Search results for: restricted Boltzmann machine
2306 Single Imputation for Audiograms
Authors: Sarah Beaver, Renee Bryce
Abstract:
Audiograms detect hearing impairment, but missing values pose problems. This work explores imputations in an attempt to improve accuracy. This work implements Linear Regression, Lasso, Linear Support Vector Regression, Bayesian Ridge, K Nearest Neighbors (KNN), and Random Forest machine learning techniques to impute audiogram frequencies ranging from 125Hz to 8000Hz. The data contains patients who had or were candidates for cochlear implants. Accuracy is compared across two different Nested Cross-Validation k values. Over 4000 audiograms were used from 800 unique patients. Additionally, training on data combines and compares left and right ear audiograms versus single ear side audiograms. The accuracy achieved using Root Mean Square Error (RMSE) values for the best models for Random Forest ranges from 4.74 to 6.37. The R\textsuperscript{2} values for the best models for Random Forest ranges from .91 to .96. The accuracy achieved using RMSE values for the best models for KNN ranges from 5.00 to 7.72. The R\textsuperscript{2} values for the best models for KNN ranges from .89 to .95. The best imputation models received R\textsuperscript{2} between .89 to .96 and RMSE values less than 8dB. We also show that the accuracy of classification predictive models performed better with our best imputation models versus constant imputations by a two percent increase.Keywords: machine learning, audiograms, data imputations, single imputations
Procedia PDF Downloads 802305 Transforming Data Science Curriculum Through Design Thinking
Authors: Samar Swaid
Abstract:
Today, corporates are moving toward the adoption of Design-Thinking techniques to develop products and services, putting their consumer as the heart of the development process. One of the leading companies in Design-Thinking, IDEO (Innovation, Design, Engineering Organization), defines Design-Thinking as an approach to problem-solving that relies on a set of multi-layered skills, processes, and mindsets that help people generate novel solutions to problems. Design thinking may result in new ideas, narratives, objects or systems. It is about redesigning systems, organizations, infrastructures, processes, and solutions in an innovative fashion based on the users' feedback. Tim Brown, president and CEO of IDEO, sees design thinking as a human-centered approach that draws from the designer's toolkit to integrate people's needs, innovative technologies, and business requirements. The application of design thinking has been witnessed to be the road to developing innovative applications, interactive systems, scientific software, healthcare application, and even to utilizing Design-Thinking to re-think business operations, as in the case of Airbnb. Recently, there has been a movement to apply design thinking to machine learning and artificial intelligence to ensure creating the "wow" effect on consumers. The Association of Computing Machinery task force on Data Science program states that" Data scientists should be able to implement and understand algorithms for data collection and analysis. They should understand the time and space considerations of algorithms. They should follow good design principles developing software, understanding the importance of those principles for testability and maintainability" However, this definition hides the user behind the machine who works on data preparation, algorithm selection and model interpretation. Thus, the Data Science program includes design thinking to ensure meeting the user demands, generating more usable machine learning tools, and developing ways of framing computational thinking. Here, describe the fundamentals of Design-Thinking and teaching modules for data science programs.Keywords: data science, design thinking, AI, currculum, transformation
Procedia PDF Downloads 792304 Methods for Enhancing Ensemble Learning or Improving Classifiers of This Technique in the Analysis and Classification of Brain Signals
Authors: Seyed Mehdi Ghezi, Hesam Hasanpoor
Abstract:
This scientific article explores enhancement methods for ensemble learning with the aim of improving the performance of classifiers in the analysis and classification of brain signals. The research approach in this field consists of two main parts, each with its own strengths and weaknesses. The choice of approach depends on the specific research question and available resources. By combining these approaches and leveraging their respective strengths, researchers can enhance the accuracy and reliability of classification results, consequently advancing our understanding of the brain and its functions. The first approach focuses on utilizing machine learning methods to identify the best features among the vast array of features present in brain signals. The selection of features varies depending on the research objective, and different techniques have been employed for this purpose. For instance, the genetic algorithm has been used in some studies to identify the best features, while optimization methods have been utilized in others to identify the most influential features. Additionally, machine learning techniques have been applied to determine the influential electrodes in classification. Ensemble learning plays a crucial role in identifying the best features that contribute to learning, thereby improving the overall results. The second approach concentrates on designing and implementing methods for selecting the best classifier or utilizing meta-classifiers to enhance the final results in ensemble learning. In a different section of the research, a single classifier is used instead of multiple classifiers, employing different sets of features to improve the results. The article provides an in-depth examination of each technique, highlighting their advantages and limitations. By integrating these techniques, researchers can enhance the performance of classifiers in the analysis and classification of brain signals. This advancement in ensemble learning methodologies contributes to a better understanding of the brain and its functions, ultimately leading to improved accuracy and reliability in brain signal analysis and classification.Keywords: ensemble learning, brain signals, classification, feature selection, machine learning, genetic algorithm, optimization methods, influential features, influential electrodes, meta-classifiers
