analyte in the gas phase because the changes in resistance are proportional to the amount of the analyte present. The selection of the sensitive material, which interacts with the target analyte, is very important for the sensor performance. The most used VOC detection materials are metal oxides (MOx) for their rapid recovery, high sensitivity to various gas molecules, easy fabrication. Their sensing performance can be improved in terms of operating temperature, selectivity, and detection limit. Metal-organic frameworks (MOFs) have attracted a lot of attention also in the field of gas sensing due to their high porosity, high surface area, tunable morphologies, structural variety. MOFs are generated by the self-assembly of multidentate organic ligands connecting with adjacent multivalent metal nodes via strong coordination interactions, producing stable and highly ordered crystalline porous materials with well-designed structures. However, most MOFs intrinsically exhibit low electrical conductivity. To improve this property, MOFs can be combined with organic and inorganic materials in a hybrid fashion to produce composite materials or can be transformed into more stable structures. MOFs, indeed, can be employed as the precursors of metal oxides with well-designed architectures via the calcination method. The MOF-derived MOx partially preserved the original structure with high surface area and intrinsic open pores, which act as trapping centers for gas molecules, and showed a higher electrical conductivity. Core-shell heterostructures, in which the surface of a metal oxide core is completely coated by a MOF shell, forming a junction at the core-shell heterointerface, can also be synthesized. Also, nanocomposite in which MOF structures are intercalated with graphene related materials can also be produced, and the conductivity increases thanks to the high mobility of electrons of carbon materials. As MOF structures, zinc-based MOFs belonging to the ZIF family were selected in this work. Several Zn-based materials based and/or derived from MOFs were produced, structurally characterized, and arranged in a chemo resistive architecture, also exploring the potentiality of different approaches of sensing layer deposition based on PLD (pulsed laser deposition) and, in case of thermally labile materials, MAPLE (Matrix Assisted Pulsed Laser Evaporation) to enhance the adhesion to the support. The sensors were tested in a controlled humidity chamber, allowing for the possibility of varying the concentration of ethanol, a typical analyte chosen among the VOCs for a first survey. The effect of heating the chemiresistor to improve sensing performances was also explored. Future research will focus on exploring new manufacturing processes for MOF-based gas sensors with the aim to improve sensitivity, selectivity and reduce operating temperatures.

Keywords: chemiresistors, gas sensors, graphene related materials, laser deposition, MAPLE, metal-organic frameworks, metal oxides, nanocomposites, sensing performance, transduction mechanism, volatile organic compounds

Procedia PDF Downloads 60
185 Audio-Visual Co-Data Processing Pipeline

Authors: Rita Chattopadhyay, Vivek Anand Thoutam

Abstract:

Speech is the most acceptable means of communication where we can quickly exchange our feelings and thoughts. Quite often, people can communicate orally but cannot interact or work with computers or devices. It’s easy and quick to give speech commands than typing commands to computers. In the same way, it’s easy listening to audio played from a device than extract output from computers or devices. Especially with Robotics being an emerging market with applications in warehouses, the hospitality industry, consumer electronics, assistive technology, etc., speech-based human-machine interaction is emerging as a lucrative feature for robot manufacturers. Considering this factor, the objective of this paper is to design the “Audio-Visual Co-Data Processing Pipeline.” This pipeline is an integrated version of Automatic speech recognition, a Natural language model for text understanding, object detection, and text-to-speech modules. There are many Deep Learning models for each type of the modules mentioned above, but OpenVINO Model Zoo models are used because the OpenVINO toolkit covers both computer vision and non-computer vision workloads across Intel hardware and maximizes performance, and accelerates application development. A speech command is given as input that has information about target objects to be detected and start and end times to extract the required interval from the video. Speech is converted to text using the Automatic speech recognition QuartzNet model. The summary is extracted from text using a natural language model Generative Pre-Trained Transformer-3 (GPT-3). Based on the summary, essential frames from the video are extracted, and the You Only Look Once (YOLO) object detection model detects You Only Look Once (YOLO) objects on these extracted frames. Frame numbers that have target objects (specified objects in the speech command) are saved as text. Finally, this text (frame numbers) is converted to speech using text to speech model and will be played from the device. This project is developed for 80 You Only Look Once (YOLO) labels, and the user can extract frames based on only one or two target labels. This pipeline can be extended for more than two target labels easily by making appropriate changes in the object detection module. This project is developed for four different speech command formats by including sample examples in the prompt used by Generative Pre-Trained Transformer-3 (GPT-3) model. Based on user preference, one can come up with a new speech command format by including some examples of the respective format in the prompt used by the Generative Pre-Trained Transformer-3 (GPT-3) model. This pipeline can be used in many projects like human-machine interface, human-robot interaction, and surveillance through speech commands. All object detection projects can be upgraded using this pipeline so that one can give speech commands and output is played from the device.

