Search results for: process control
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 24400

Search results for: process control

23290 Uncovering the Complex Structure of Building Design Process Based on Royal Institute of British Architects Plan of Work

Authors: Fawaz A. Binsarra, Halim Boussabaine

Abstract:

The notion of complexity science has been attracting the interest of researchers and professionals due to the need of enhancing the efficiency of understanding complex systems dynamic and structure of interactions. In addition, complexity analysis has been used as an approach to investigate complex systems that contains a large number of components interacts with each other to accomplish specific outcomes and emerges specific behavior. The design process is considered as a complex action that involves large number interacted components, which are ranked as design tasks, design team, and the components of the design process. Those three main aspects of the building design process consist of several components that interact with each other as a dynamic system with complex information flow. In this paper, the goal is to uncover the complex structure of information interactions in building design process. The Investigating of Royal Institute of British Architects Plan Of Work 2013 information interactions as a case study to uncover the structure and building design process complexity using network analysis software to model the information interaction will significantly enhance the efficiency of the building design process outcomes.

Keywords: complexity, process, building desgin, Riba, design complexity, network, network analysis

Procedia PDF Downloads 531
23289 Growing Evaluation Process in Chamaedorea Linearis with Humus from Biosolids of the Wastewater Treatment Plant, Nueva Granada Military University Cajica

Authors: J. Gonzalez, P. Jimenez, C. Isaza

Abstract:

Palms have different characteristics that make them vulnerable; that is the case of the Chamaedorea linearis, with the presence of solitary stems of small diameter and medium leaves, culturally harvested, and in religious festivities used. Additionally, they present a weak apical meristem as the only emergency point, slow development and growth, and an affectation due to the high rate of deforestation in Colombia. Propagation of this species can improve the pressure on wild populations and help their survival in the environment. In this study was used in 177 plants biosolids humus from the Wastewater Treatment Plant (WWTP), located at the UMNG Campus Cajica (Cundinamarca, Colombia). The experiment used a control and two treatments with 10% and 20% of humus. During the process, the variables evaluated were number of leaves, percentage of chlorophyll, stem length, and estimated leaf area. The data set were taking during 14 weeks before the reproductive maturity, evidencing that the most representative development of the palms was in the treatment of 20%, plants in this treatment presented major number of leaves, larger stems, a high quantity of chlorophyll, and was a first treatment that present pinnate leaves them represent an important point in maturity process. The research gives an opportunity to improve times of growth in another species of palms and plants (Product result from INV ING 2986 UMNG).

Keywords: biosolids, humus, growth, palms, wastewater treatment plant, WWTP

Procedia PDF Downloads 128
23288 Estimation of the External Force for a Co-Manipulation Task Using the Drive Chain Robot

Authors: Sylvain Devie, Pierre-Philippe Robet, Yannick Aoustin, Maxime Gautier

Abstract:

The aim of this paper is to show that the observation of the external effort and the sensor-less control of a system is limited by the mechanical system. First, the model of a one-joint robot with a prismatic joint is presented. Based on this model, two different procedures were performed in order to identify the mechanical parameters of the system and observe the external effort applied on it. Experiments have proven that the accuracy of the force observer, based on the DC motor current, is limited by the mechanics of the robot. The sensor-less control will be limited by the accuracy in estimation of the mechanical parameters and by the maximum static friction force, that is the minimum force which can be observed in this case. The consequence of this limitation is that industrial robots without specific design are not well adapted to perform sensor-less precision tasks. Finally, an efficient control law is presented for high effort applications.

Keywords: control, identification, robot, co-manipulation, sensor-less

Procedia PDF Downloads 164
23287 Changes in Some Biochemical Parameters and Body Weight of Chicken Exposed to Cadmium

Authors: Khaled Saeed Ali

Abstract:

This study was conducted with 3 week old domestic chicken to determine the effect of supplementation of cadmium to dietary. 10 mg/kg Cadmium chloride added to maize- sesame cake meal diet for 4 weeks. The additional cadmium to the diet induced a decreasing body weight and changes in biochemical parameters of chicken. Chicken were divided into two groups. The first group was given a diet containing the concentration of 10 mg cadmium /kg daily for a period of 30 days and the second group was given diet without cadmium and used as a control group. The result revealed decrease in the body weight of treated chicken by 12.7 % compared to control group, whose body weight increased. The plasma glucose concentration, creatinine, aspartate aminotranseferase (AST), and alanine aminotransferase (ALT) were increased significantly (P<0.05) in Cd treated chicken in comparison to the control group. Cadmium accumulation was observed in the intestine, kidney, liver and bone. The accumulation of cadmium was markedly higher (3-4 times) in cadmium-treated animals compared to the control.