Procedia PDF Downloads 742303 Stability of Hybrid Stochastic Systems
Authors: Manlika Ratchagit
Abstract:
This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, Lyapunov functional, linear matrix inequalities
Procedia PDF Downloads 4832302 New Results on Stability of Hybrid Stochastic Systems
Authors: Manlika Rajchakit
Abstract:
This paper is concerned with robust mean square stability of uncertain stochastic switched discrete time-delay systems. The system to be considered is subject to interval time-varying delays, which allows the delay to be a fast time-varying function and the lower bound is not restricted to zero. Based on the discrete Lyapunov functional, a switching rule for the robust mean square stability for the uncertain stochastic discrete time-delay system is designed via linear matrix inequalities. Finally, some examples are exploited to illustrate the effectiveness of the proposed schemes.Keywords: robust mean square stability, discrete-time stochastic systems, hybrid systems, interval time-varying delays, lyapunov functional, linear matrix inequalities
Procedia PDF Downloads 4282301 Internet of Things: Route Search Optimization Applying Ant Colony Algorithm and Theory of Computer Science
Authors: Tushar Bhardwaj
Abstract:
Internet of Things (IoT) possesses a dynamic network where the network nodes (mobile devices) are added and removed constantly and randomly, hence the traffic distribution in the network is quite variable and irregular. The basic but very important part in any network is route searching. We have many conventional route searching algorithms like link-state, and distance vector algorithms but they are restricted to the static point to point network topology. In this paper we propose a model that uses the Ant Colony Algorithm for route searching. It is dynamic in nature and has positive feedback mechanism that conforms to the route searching. We have also embedded the concept of Non-Deterministic Finite Automata [NDFA] minimization to reduce the network to increase the performance. Results show that Ant Colony Algorithm gives the shortest path from the source to destination node and NDFA minimization reduces the broadcasting storm effectively.Keywords: routing, ant colony algorithm, NDFA, IoT
Procedia PDF Downloads 4412300 A Predictive Model for Turbulence Evolution and Mixing Using Machine Learning
Authors: Yuhang Wang, Jorg Schluter, Sergiy Shelyag
Abstract:
The high cost associated with high-resolution computational fluid dynamics (CFD) is one of the main challenges that inhibit the design, development, and optimisation of new combustion systems adapted for renewable fuels. In this study, we propose a physics-guided CNN-based model to predict turbulence evolution and mixing without requiring a traditional CFD solver. The model architecture is built upon U-Net and the inception module, while a physics-guided loss function is designed by introducing two additional physical constraints to allow for the conservation of both mass and pressure over the entire predicted flow fields. Then, the model is trained on the Large Eddy Simulation (LES) results of a natural turbulent mixing layer with two different Reynolds number cases (Re = 3000 and 30000). As a result, the model prediction shows an excellent agreement with the corresponding CFD solutions in terms of both spatial distributions and temporal evolution of turbulent mixing. Such promising model prediction performance opens up the possibilities of doing accurate high-resolution manifold-based combustion simulations at a low computational cost for accelerating the iterative design process of new combustion systems.Keywords: computational fluid dynamics, turbulence, machine learning, combustion modelling
Procedia PDF Downloads 892299 Selecting Answers for Questions with Multiple Answer Choices in Arabic Question Answering Based on Textual Entailment Recognition
Authors: Anes Enakoa, Yawei Liang
Abstract:
Question Answering (QA) system is one of the most important and demanding tasks in the field of Natural Language Processing (NLP). In QA systems, the answer generation task generates a list of candidate answers to the user's question, in which only one answer is correct. Answer selection is one of the main components of the QA, which is concerned with selecting the best answer choice from the candidate answers suggested by the system. However, the selection process can be very challenging especially in Arabic due to its particularities. To address this challenge, an approach is proposed to answer questions with multiple answer choices for Arabic QA systems based on Textual Entailment (TE) recognition. The developed approach employs a Support Vector Machine that considers lexical, semantic and syntactic features in order to recognize the entailment between the generated hypotheses (H) and the text (T). A set of experiments has been conducted for performance evaluation and the overall performance of the proposed method reached an accuracy of 67.5% with C@1 score of 80.46%. The obtained results are promising and demonstrate that the proposed method is effective for TE recognition task.Keywords: information retrieval, machine learning, natural language processing, question answering, textual entailment