Keywords: OpenVINO, automatic speech recognition, natural language processing, object detection, text to speech

Procedia PDF Downloads 78
184 3D Classification Optimization of Low-Density Airborne Light Detection and Ranging Point Cloud by Parameters Selection

Authors: Baha Eddine Aissou, Aichouche Belhadj Aissa

Abstract:

Light detection and ranging (LiDAR) is an active remote sensing technology used for several applications. Airborne LiDAR is becoming an important technology for the acquisition of a highly accurate dense point cloud. A classification of airborne laser scanning (ALS) point cloud is a very important task that still remains a real challenge for many scientists. Support vector machine (SVM) is one of the most used statistical learning algorithms based on kernels. SVM is a non-parametric method, and it is recommended to be used in cases where the data distribution cannot be well modeled by a standard parametric probability density function. Using a kernel, it performs a robust non-linear classification of samples. Often, the data are rarely linearly separable. SVMs are able to map the data into a higher-dimensional space to become linearly separable, which allows performing all the computations in the original space. This is one of the main reasons that SVMs are well suited for high-dimensional classification problems. Only a few training samples, called support vectors, are required. SVM has also shown its potential to cope with uncertainty in data caused by noise and fluctuation, and it is computationally efficient as compared to several other methods. Such properties are particularly suited for remote sensing classification problems and explain their recent adoption. In this poster, the SVM classification of ALS LiDAR data is proposed. Firstly, connected component analysis is applied for clustering the point cloud. Secondly, the resulting clusters are incorporated in the SVM classifier. Radial basic function (RFB) kernel is used due to the few numbers of parameters (C and γ) that needs to be chosen, which decreases the computation time. In order to optimize the classification rates, the parameters selection is explored. It consists to find the parameters (C and γ) leading to the best overall accuracy using grid search and 5-fold cross-validation. The exploited LiDAR point cloud is provided by the German Society for Photogrammetry, Remote Sensing, and Geoinformation. The ALS data used is characterized by a low density (4-6 points/m²) and is covering an urban area located in residential parts of the city Vaihingen in southern Germany. The class ground and three other classes belonging to roof superstructures are considered, i.e., a total of 4 classes. The training and test sets are selected randomly several times. The obtained results demonstrated that a parameters selection can orient the selection in a restricted interval of (C and γ) that can be further explored but does not systematically lead to the optimal rates. The SVM classifier with hyper-parameters is compared with the most used classifiers in literature for LiDAR data, random forest, AdaBoost, and decision tree. The comparison showed the superiority of the SVM classifier using parameters selection for LiDAR data compared to other classifiers.

Keywords: classification, airborne LiDAR, parameters selection, support vector machine

Procedia PDF Downloads 146
183 Advancing Dialysis Care Access and Health Information Management: A Blueprint for Nairobi Hospital

Authors: Kimberly Winnie Achieng Otieno

Abstract:

The Nairobi Hospital plays a pivotal role in healthcare provision in East and Central Africa, yet it faces challenges in providing accessible dialysis care. This paper explores strategic interventions to enhance dialysis care, improve access and streamline health information management, with an aim of fostering an integrated and patient-centered healthcare system in our region. Challenges at The Nairobi Hospital The Nairobi Hospital currently grapples with insufficient dialysis machines which results in extended turn around times. This issue stems from both staffing bottle necks and infrastructural limitations given our growing demand for renal care services. Our Paper-based record keeping system and fragmented flow of information downstream hinders the hospital’s ability to manage health data effectively. There is also a need for investment in expanding The Nairobi Hospital dialysis facilities to far reaching communities. Setting up satellite clinics that are closer to people who live in areas far from the main hospital will ensure better access to underserved areas. Community Outreach and Education Implementing education programs on kidney health within local communities is vital for early detection and prevention. Collaborating with local leaders and organizations can establish a proactive approach to renal health hence reducing the demand for acute dialysis interventions. We can amplify this effort by expanding The Nairobi Hospital’s corporate social responsibility outreach program with weekend engagement activities such as walks, awareness classes and fund drives. Enhancing Efficiency in Dialysis Care Demand for dialysis services continues to rise due to an aging Kenyan population and the increasing prevalence of chronic kidney disease (CKD). Present at this years International Nursing Conference are a diverse group of caregivers from around the world who can share with us their process optimization strategies, patient engagement techniques and resource utilization efficiencies to catapult The Nairobi Hospital to the 21st century and beyond. Plans are underway to offer ongoing education opportunities to keep staff updated on best practices and emerging technologies in addition to utilizing a patient feedback mechanisms to identify areas for improvement and enhance satisfaction. Staff empowerment and suggestion boxes address The Nairobi Hospital’s organizational challenges. Current financial constraints may limit a leapfrog in technology integration such as the acquisition of new dialysis machines and an investment in predictive analytics to forecast patient needs and optimize resource allocation. Streamlining Health Information Management Fully embracing a shift to 100% Electronic Health Records (EHRs) is a transformative step toward efficient health information management. Shared information promotes a holistic understanding of patients’ medical history, minimizing redundancies and enhancing overall care quality. To manage the transition to community-based care and EHRs effectively, a phased implementation approach is recommended. Conclusion By strategically enhancing dialysis care access and streamlining health information management, The Nairobi Hospital can strengthen its position as a leading healthcare institution in both East and Central Africa. This comprehensive approach aligns with the hospital’s commitment to providing high-quality, accessible, and patient-centered care in an evolving landscape of healthcare delivery.

Keywords: Africa, urology, diaylsis, healthcare

Procedia PDF Downloads 57
182 An Evidence-Based Laboratory Medicine (EBLM) Test to Help Doctors in the Assessment of the Pancreatic Endocrine Function

Authors: Sergio J. Calleja, Adria Roca, José D. Santotoribio

Abstract:

Pancreatic endocrine diseases include pathologies like insulin resistance (IR), prediabetes, and type 2 diabetes mellitus (DM2). Some of them are highly prevalent in the U.S.—40% of U.S. adults have IR, 38% of U.S. adults have prediabetes, and 12% of U.S. adults have DM2—, as reported by the National Center for Biotechnology Information (NCBI). Building upon this imperative, the objective of the present study was to develop a non-invasive test for the assessment of the patient’s pancreatic endocrine function and to evaluate its accuracy in detecting various pancreatic endocrine diseases, such as IR, prediabetes, and DM2. This approach to a routine blood and urine test is based around serum and urine biomarkers. It is made by the combination of several independent public algorithms, such as the Adult Treatment Panel III (ATP-III), triglycerides and glucose (TyG) index, homeostasis model assessment-insulin resistance (HOMA-IR), HOMA-2, and the quantitative insulin-sensitivity check index (QUICKI). Additionally, it incorporates essential measurements such as the creatinine clearance, estimated glomerular filtration rate (eGFR), urine albumin-to-creatinine ratio (ACR), and urinalysis, which are helpful to achieve a full image of the patient’s pancreatic endocrine disease. To evaluate the estimated accuracy of this test, an iterative process was performed by a machine learning (ML) algorithm, with a training set of 9,391 patients. The sensitivity achieved was 97.98% and the specificity was 99.13%. Consequently, the area under the receiver operating characteristic (AUROC) curve, the positive predictive value (PPV), and the negative predictive value (NPV) were 92.48%, 99.12%, and 98.00%, respectively. The algorithm was validated with a randomized controlled trial (RCT) with a target sample size (n) of 314 patients. However, 50 patients were initially excluded from the study, because they had ongoing clinically diagnosed pathologies, symptoms or signs, so the n dropped to 264 patients. Then, 110 patients were excluded because they didn’t show up at the clinical facility for any of the follow-up visits—this is a critical point to improve for the upcoming RCT, since the cost of each patient is very high and for this RCT almost a third of the patients already tested were lost—, so the new n consisted of 154 patients. After that, 2 patients were excluded, because some of their laboratory parameters and/or clinical information were wrong or incorrect. Thus, a final n of 152 patients was achieved. In this validation set, the results obtained were: 100.00% sensitivity, 100.00% specificity, 100.00% AUROC, 100.00% PPV, and 100.00% NPV. These results suggest that this approach to a routine blood and urine test holds promise in providing timely and accurate diagnoses of pancreatic endocrine diseases, particularly among individuals aged 40 and above. Given the current epidemiological state of these type of diseases, these findings underscore the significance of early detection. Furthermore, they advocate for further exploration, prompting the intention to conduct a clinical trial involving 26,000 participants (from March 2025 to December 2026).