Keywords: cadmium, biochemical parameters, body weight, chicken

Procedia PDF Downloads 475
23286 Optimal Sliding Mode Controller for Knee Flexion during Walking

Authors: Gabriel Sitler, Yousef Sardahi, Asad Salem

Abstract:

This paper presents an optimal and robust sliding mode controller (SMC) to regulate the position of the knee joint angle for patients suffering from knee injuries. The controller imitates the role of active orthoses that produce the joint torques required to overcome gravity and loading forces and regain natural human movements. To this end, a mathematical model of the shank, the lower part of the leg, is derived first and then used for the control system design and computer simulations. The design of the controller is carried out in optimal and multi-objective settings. Four objectives are considered: minimization of the control effort and tracking error; and maximization of the control signal smoothness and closed-loop system’s speed of response. Optimal solutions in terms of the Pareto set and its image, the Pareto front, are obtained. The results show that there are trade-offs among the design objectives and many optimal solutions from which the decision-maker can choose to implement. Also, computer simulations conducted at different points from the Pareto set and assuming knee squat movement demonstrate competing relationships among the design goals. In addition, the proposed control algorithm shows robustness in tracking a standard gait signal when accounting for uncertainty in the shank’s parameters.

Keywords: optimal control, multi-objective optimization, sliding mode control, wearable knee exoskeletons

Procedia PDF Downloads 86
23285 Requirements Engineering via Controlling Actors Definition for the Organizations of European Critical Infrastructure

Authors: Jiri F. Urbanek, Jiri Barta, Oldrich Svoboda, Jiri J. Urbanek

Abstract:

The organizations of European and Czech critical infrastructure have specific position, mission, characteristics and behaviour in European Union and Czech state/ business environments, regarding specific requirements for regional and global security environments. They must respect policy of national security and global rules, requirements and standards in all their inherent and outer processes of supply-customer chains and networks. A controlling is generalized capability to have control over situational policy. This paper aims and purposes are to introduce the controlling as quite new necessary process attribute providing for critical infrastructure is environment the capability and profit to achieve its commitment regarding to the effectiveness of the quality management system in meeting customer/ user requirements and also the continual improvement of critical infrastructure organization’s processes overall performance and efficiency, as well as its societal security via continual planning improvement via DYVELOP modelling.

Keywords: added value, DYVELOP, controlling, environments, process approach

Procedia PDF Downloads 415
23284 The Process of Crisis: Model of Its Development in the Organization

Authors: M. Mikušová

Abstract:

The main aim of this paper is to present a clear and comprehensive picture of the process of a crisis in the organization which will help to better understand its possible developments. For a description of the sequence of individual steps and an indication of their causation and possible variants of the developments, a detailed flow diagram with verbal comment is applied. For simplicity, the process of the crisis is observed in four basic phases called: symptoms of the crisis, diagnosis, action and prevention. The model highlights the complexity of the phenomenon of the crisis and that the various phases of the crisis are interweaving.

Keywords: crisis, management, model, organization

Procedia PDF Downloads 297
23283 Minimize Wear and Tear in Y12 Aircraft Tyres

Authors: N. D. Hiripitiya, H. V. H. De Soysa, H. S. U. Thrimavithana, B. R. Epitawala, K. A. D. D. Kuruppu, D. J. K. Lokupathirage

Abstract:

This research was related to identify the reasons which lead for early wear and tear of aircraft tyres. Further this research focused to rectify those issues in tyres with some modifications. The aircraft tyres of Y12 aircraft was selected for the study as due to Y12 aircraft fly frequently. Self-structured questionnaire was prepared and it was distributed among Y12 aircraft technicians. Based on their feedback several issues were identified related to tyre wear and tear. One of the reasons was uneven tyre wearing. But it could rectify after interchanging the tyre sides after completion of 50 landings. Several modifications were done in order to rectify all the identified issues. Several devices were constructed in order to enhance the life time of the Y12 aircraft tyre. Mechanical properties were measured for the worn-out tyres. The properties were compared with the control tyre sample. It was found that there was an average increment of tensile strength by 38.14 % of control tyre, when compared with the worn-out tyres which were completed 50 number of landings. The suggested modifications are in the process of implementation. It is confident that above mentioned solutions will lead to increase the life span of tyres in Y12 aircraft.