Procedia PDF Downloads 1442298 Analysis of Simple Mechanisms to Continuously Vary Mach Number in a Supersonic Wind Tunnel Facility
Authors: Prateek Kishore, T. M. Muruganandam
Abstract:
Supersonic wind tunnel nozzles are generally capable of producing a constant Mach number flow in the test section of the wind tunnel. As a result, most of the supersonic vehicles are widely designed using steady state flow characteristics which may have errors while facing unsteady situations. This study aims to explore the possibility of varying the Mach number of the flow during wind tunnel operation. The nozzle walls are restricted to be inflexible for cooling near the throat due to high stagnation temperature requirement of the flow to simulate the conditions as experienced by the vehicle. Two simple independent mechanisms, rotation and translation of nozzle walls have been analyzed and the nozzle ranges have been optimized to vary the Mach number from Mach 2 to Mach 5 using minimum number of nozzles in the wind tunnel.Keywords: method of characteristics, nozzle, supersonic wind tunnel, variable mach number
Procedia PDF Downloads 2942297 mKDNAD: A Network Flow Anomaly Detection Method Based On Multi-teacher Knowledge Distillation
Abstract:
Anomaly detection models for network flow based on machine learning have poor detection performance under extremely unbalanced training data conditions and also have slow detection speed and large resource consumption when deploying on network edge devices. Embedding multi-teacher knowledge distillation (mKD) in anomaly detection can transfer knowledge from multiple teacher models to a single model. Inspired by this, we proposed a state-of-the-art model, mKDNAD, to improve detection performance. mKDNAD mine and integrate the knowledge of one-dimensional sequence and two-dimensional image implicit in network flow to improve the detection accuracy of small sample classes. The multi-teacher knowledge distillation method guides the train of the student model, thus speeding up the model's detection speed and reducing the number of model parameters. Experiments in the CICIDS2017 dataset verify the improvements of our method in the detection speed and the detection accuracy in dealing with the small sample classes.Keywords: network flow anomaly detection (NAD), multi-teacher knowledge distillation, machine learning, deep learning
Procedia PDF Downloads 1192296 A New Method for Fault Detection
Authors: Mehmet Hakan Karaata, Ali Hamdan, Omer Yusuf Adam Mohamed
Abstract:
Consider a distributed system that delivers messages from a process to another. Such a system is often required to deliver each message to its destination regardless of whether or not the system components experience arbitrary forms of faults. In addition, each message received by the destination must be a message sent by a system process. In this paper, we first identify the necessary and sufficient conditions to detect some restricted form of Byzantine faults referred to as modifying Byzantine faults. An observable form of a Byzantine fault whose effect is limited to the modification of a message metadata or content, timing and omission faults, and message replay is referred to as a modifying Byzantine fault. We then present a distributed protocol to detect modifying Byzantine faults using optimal number of messages over node-disjoint paths.Keywords: Byzantine faults, distributed systems, fault detection, network protocols, node-disjoint paths
Procedia PDF Downloads 4452295 Comparison of Machine Learning-Based Models for Predicting Streptococcus pyogenes Virulence Factors and Antimicrobial Resistance
Authors: Fernanda Bravo Cornejo, Camilo Cerda Sarabia, Belén Díaz Díaz, Diego Santibañez Oyarce, Esteban Gómez Terán, Hugo Osses Prado, Raúl Caulier-Cisterna, Jorge Vergara-Quezada, Ana Moya-Beltrán
Abstract:
Streptococcus pyogenes is a gram-positive bacteria involved in a wide range of diseases and is a major-human-specific bacterial pathogen. In Chile, this year the 'Ministerio de Salud' declared an alert due to the increase in strains throughout the year. This increase can be attributed to the multitude of factors including antimicrobial resistance (AMR) and Virulence Factors (VF). Understanding these VF and AMR is crucial for developing effective strategies and improving public health responses. Moreover, experimental identification and characterization of these pathogenic mechanisms are labor-intensive and time-consuming. Therefore, new computational methods are required to provide robust techniques for accelerating this identification. Advances in Machine Learning (ML) algorithms represent the opportunity to refine and accelerate the discovery of VF associated with Streptococcus pyogenes. In this work, we evaluate the accuracy of various machine learning models in predicting the virulence factors and antimicrobial resistance of Streptococcus pyogenes, with the objective of providing new methods for identifying the pathogenic mechanisms of this organism.Our comprehensive approach involved the download of 32,798 genbank files of S. pyogenes from NCBI dataset, coupled with the incorporation of data from Virulence Factor Database (VFDB) and Antibiotic Resistance Database (CARD) which contains sequences of AMR gene sequence and resistance profiles. These datasets provided labeled examples of both virulent and non-virulent genes, enabling a robust foundation for feature extraction and model training. We employed preprocessing, characterization