Keywords: algorithm, diabetes, laboratory medicine, non-invasive

Procedia PDF Downloads 32
181 Parenting Interventions for Refugee Families: A Systematic Scoping Review

Authors: Ripudaman S. Minhas, Pardeep K. Benipal, Aisha K. Yousafzai

Abstract:

Background: Children of refugee or asylum-seeking background have multiple, complex needs (e.g. trauma, mental health concerns, separation, relocation, poverty, etc.) that places them at an increased risk for developing learning problems. Families encounter challenges accessing support during resettlement, preventing children from achieving their full developmental potential. There are very few studies in literature that examine the unique parenting challenges refugee families’ face. Providing appropriate support services and educational resources that address these distinctive concerns of refugee parents, will alleviate these challenges allowing for a better developmental outcome for children. Objective: To identify the characteristics of effective parenting interventions that address the unique needs of refugee families. Methods: English-language articles published from 1997 onwards were included if they described or evaluated programmes or interventions for parents of refugee or asylum-seeking background, globally. Data were extracted and analyzed according to Arksey and O’Malley’s descriptive analysis model for scoping reviews. Results: Seven studies met criteria and were included, primarily studying families settled in high-income countries. Refugee parents identified parenting to be a major concern, citing they experienced: alienation/unwelcoming services, language barriers, and lack of familiarity with school and early years services. Services that focused on building the resilience of parents, parent education, or provided services in the family’s native language, and offered families safe spaces to promote parent-child interactions were most successful. Home-visit and family-centered programs showed particular success, minimizing barriers such as transportation and inflexible work schedules, while allowing caregivers to receive feedback from facilitators. The vast majority of studies evaluated programs implementing existing curricula and frameworks. Interventions were designed in a prescriptive manner, without direct participation by family members and not directly addressing accessibility barriers. The studies also did not employ evaluation measures of parenting practices or the caregiving environment, or child development outcomes, primarily focusing on parental perceptions. Conclusion: There is scarce literature describing parenting interventions for refugee families. Successful interventions focused on building parenting resilience and capacity in their native language. To date, there are no studies that employ a participatory approach to program design to tailor content or accessibility, and few that employ parenting, developmental, behavioural, or environmental outcome measures.

Keywords: asylum-seekers, developmental pediatrics, parenting interventions, refugee families

Procedia PDF Downloads 160
180 Data Science/Artificial Intelligence: A Possible Panacea for Refugee Crisis

Authors: Avi Shrivastava

Abstract:

In 2021, two heart-wrenching scenes, shown live on television screens across countries, painted a grim picture of refugees. One of them was of people clinging onto an airplane's wings in their desperate attempt to flee war-torn Afghanistan. They ultimately fell to their death. The other scene was the U.S. government authorities separating children from their parents or guardians to deter migrants/refugees from coming to the U.S. These events show the desperation refugees feel when they are trying to leave their homes in disaster zones. However, data paints a grave picture of the current refugee situation. It also indicates that a bleak future lies ahead for the refugees across the globe. Data and information are the two threads that intertwine to weave the shimmery fabric of modern society. Data and information are often used interchangeably, but they differ considerably. For example, information analysis reveals rationale, and logic, while data analysis, on the other hand, reveals a pattern. Moreover, patterns revealed by data can enable us to create the necessary tools to combat huge problems on our hands. Data analysis paints a clear picture so that the decision-making process becomes simple. Geopolitical and economic data can be used to predict future refugee hotspots. Accurately predicting the next refugee hotspots will allow governments and relief agencies to prepare better for future refugee crises. The refugee crisis does not have binary answers. Given the emotionally wrenching nature of the ground realities, experts often shy away from realistically stating things as they are. This hesitancy can cost lives. When decisions are based solely on data, emotions can be removed from the decision-making process. Data also presents irrefutable evidence and tells whether there is a solution or not. Moreover, it also responds to a nonbinary crisis with a binary answer. Because of all that, it becomes easier to tackle a problem. Data science and A.I. can predict future refugee crises. With the recent explosion of data due to the rise of social media platforms, data and insight into data has solved many social and political problems. Data science can also help solve many issues refugees face while staying in refugee camps or adopted countries. This paper looks into various ways data science can help solve refugee problems. A.I.-based chatbots can help refugees seek legal help to find asylum in the country they want to settle in. These chatbots can help them find a marketplace where they can find help from the people willing to help. Data science and technology can also help solve refugees' many problems, including food, shelter, employment, security, and assimilation. The refugee problem seems to be one of the most challenging for social and political reasons. Data science and machine learning can help prevent the refugee crisis and solve or alleviate some of the problems that refugees face in their journey to a better life. With the explosion of data in the last decade, data science has made it possible to solve many geopolitical and social issues.

Keywords: refugee crisis, artificial intelligence, data science, refugee camps, Afghanistan, Ukraine

Procedia PDF Downloads 71
179 Telemedicine for Telerehabilitation in Areas Affected by Social Conflicts in Colombia

Authors: Lilia Edit Aparicio Pico, Paulo Cesar Coronado Sánchez, Roberto Ferro Escobar

Abstract:

This paper presents the implementation of telemedicine services for physiotherapy, occupational therapy, and speech therapy rehabilitation, utilizing telebroadcasting of audiovisual content to enhance comprehensive patient recovery in rural areas of San Vicente del Caguán municipality, characterized by high levels of social conflict in Colombia. The region faces challenges such as dysfunctional problems, physical rehabilitation needs, and a high prevalence of hearing diseases, leading to neglect and substandard health services. Limited access to healthcare due to communication barriers and transportation difficulties exacerbates these issues. To address these challenges, a research initiative was undertaken to leverage information and communication technologies (ICTs) to improve healthcare quality and accessibility for this vulnerable population. The primary objective was to develop a tele-rehabilitation system to provide asynchronous online therapies and teleconsultation services for patient follow-up during the recovery process. The project comprises two components: Communication systems and human development. A technological component involving the establishment of a wireless network connecting rural centers and the development of a mobile application for video-based therapy delivery. Communications systems will be provided by a radio link that utilizes internet provided by the Colombian government, located in the municipality of San Vicente del Caguán to connect two rural centers (Pozos and Tres Esquinas) and a mobile application for managing videos for asynchronous broadcasting in sidewalks and patients' homes. This component constitutes an operational model integrating information and telecommunications technologies. The second component involves pedagogical and human development. The primary focus is on the patient, where performance indicators and the efficiency of therapy support were evaluated for the assessment and monitoring of telerehabilitation results in physical, occupational, and speech therapy. They wanted to implement a wireless network to ensure audiovisual content transmission for tele-rehabilitation, design audiovisual content for tele-rehabilitation based on services provided by the ESE Hospital San Rafael in physiotherapy, occupational therapy, and speech therapy, develop a software application for fixed and mobile devices enabling access to tele-rehabilitation audiovisual content for healthcare personnel and patients and finally to evaluate the technological solution's contribution to the ESE Hospital San Rafael community. The research comprised four phases: wireless network implementation, audiovisual content design, software application development, and evaluation of the technological solution's impact. Key findings include the successful implementation of virtual teletherapy, both synchronously and asynchronously, and the assessment of technological performance indicators, patient evolution, timeliness, acceptance, and service quality of tele-rehabilitation therapies. The study demonstrated improved service coverage, increased care supply, enhanced access to timely therapies for patients, and positive acceptance of teletherapy modalities. Additionally, the project generated new knowledge for potential replication in other regions and proposed strategies for short- and medium-term improvement of service quality and care indicators