Keywords: aircraft, devices, enhance life span, modifications for tyre wear

Procedia PDF Downloads 295
23282 Hearing Conservation Program for Vector Control Workers: Short-Term Outcomes from a Cluster-Randomized Controlled Trial

Authors: Rama Krishna Supramanian, Marzuki Isahak, Noran Naqiah Hairi

Abstract:

Noise-induced hearing loss (NIHL) is one of the highest recorded occupational diseases, despite being preventable. Hearing Conservation Program (HCP) is designed to protect workers hearing and prevent them from developing hearing impairment due to occupational noise exposures. However, there is still a lack of evidence regarding the effectiveness of this program. The purpose of this study was to determine the effectiveness of a Hearing Conservation Program (HCP) in preventing or reducing audiometric threshold changes among vector control workers. This study adopts a cluster randomized controlled trial study design, with district health offices as the unit of randomization. Nine district health offices were randomly selected and 183 vector control workers were randomized to intervention or control group. The intervention included a safety and health policy, noise exposure assessment, noise control, distribution of appropriate hearing protection devices, training and education program and audiometric testing. The control group only underwent audiometric testing. Audiometric threshold changes observed in the intervention group showed improvement in the hearing threshold level for all frequencies except 500 Hz and 8000 Hz for the left ear. The hearing threshold changes range from 1.4 dB to 5.2 dB with largest improvement at higher frequencies mainly 4000 Hz and 6000 Hz. Meanwhile for the right ear, the mean hearing threshold level remained similar at 4000 Hz and 6000 Hz after 3 months of intervention. The Hearing Conservation Program (HCP) is effective in preserving the hearing of vector control workers involved in fogging activity as well as increasing their knowledge, attitude and practice towards noise-induced hearing loss (NIHL).

Keywords: adult, hearing conservation program, noise-induced hearing loss, vector control worker

Procedia PDF Downloads 176
23281 An Approach to Control Electric Automotive Water Pumps Deploying Artificial Neural Networks

Authors: Gabriel S. Adesina, Ruixue Cheng, Geetika Aggarwal, Michael Short

Abstract:

With the global shift towards sustainability and technological advancements, electric Hybrid vehicles (EHVs) are increasingly being seen as viable alternatives to traditional internal combustion (IC) engine vehicles, which also require efficient cooling systems. The electric Automotive Water Pump (AWP) has been introduced as an alternative to IC engine belt-driven pump systems. However, current control methods for AWPs typically employ fixed gain settings, which are not ideal for the varying conditions of dynamic vehicle environments, potentially leading to overheating issues. To overcome the limitations of fixed gain control, this paper proposes implementing an artificial neural network (ANN) for managing the AWP in EHVs. The proposed ANN provides an intelligent, adaptive control strategy that enhances the AWP's performance, supported through MATLAB simulation work illustrated in this paper. Comparative analysis demonstrates that the ANN-based controller surpasses conventional PID and fuzzy logic-based controllers (FLC), exhibiting no overshoot, 0.1secs rapid response, and 0.0696 IAE performance. Consequently, the findings suggest that ANNs can be effectively utilized in EHVs.