and feature extraction techniques on primary nucleotide/amino acid sequences and selected the optimal more for model training. The feature set was constructed using sequence-based descriptors (e.g., k-mers and One-hot encoding), and functional annotations based on database prediction. The ML models compared are logistic regression, decision trees, support vector machines, neural networks among others. The results of this work show some differences in accuracy between the algorithms, these differences allow us to identify different aspects that represent unique opportunities for a more precise and efficient characterization and identification of VF and AMR. This comparative analysis underscores the value of integrating machine learning techniques in predicting S. pyogenes virulence and AMR, offering potential pathways for more effective diagnostic and therapeutic strategies. Future work will focus on incorporating additional omics data, such as transcriptomics, and exploring advanced deep learning models to further enhance predictive capabilities.Keywords: antibiotic resistance, streptococcus pyogenes, virulence factors., machine learning
Procedia PDF Downloads 292294 The Current Home Hemodialysis Practices and Patients’ Safety Related Factors: A Case Study from Germany
Authors: Ilyas Khan. Liliane Pintelon, Harry Martin, Michael Shömig
Abstract:
The increasing costs of healthcare on one hand, and the rise in aging population and associated chronic disease, on the other hand, are putting increasing burden on the current health care system in many Western countries. For instance, chronic kidney disease (CKD) is a common disease and in Europe, the cost of renal replacement therapy (RRT) is very significant to the total health care cost. However, the recent advancement in healthcare technology, provide the opportunity to treat patients at home in their own comfort. It is evident that home healthcare offers numerous advantages apparently, low costs and high patients’ quality of life. Despite these advantages, the intake of home hemodialysis (HHD) therapy is still low in particular in Germany. Many factors are accounted for the low number of HHD intake. However, this paper is focusing on patients’ safety-related factors of current HHD practices in Germany. The aim of this paper is to analyze the current HHD practices in Germany and to identify risks related factors if any exist. A case study has been conducted in a dialysis center which consists of four dialysis centers in the south of Germany. In total, these dialysis centers have 350 chronic dialysis patients, of which, four patients are on HHD. The centers have 126 staff which includes six nephrologists and 120 other staff i.e. nurses and administration. The results of the study revealed several risk-related factors. Most importantly, these centers do not offer allied health services at the pre-dialysis stage, the HHD training did not have an established curriculum; however, they have just recently developed the first version. Only a soft copy of the machine manual is offered to patients. Surprisingly, the management was not aware of any standard available for home assessment and installation. The home assessment is done by a third party (i.e. the machines and equipment provider) and they may not consider the hygienic quality of the patient’s home. The type of machine provided to patients at home is similar to the one in the center. The model may not be suitable at home because of its size and complexity. Even though portable hemodialysis machines, which are specially designed for home use, are available in the market such as the NxStage series. Besides the type of machine, no assistance is offered for space management at home in particular for placing the machine. Moreover, the centers do not offer remote assistance to patients and their carer at home. However, telephonic assistance is available. Furthermore, no alternative is offered if a carer is not available. In addition, the centers are lacking medical staff including nephrologists and renal nurses.Keywords: home hemodialysis, home hemodialysis practices, patients’ related risks in the current home hemodialysis practices, patient safety in home hemodialysis
Procedia PDF Downloads 1172293 Generating 3D Anisotropic Centroidal Voronoi Tessellations
Authors: Alexandre Marin, Alexandra Bac, Laurent Astart
Abstract:
New numerical methods for PDE resolution (such as Finite Volumes (FV) or Virtual Elements Method (VEM)) open new needs in terms of meshing of domains of interest, and in particular, polyhedral meshes have many advantages. One way to build such meshes consists of constructing Restricted Voronoi Diagrams (RVDs) whose boundaries respect the domain of interest. By minimizing a function defined for RVDs, the shapes of cells can be controlled, e.g., elongated according to user-defined directions or adjusted to comply with given aspect ratios (anisotropy) and density variations. In this paper, our contribution is threefold: First, we introduce a new gradient formula for the Voronoi tessellation energy under a continuous anisotropy field. Second, we describe a meshing algorithm based on the optimisation of this function that we validate against state-of-the-art approaches. Finally, we propose a hierarchical approach to speed up our meshing algorithm.Keywords: anisotropic Voronoi diagrams, meshes for numerical simulations, optimisation, volumic polyhedral meshing
Procedia PDF Downloads 1132292 Personalized Learning: An Analysis Using Item Response Theory
Authors: A. Yacob, N. Hj. Ali, M. H. Yusoff, M. Y. MohdSaman, W. M. A. F. W. Hamzah
Abstract:
Personalized learning becomes increasingly popular which not is restricted by time, place or any other barriers. This study proposes an analysis of Personalized Learning using Item Response Theory which considers course material difficulty and learner ability. The study investigates twenty undergraduate students at TATI University College, who are taking programming subject. By using the IRT, it was found that, finding the most appropriate problem levels to each student include high and low level test items together is not a problem. Thus, the student abilities can be asses more accurately and fairly. Learners who experience more anxiety will affect a heavier cognitive load and receive lower test scores. Instructors are encouraged to provide a supportive learning environment to enhance learning effectiveness because Cognitive Load Theory concerns the limited capacity of the brain to absorb new information.Keywords: assessment, item response theory, cognitive load theory, learning, motivation, performance
Procedia PDF Downloads 3152291 Sepiolite as a Processing Aid in Fibre Reinforced Cement Produced in Hatschek Machine
Authors: R. Pérez Castells, J. M. Carbajo
Abstract:
Sepiolite is used as a processing aid in the manufacture of fibre cement from the start of the replacement of asbestos in the 80s. Sepiolite increases the inter-laminar bond between cement layers and improves homogeneity of the slurries. A new type of sepiolite processed product, Wollatrop TF/C, has been checked as a retention agent for fine particles in the production of fibre cement in a Hatschek machine. The effect of Wollatrop T/FC on filtering and fine particle losses was studied as well as the interaction with anionic polyacrylamide and microsilica. The design of the experiments were factorial and the VDT equipment used for measuring retention and drainage was modified Rapid Köethen laboratory sheet former. Wollatrop TF/C increased the fine particle retention improving the economy of the process and reducing the accumulation of solids in recycled process water. At the same time, drainage time increased sharply at high concentration, however drainage time can be improved by adjusting APAM concentration. Wollatrop TF/C and microsilica are having very small interactions among them. Microsilica does not control fine particle losses while Wollatrop TF/C does efficiently. Further research on APAM type (molecular weight and anionic character) is advisable to improve drainage.Keywords: drainage, fibre-reinforced cement, fine particle losses, flocculation, microsilica, sepiolite
Procedia PDF Downloads 3222290 Modification of a Human Powered Lawn Mower
Authors: Akinwale S. O., Koya O. A.
Abstract:
The need to provide ecologically-friendly and effective lawn mowing solution is crucial for the well-being of humans. This study involved the modification of a human-powered lawn mower designed to cut tall grasses in residential areas. This study designed and fabricated a reel-type mower blade system and a pedal-powered test rig for the blade system. It also evaluated the performance of the machine. The machine was tested on some overgrown grass plots at College of Education Staff School Ilesa. Parameters such as theoretical field capacity, field efficiency and effective field capacity were determined from the data gathered. The quality of cut achieved by the unit was also documented. Test results showed that the fabricated cutting system produced a theoretical field capacity of 0.11 ha/h and an effective field capacity of 0.08ha/h. Moreover, the unit’s cutting system showed a substantial improvement over existing reel mower designs in its ability to cut on both the forward and reverse phases of its motion. This study established that the blade system described herein has the capacity to cut tall grasses. Hence, this device can therefore eliminate the need for powered mowers entirely on small residential lawns.Keywords: effective field capacity, field efficiency, theoretical field capacity, quality of cut
Procedia PDF Downloads 1462289 Vaccination Coverage and Its Associated Factors in India: An ML Approach to Understand the Hierarchy and Inter-Connections
Authors: Anandita Mitro, Archana Srivastava, Bidisha Banerjee
Abstract:
The present paper attempts to analyze the hierarchy and interconnection of factors responsible for the uptake of BCG vaccination in India. The study uses National Family Health Survey (NFHS-5) data which was conducted during 2019-21. The univariate logistic regression method is used to understand the univariate effects while the interconnection effects have been studied using the Categorical Inference Tree (CIT) which is a non-parametric Machine Learning (ML) model. The hierarchy of the factors is further established using Conditional Inference Forest which is an extension of the CIT approach. The results suggest that BCG vaccination coverage was influenced more by system-level factors and awareness than education or socio-economic status. Factors such as place of delivery, antenatal care, and postnatal care were crucial, with variations based on delivery location. Region-specific differences were also observed which could be explained by the factors. Awareness of the disease was less impactful along with the factor of wealth and urban or rural residence, although awareness did appear to substitute for inadequate ANC. Thus, from the policy point of view, it is revealed that certain subpopulations have less prevalence of vaccination which implies that there is a need for population-specific policy action to achieve a hundred percent coverage.Keywords: vaccination, NFHS, machine learning, public health
Procedia PDF Downloads 582288 Industrial Wastewater Treatment Improvements Using Limestone
Authors: Mamdouh Y. Saleh, Gaber El Enany, Medhat H. Elzahar, Moustafa H. Omran
Abstract:
The discharge limits of industrial wastewater effluents are subjected to regulations which are getting more restricted with time. A former research occurred in Port Said city studied the efficiency of treating industrial wastewater using the first stage (A-stage) of the multiple-stage plant (AB-system).From the results of this former research, the effluent treated wastewater has high rates of total dissolved solids (TDS) and chemical oxygen demand (COD). The purpose of this paper is to improve the treatment process in removing TDS and COD. So a pilot plant was constructed at wastewater pump station in the industrial area in the south of Port Said. Experimental work was divided into several groups adding powdered limestone with different dosages to wastewater, and for each group wastewater was filtered after being mixed with activated carbon. pH and TSS as variables were also studied. Significant removals of TDS and COD were observed in these experiments showing that using effective adsorbents can aid such removals to a large extent.Keywords: adsorption, filtration, synthetic wastewater, TDS removal, COD removal
Procedia PDF Downloads 4462287 Predictive Analytics in Traffic Flow Management: Integrating Temporal Dynamics and Traffic Characteristics to Estimate Travel Time
Authors: Maria Ezziani, Rabie Zine, Amine Amar, Ilhame Kissani
Abstract:
This paper introduces a predictive model for urban transportation engineering, which is vital for efficient traffic management. Utilizing comprehensive datasets and advanced statistical techniques, the model accurately forecasts travel times by considering temporal variations and traffic dynamics. Machine learning algorithms, including regression trees and neural networks, are employed to capture sequential dependencies. Results indicate significant improvements in predictive accuracy, particularly during peak hours and holidays, with the incorporation of traffic flow and speed variables. Future enhancements may integrate weather conditions and traffic incidents. The model's applications range from adaptive traffic management systems to route optimization algorithms, facilitating congestion reduction and enhancing journey reliability. Overall, this research extends beyond travel time estimation, offering insights into broader transportation planning and policy-making realms, empowering stakeholders to optimize infrastructure utilization and improve network efficiency.Keywords: predictive analytics, traffic flow, travel time estimation, urban transportation, machine learning, traffic management
Procedia PDF Downloads 822286 Dynamic vs. Static Bankruptcy Prediction Models: A Dynamic Performance Evaluation Framework
Authors: Mohammad Mahdi Mousavi
Abstract:
Bankruptcy prediction models have been implemented for continuous evaluation and monitoring of firms. With the huge number of bankruptcy models, an extensive number of studies have focused on answering the question that which of these models are superior in performance. In practice, one of the drawbacks of existing comparative studies is that the relative assessment of alternative bankruptcy models remains an exercise that is mono-criterion in nature. Further, a very restricted number of criteria and measure have been applied to compare the performance of competing bankruptcy prediction models. In this research, we overcome these methodological gaps through implementing an extensive range of criteria and measures for comparison between dynamic and static bankruptcy models, and through proposing a multi-criteria framework to compare the relative performance of bankruptcy models in forecasting firm distress for UK firms.Keywords: bankruptcy prediction, data envelopment analysis, performance criteria, performance measures
Procedia PDF Downloads 2462285 Wear and Mechanical Properties of Nodular Iron Modified with Copper
Authors: J. Ramos, V. Gil, A. F. Torres
Abstract:
The nodular iron is a material that has shown great advantages respect to other materials (steel and gray iron) in the production of machine elements. The engineering industry, especially automobile, are potential users of this material. As it is known, the alloying elements modify the properties of steels and castings. Copper has been investigated as a structural modifier of nodular iron, but studies of its mechanical and tribological implications still need to be addressed for industrial use. With the aim of improving the mechanical properties of nodular iron, alloying elements (Mn, Si, and Cu) are added in order to increase their pearlite (or ferrite) structure according to the percentage of the alloying element. In this research (using induction furnace process) nodular iron with three different percentages of copper (residual, 0,5% and 1,2%) was obtained. Chemical analysis was performed by optical emission spectrometry and microstructures were characterized by Optical Microscopy (ASTM E3) and Scanning Electron Microscopy (SEM). The study of mechanical behavior was carried out in a mechanical test machine (ASTM E8) and a Pin on disk tribometer (ASTM G99) was used to assess wear resistance. It is observed that copper increases the pearlite structure improving the wear behavior; tension behavior. This improvement is observed in higher proportion with 0,5% due to the fact that too much increase of pearlite leads to ductility loss.Keywords: copper, mechanical properties, nodular iron, pearlite structure, wear
Procedia PDF Downloads 3822284 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection
Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen
Abstract:
Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.Keywords: big data analytics, Industry 4.0, SPI threshold setting, surface mount technology