Keywords: e-health, medical informatics, telemedicine, telerehabilitation, virtual therapy

Procedia PDF Downloads 53
178 Developing Computational Thinking in Early Childhood Education

Authors: Kalliopi Kanaki, Michael Kalogiannakis

Abstract:

Nowadays, in the digital era, the early acquisition of basic programming skills and knowledge is encouraged, as it facilitates students’ exposure to computational thinking and empowers their creativity, problem-solving skills, and cognitive development. More and more researchers and educators investigate the introduction of computational thinking in K-12 since it is expected to be a fundamental skill for everyone by the middle of the 21st century, just like reading, writing and arithmetic are at the moment. In this paper, a doctoral research in the process is presented, which investigates the infusion of computational thinking into science curriculum in early childhood education. The whole attempt aims to develop young children’s computational thinking by introducing them to the fundamental concepts of object-oriented programming in an enjoyable, yet educational framework. The backbone of the research is the digital environment PhysGramming (an abbreviation of Physical Science Programming), which provides children the opportunity to create their own digital games, turning them from passive consumers to active creators of technology. PhysGramming deploys an innovative hybrid schema of visual and text-based programming techniques, with emphasis on object-orientation. Through PhysGramming, young students are familiarized with basic object-oriented programming concepts, such as classes, objects, and attributes, while, at the same time, get a view of object-oriented programming syntax. Nevertheless, the most noteworthy feature of PhysGramming is that children create their own digital games within the context of physical science courses, in a way that provides familiarization with the basic principles of object-oriented programming and computational thinking, even though no specific reference is made to these principles. Attuned to the ethical guidelines of educational research, interventions were conducted in two classes of second grade. The interventions were designed with respect to the thematic units of the curriculum of physical science courses, as a part of the learning activities of the class. PhysGramming was integrated into the classroom, after short introductory sessions. During the interventions, 6-7 years old children worked in pairs on computers and created their own digital games (group games, matching games, and puzzles). The authors participated in these interventions as observers in order to achieve a realistic evaluation of the proposed educational framework concerning its applicability in the classroom and its educational and pedagogical perspectives. To better examine if the objectives of the research are met, the investigation was focused on six criteria; the educational value of PhysGramming, its engaging and enjoyable characteristics, its child-friendliness, its appropriateness for the purpose that is proposed, its ability to monitor the user’s progress and its individualizing features. In this paper, the functionality of PhysGramming and the philosophy of its integration in the classroom are both described in detail. Information about the implemented interventions and the results obtained is also provided. Finally, several limitations of the research conducted that deserve attention are denoted.

Keywords: computational thinking, early childhood education, object-oriented programming, physical science courses

Procedia PDF Downloads 118
177 Servant Leadership and Organisational Climate in South African Private Schools: A Qualitative Study

Authors: Christo Swart, Lidia Pottas, David Maree

Abstract:

Background: It is a sine qua non that the South African educational system finds itself in a profound crisis and that traditional school leadership styles are outdated and hinder quality education. New thinking is mandatory to improve the status quo and school leadership has an immense role to play to improve the current situation. It is believed that the servant leadership paradigm, when practiced by school leadership, may have a significant influence on the school environment in totality. This study investigates the private school segment in search of constructive answers to assist with the educational crises in South Africa. It is assumed that where school leadership can augment a supportive and empowering environment for teachers to constructively engage in their teaching and learning activities - then many challenges facing by school system may be subjugated in a productive manner. Aim: The aim of this study is fourfold. To outline the constructs of servant leadership which are perceived by teachers of private schools as priorities to enhance a successful school environment. To describe the constructs of organizational climate which are observed by teachers of private schools as priorities to enhance a successful school environment. To investigate whether the participants perceived a link between the constructs of servant leadership and organizational climate. To consider the process to be followed to introduce the constructs of SL and OC the school system in general as perceived by participants. Method: This study utilized a qualitative approach to explore the mediation between school leadership and the organizational climate in private schools in the search for amicable answers. The participants were purposefully selected for the study. Focus group interviews were held with participants from primary and secondary schools and a focus group discussion was conducted with principals of both primary and secondary schools. The interview data were transcribed and analyzed and identical patterns of coded data were grouped together under emerging themes. Findings: It was found that the practice of servant leadership by school leadership indeed mediates a constructive and positive school climate. It was found that the constructs of empowerment, accountability, humility and courage – interlinking with one other - are prominent of servant leadership concepts that are perceived by teachers of private schools as priorities for school leadership to enhance a successful school environment. It was confirmed that the groupings of training and development, communication, trust and work environment are perceived by teachers of private schools as prominent features of organizational climate as practiced by school leadership to augment a successful school environment. It can be concluded that the participants perceived several links between the constructs of servant leadership and organizational climate that encourage a constructive school environment and that there is a definite positive consideration and motivation that the two concepts be introduced to the school system in general. It is recommended that school leadership mentors and guides teachers to take ownership of the constructs of servant leadership as well as organizational climate and that public schools be researched and consider to implement the two paradigms. The study suggests that aspirant teachers be exposed to leadership as well as organizational paradigms during their studies at university.

Keywords: empowering environment for teachers and learners, new thinking required, organizational climate, school leadership, servant leadership

Procedia PDF Downloads 219
176 Artificial Intelligence Models for Detecting Spatiotemporal Crop Water Stress in Automating Irrigation Scheduling: A Review

Authors: Elham Koohi, Silvio Jose Gumiere, Hossein Bonakdari, Saeid Homayouni

Abstract:

Water used in agricultural crops can be managed by irrigation scheduling based on soil moisture levels and plant water stress thresholds. Automated irrigation scheduling limits crop physiological damage and yield reduction. Knowledge of crop water stress monitoring approaches can be effective in optimizing the use of agricultural water. Understanding the physiological mechanisms of crop responding and adapting to water deficit ensures sustainable agricultural management and food supply. This aim could be achieved by analyzing and diagnosing crop characteristics and their interlinkage with the surrounding environment. Assessments of plant functional types (e.g., leaf area and structure, tree height, rate of evapotranspiration, rate of photosynthesis), controlling changes, and irrigated areas mapping. Calculating thresholds of soil water content parameters, crop water use efficiency, and Nitrogen status make irrigation scheduling decisions more accurate by preventing water limitations between irrigations. Combining Remote Sensing (RS), the Internet of Things (IoT), Artificial Intelligence (AI), and Machine Learning Algorithms (MLAs) can improve measurement accuracies and automate irrigation scheduling. This paper is a review structured by surveying about 100 recent research studies to analyze varied approaches in terms of providing high spatial and temporal resolution mapping, sensor-based Variable Rate Application (VRA) mapping, the relation between spectral and thermal reflectance and different features of crop and soil. The other objective is to assess RS indices formed by choosing specific reflectance bands and identifying the correct spectral band to optimize classification techniques and analyze Proximal Optical Sensors (POSs) to control changes. The innovation of this paper can be defined as categorizing evaluation methodologies of precision irrigation (applying the right practice, at the right place, at the right time, with the right quantity) controlled by soil moisture levels and sensitiveness of crops to water stress, into pre-processing, processing (retrieval algorithms), and post-processing parts. Then, the main idea of this research is to analyze the error reasons and/or values in employing different approaches in three proposed parts reported by recent studies. Additionally, as an overview conclusion tried to decompose different approaches to optimizing indices, calibration methods for the sensors, thresholding and prediction models prone to errors, and improvements in classification accuracy for mapping changes.

Keywords: agricultural crops, crop water stress detection, irrigation scheduling, precision agriculture, remote sensing

Procedia PDF Downloads 70