Procedia PDF Downloads 1152283 A Machining Method of Cross-Shape Nano Channel and Experiments for Silicon Substrate
Authors: Zone-Ching Lin, Hao-Yuan Jheng, Zih-Wun Jhang
Abstract:
The paper innovatively proposes using the concept of specific down force energy (SDFE) and AFM machine to establish a machining method of cross-shape nanochannel on single-crystal silicon substrate. As for machining a cross-shape nanochannel by AFM machine, the paper develop a method of machining cross-shape nanochannel groove at a fixed down force by using SDFE theory and combining the planned cutting path of cross-shape nanochannel up to 5th machining layer it finally achieves a cross-shape nanochannel at a cutting depth of around 20nm. Since there may be standing burr at the machined cross-shape nanochannel edge, the paper uses a smaller down force to cut the edge of the cross-shape nanochannel in order to lower the height of standing burr and converge the height of standing burr at the edge to below 0.54nm as set by the paper. Finally, the paper conducts experiments of machining cross-shape nanochannel groove on single-crystal silicon by AFM probe, and compares the simulation and experimental results. It is proved that this proposed machining method of cross-shape nanochannel is feasible.Keywords: atomic force microscopy (AFM), cross-shape nanochannel, silicon substrate, specific down force energy (SDFE)
Procedia PDF Downloads 3702282 Validating Texture Analysis as a Tool for Determining Bioplastic (Bio)Degradation
Authors: Sally J. Price, Greg F. Walker, Weiyi Liu, Craig R. Bunt
Abstract:
Plastics, due to their long lifespan, are becoming more of an environmental concern once their useful life has been completed. There are a vast array of different types of plastic, and they can be found in almost every ecosystem on earth and are of particular concern in terrestrial environments where they can become incorporated into the food chain. Hence bioplastics have become more of interest to manufacturers and the public recently as they have the ability to (bio)degrade in commercial and in home composting situations. However, tools in which to quantify how they degrade in response to environmental variables are still being developed -one such approach is texture analysis using a TA.XT Texture Analyser, Stable Microsystems, was used to determine the force required to break or punch holes in standard ASTM D638 Type IV 3D printed bioplastic “dogbones” depending on the thicknesses of them. Manufacturers’ recommendations for calibrating the Texture Analyser are one such approach for standardising results; however, an independent technique using dummy dogbones and a substitute for the bioplastic was used alongside the samples. This approach was unexpectedly more valuable than realised at the start of the trial as irregular results were later discovered with the substitute material before valuable samples collected from the field were lost due to possible machine malfunction. This work will show the value of having an independent approach to machine calibration for accurate sample analysis with a Texture Analyser when analysing bioplastic samples.Keywords: bioplastic, degradation, environment, texture analyzer
Procedia PDF Downloads 2032281 A Comprehensive Survey on Machine Learning Techniques and User Authentication Approaches for Credit Card Fraud Detection
Authors: Niloofar Yousefi, Marie Alaghband, Ivan Garibay
Abstract:
With the increase of credit card usage, the volume of credit card misuse also has significantly increased, which may cause appreciable financial losses for both credit card holders and financial organizations issuing credit cards. As a result, financial organizations are working hard on developing and deploying credit card fraud detection methods, in order to adapt to ever-evolving, increasingly sophisticated defrauding strategies and identifying illicit transactions as quickly as possible to protect themselves and their customers. Compounding on the complex nature of such adverse strategies, credit card fraudulent activities are rare events compared to the number of legitimate transactions. Hence, the challenge to develop fraud detection that are accurate and efficient is substantially intensified and, as a consequence, credit card fraud detection has lately become a very active area of research. In this work, we provide a survey of current techniques most relevant to the problem of credit card fraud detection. We carry out our survey in two main parts. In the first part, we focus on studies utilizing classical machine learning models, which mostly employ traditional transnational features to make fraud predictions. These models typically rely on some static physical characteristics, such as what the user knows (knowledge-based method), or what he/she has access to (object-based method). In the second part of our survey, we review more advanced techniques of user authentication, which use behavioral biometrics to identify an individual based on his/her unique behavior while he/she is interacting with his/her electronic devices. These approaches rely on how people behave (instead of what they do), which cannot be easily forged. By providing an overview of current approaches and the results reported in the literature, this survey aims to drive the future research agenda for the community in order to develop more accurate, reliable and scalable models of credit card fraud detection.Keywords: Credit Card Fraud Detection, User Authentication, Behavioral Biometrics, Machine Learning, Literature Survey
Procedia PDF Downloads 1192280 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should properly evaluate their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, Neural Networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable to offer an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 802279 Career Guidance System Using Machine Learning
Authors: Mane Darbinyan, Lusine Hayrapetyan, Elen Matevosyan
Abstract:
Artificial Intelligence in Education (AIED) has been created to help students get ready for the workforce, and over the past 25 years, it has grown significantly, offering a variety of technologies to support academic, institutional, and administrative services. However, this is still challenging, especially considering the labor market's rapid change. While choosing a career, people face various obstacles because they do not take into consideration their own preferences, which might lead to many other problems like shifting jobs, work stress, occupational infirmity, reduced productivity, and manual error. Besides preferences, people should evaluate properly their technical and non-technical skills, as well as their personalities. Professional counseling has become a difficult undertaking for counselors due to the wide range of career choices brought on by changing technological trends. It is necessary to close this gap by utilizing technology that makes sophisticated predictions about a person's career goals based on their personality. Hence, there is a need to create an automated model that would help in decision-making based on user inputs. Improving career guidance can be achieved by embedding machine learning into the career consulting ecosystem. There are various systems of career guidance that work based on the same logic, such as the classification of applicants, matching applications with appropriate departments or jobs, making predictions, and providing suitable recommendations. Methodologies like KNN, neural networks, K-means clustering, D-Tree, and many other advanced algorithms are applied in the fields of data and compute some data, which is helpful to predict the right careers. Besides helping users with their career choice, these systems provide numerous opportunities which are very useful while making this hard decision. They help the candidate to recognize where he/she specifically lacks sufficient skills so that the candidate can improve those skills. They are also capable of offering an e-learning platform, taking into account the user's lack of knowledge. Furthermore, users can be provided with details on a particular job, such as the abilities required to excel in that industry.Keywords: career guidance system, machine learning, career prediction, predictive decision, data mining, technical and non-technical skills
Procedia PDF Downloads 692278 Life Prediction of Cutting Tool by the Workpiece Cutting Condition
Authors: Noemia Gomes de Mattos de Mesquita, José Eduardo Ferreira de Oliveira, Arimatea Quaresma Ferraz
Abstract:
Stops to exchange cutting tool, to set up again the tool in a turning operation with CNC or to measure the workpiece dimensions have a direct influence on production. The premature removal of the cutting tool results in high cost of machining since the parcel relating to the cost of the cutting tool increases. On the other hand, the late exchange of cutting tool also increases the cost of production because getting parts out of the preset tolerances may require rework for its use when it does not cause bigger problems such as breaking of cutting tools or the loss of the part. Therefore, the right time to exchange the tool should be well defined when wanted to minimize production costs. When the flank wear is the limiting tool life, the time predetermination that a cutting tool must be used for the machining occurs within the limits of tolerance can be done without difficulty. This paper aims to show how the life of the cutting tool can be calculated taking into account the cutting parameters (cutting speed, feed and depth of cut), workpiece material, power of the machine, the dimensional tolerance of the part, the finishing surface, the geometry of the cutting tool and operating conditions of the machine tool, once known the parameters of Taylor algebraic structure. These parameters were raised for the ABNT 1038 steel machined with cutting tools of hard metal.Keywords: machining, productions, cutting condition, design, manufacturing, measurement
Procedia PDF Downloads 6322277 Effect of Electronic Banking on the Performance of Deposit Money Banks in Nigeria: Using ATM and Mobile Phone as a Case Study
Authors: Charity Ifunanya Osakwe, Victoria Ogochuchukwu Obi-Nwosu, Chima Kenneth Anachedo
Abstract:
The study investigates how automated teller machines (ATM) and mobile banking affect deposit money banks in the Nigerian economy. The study made use of time series data which were obtained from the Central Bank of Nigeria Statistical Bulletin from 2009 to 2021. The Central Bank of Nigeria (CBN) data on automated teller machine and mobile phones were used to proxy electronic banking while total deposit in banks proxied the performance of deposit money banks. The analysis for the study was done using ordinary least square econometric technique with the aid of economic view statistical package. The results show that the automated teller machine has a positive and significant effect on the total deposits of deposit money banks in Nigeria and that making use of deposits of deposit money banks in Nigeria. It was concluded in the study that e-banking has equally increased banking access to customers and also created room for banks to expand their operations to more customers. The study recommends that banks in Nigeria should prioritize the expansion and maintenance of ATM networks as well as continue to invest in and develop more mobile banking services.Keywords: electronic, banking, automated teller machines, mobile, deposit
Procedia PDF Downloads 52