Keywords: automotive water pump, cooling system, electric hybrid vehicles, artificial neural networks, PID control, fuzzy logic control, IAE, MATLAB

Procedia PDF Downloads 46
23280 Preparation of Chromium Nanoparticles on Carbon Substrate from Tannery Waste Solution by Chemical Method Compared to Electrokinetic Process

Authors: Mahmoud A. Rabah, Said El Sheikh

Abstract:

This work shows the preparation of chromium nanoparticles from tannery waste solution on glassy carbon by chemical method compared to electrokinetic process. The waste solution contains free and soluble fats, calcium, iron, magnesium and high sodium in addition to the chromium ions. Filtration helps removal of insoluble matters. Diethyl ether successfully extracted soluble fats. The method started by removing calcium as insoluble oxalate salts at hot conditions in a faint acidic medium. The filtrate contains iron, magnesium, chromium ions and sodium chloride in excess. Chromium was separated selectively as insoluble hydroxide sol-gel at pH 6.5, filtered and washed with distilled water. Part of the gel reacted with sulfuric acid to produce chromium sulfate solution having 15-25 g/L concentration. Electrokinetic deposition of chromium nanoparticles on a carbon cathode was carried out using platinum anode under different galvanostatic conditions. The chemical method involved impregnating the carbon specimens with chromium hydroxide gel followed by reduction using hydrazine hydrate or by thermal reduction using hydrogen gas at 1250°C. Chromium grain size was characterized by TEM, FT-IR and SEM. Properties of the Cr grains were correlated to the conditions of the preparation process. Electrodeposition was found to control chromium particles to be more identical in size and shape as compared to the chemical method.

Keywords: chromium, electrodeposition, nanoparticles, tannery waste solution

Procedia PDF Downloads 413
23279 A Further Insight to Foaming in Anaerobic Digester

Authors: Ifeyinwa Rita Kanu, Thomas Aspray, Adebayo J. Adeloye

Abstract:

As a result of the ambiguity and complexity surrounding anaerobic digester foaming, efforts have been made by various researchers to understand the process of anaerobic digester foaming so as to proffer a solution that can be universally applied rather than site specific. All attempts ranging from experimental analysis to comparative review of other process has been futile at explaining explicitly the conditions and process of foaming in anaerobic digester. Studying the available knowledge on foam formation and relating it to anaerobic digester process and operating condition, this study presents a succinct and enhanced understanding of foaming in anaerobic digesters as well as introducing a simple and novel method to identify the onset of anaerobic digester foaming based on analysis of historical data from a field scale system.

Keywords: anaerobic digester, foaming, biogas, surfactant, wastewater

Procedia PDF Downloads 451
23278 An Experimental Investigation of the Effect of Control Algorithm on the Energy Consumption and Temperature Distribution of a Household Refrigerator

Authors: G. Peker, Tolga N. Aynur, E. Tinar

Abstract:

In order to determine the energy consumption level and cooling characteristics of a domestic refrigerator controlled with various cooling system algorithms, a side by side type (SBS) refrigerator was tested in temperature and humidity controlled chamber conditions. Two different control algorithms; so-called drop-in and frequency controlled variable capacity compressor algorithms, were tested on the same refrigerator. Refrigerator cooling characteristics were investigated for both cases and results were compared with each other. The most important comparison parameters between the two algorithms were taken as; temperature distribution, energy consumption, evaporation and condensation temperatures, and refrigerator run times. Standard energy consumption tests were carried out on the same appliance and resulted in almost the same energy consumption levels, with a difference of %1,5. By using these two different control algorithms, the power consumptions character/profile of the refrigerator was found to be similar. By following the associated energy measurement standard, the temperature values of the test packages were measured to be slightly higher for the frequency controlled algorithm compared to the drop-in algorithm. This paper contains the details of this experimental study conducted with different cooling control algorithms and compares the findings based on the same standard conditions.

Keywords: control algorithm, cooling, energy consumption, refrigerator

Procedia PDF Downloads 376
23277 A Framework for Building Information Modelling Execution Plan in the Construction Industry, Lagos State, Nigeria

Authors: Tosin Deborah Akanbi

Abstract:

The Building Information Modeling Execution Plan (BEP) is a document that manifests the specifications for the adoption and execution of building information modeling in the construction sector in an organized manner so as to attain the listed goals. In this regard, the study examined the barriers to the adoption of building information modeling, evaluated the effect of building information modeling adoption characteristics on the key elements of a building information modeling execution plan and developed a strategic framework for a BEP in the Lagos State construction industry. Data were gathered through a questionnaire survey with 332 construction professionals in the study area. Three online structured interviews were conducted to support and validate the findings of the quantitative analysis. The results showed the significant relationships and connections between the variables in the framework: BIM usage and model quality control (aBIMskill -> dMQ, Beta = 0.121, T statistics = 1.829), BIM adoption characteristics and information exchange (bBIM_CH -> dIE, Beta = 0.128, T statistics = 1.727), BIM adoption characteristics and process design (bBIM_CH -> dPD, Beta = 0.170, T statistics = 2.754), BIM adoption characteristics and roles and responsibilities (bBIM_CH -> dRR, Beta = 0.131, T statistics = 2.181), interest BIM barriers and BIM adoption characteristics (cBBIM_INT -> bBIM_CH, Beta = 0.137, T statistics = 2.309), legal BIM barriers and BIM adoption characteristics (cBBIM_LEG -> bBIM_CH, Beta = 0.168, T statistics = 2.818), professional BIM barriers and BIM adoption characteristics (cBBIM_PRO -> bBIM_CH, Beta = 0.152, T statistics = 2.645). The results also revealed that seven final themes were generated, namely: model structure and process design, BIM information exchange and collaboration procedures, project goals and deliverables, project model quality control, roles and responsibilities, reflect Lagos state construction industry and validity of the BEP framework. Thus, there is a need for the policy makers to direct interventions to promote, encourage and support the understanding and adoption of BIM by emphasizing the various benefits of using the technology in the Lagos state construction industry.

Keywords: building information modelling execution plan, BIM adoption characteristics, BEP framework, construction industry

Procedia PDF Downloads 24
23276 A Study of Electrowetting-Assisted Mold Filling in Nanoimprint Lithography

Authors: Wei-Hsuan Hsu, Yi-Xuan Huang

Abstract:

Nanoimprint lithography (NIL) possesses the advantages of sub-10-nm feature and low cost. NIL patterns the resist with physical deformation using a mold, which can easily reproduce the required nano-scale pattern. However, the variation of process parameters and environmental conditions seriously affect reproduction quality. How to ensure the quality of imprinted pattern is essential for industry. In this study, the authors used the electrowetting technology to assist mold filling in the NIL process. A special mold structure was designed to cause electrowetting. During the imprinting process, when a voltage was applied between the mold and substrate, the hydrophilicity/hydrophobicity of the surface of the mold can be converted. Both simulation and experiment confirmed that the electrowetting technology can assist mold filling and avoid incomplete filling rate. The proposed method can also reduce the crack formation during the de-molding process. Therefore, electrowetting technology can improve the process quality of NIL.

Keywords: electrowetting, mold filling, nano-imprint, surface modification

Procedia PDF Downloads 175
23275 Hybrid Dynamic Approach to Optimize the Impact of Shading Design and Control on Electrical Energy Demand

Authors: T. Parhizkar, H. Jafarian, F. Aramoun, Y. Saboohi

Abstract:

Applying motorized shades have substantial effect on reducing energy consumption in building sector. Moreover, the combination of motorized shades with lighting systems and PV panels can lead to considerable reduction in the energy demand of buildings. In this paper, a model is developed to assess and find an optimum combination from shade designs, lighting control systems (dimming and on/off) and implementing PV panels in shades point of view. It is worth mentioning that annual saving for all designs is obtained during hourly simulation of lighting, solar heat flux and electricity generation with the use of PV panel. From 12 designs in general, three designs, two lighting control systems and PV panel option is implemented for a case study. The results illustrate that the optimum combination causes a saving potential of 792kW.hr per year.

Keywords: motorized shades, daylight, cooling load, shade control, hourly simulation

Procedia PDF Downloads 173
23274 Processing of Input Material as a Way to Improve the Efficiency of the Glass Production Process

Authors: Joanna Rybicka-Łada, Magda Kosmal, Anna Kuśnierz

Abstract:

One of the main problems of the glass industry is the still high consumption of energy needed to produce glass mass, as well as the increase in prices, fuels, and raw materials. Therefore, comprehensive actions are taken to improve the entire production process. The key element of these activities, starting from filling the set to receiving the finished product, is the melting process, whose task is, among others, dissolving the components of the set, removing bubbles from the resulting melt, and obtaining a chemically homogeneous glass melt. This solution avoids dust formation during filling and is available on the market. This process consumes over 90% of the total energy needed in the production process. The processes occurring in the set during its conversion have a significant impact on the further stages and speed of the melting process and, thus, on its overall effectiveness. The speed of the reactions occurring and their course depend on the chemical nature of the raw materials, the degree of their fragmentation, thermal treatment as well as the form of the introduced set. An opportunity to minimize segregation and accelerate the conversion of glass sets may be the development of new technologies for preparing and dosing sets. The previously preferred traditional method of melting the set, based on mixing all glass raw materials together in loose form, can be replaced with a set in a thickened form. The aim of the project was to develop a glass set in a selectively or completely densified form and to examine the influence of set processing on the melting process and the properties of the glass.

Keywords: glass, melting process, glass set, raw materials

Procedia PDF Downloads 64
23273 Comparative Analysis of DTC Based Switched Reluctance Motor Drive Using Torque Equation and FEA Models

Authors: P. Srinivas, P. V. N. Prasad

Abstract:

Since torque ripple is the main cause of noise and vibrations, the performance of Switched Reluctance Motor (SRM) can be improved by minimizing its torque ripple using a novel control technique called Direct Torque Control (DTC). In DTC technique, torque is controlled directly through control of magnitude of the flux and change in speed of the stator flux vector. The flux and torque are maintained within set hysteresis bands. The DTC of SRM is analysed by two methods. In one of the methods, the actual torque is computed by conducting Finite Element Analysis (FEA) on the design specifications of the motor. In the other method, the torque is computed by Simplified Torque Equation. The variation of peak current, average current, torque ripple and speed settling time with Simplified Torque Equation model is compared with FEA based model.

Keywords: direct toque control, simplified torque equation, finite element analysis, torque ripple

Procedia PDF Downloads 482
23272 Applying Biosensors’ Electromyography Signals through an Artificial Neural Network to Control a Small Unmanned Aerial Vehicle

Authors: Mylena McCoggle, Shyra Wilson, Andrea Rivera, Rocio Alba-Flores

Abstract:

This work introduces the use of EMGs (electromyography) from muscle sensors to develop an Artificial Neural Network (ANN) for pattern recognition to control a small unmanned aerial vehicle. The objective of this endeavor exhibits interfacing drone applications beyond manual control directly. MyoWare Muscle sensor contains three EMG electrodes (dual and single type) used to collect signals from the posterior (extensor) and anterior (flexor) forearm and the bicep. Collection of raw voltages from each sensor were connected to an Arduino Uno and a data processing algorithm was developed with the purpose of interpreting the voltage signals given when performing flexing, resting, and motion of the arm. Each sensor collected eight values over a two-second period for the duration of one minute, per assessment. During each two-second interval, the movements were alternating between a resting reference class and an active motion class, resulting in controlling the motion of the drone with left and right movements. This paper further investigated adding up to three sensors to differentiate between hand gestures to control the principal motions of the drone (left, right, up, and land). The hand gestures chosen to execute these movements were: a resting position, a thumbs up, a hand swipe right motion, and a flexing position. The MATLAB software was utilized to collect, process, and analyze the signals from the sensors. The protocol (machine learning tool) was used to classify the hand gestures. To generate the input vector to the ANN, the mean, root means squared, and standard deviation was processed for every two-second interval of the hand gestures. The neuromuscular information was then trained using an artificial neural network with one hidden layer of 10 neurons to categorize the four targets, one for each hand gesture. Once the machine learning training was completed, the resulting network interpreted the processed inputs and returned the probabilities of each class. Based on the resultant probability of the application process, once an output was greater or equal to 80% of matching a specific target class, the drone would perform the motion expected. Afterward, each movement was sent from the computer to the drone through a Wi-Fi network connection. These procedures have been successfully tested and integrated into trial flights, where the drone has responded successfully in real-time to predefined command inputs with the machine learning algorithm through the MyoWare sensor interface. The full paper will describe in detail the database of the hand gestures, the details of the ANN architecture, and confusion matrices results.

Keywords: artificial neural network, biosensors, electromyography, machine learning, MyoWare muscle sensors, Arduino

Procedia PDF Downloads 177
23271 Improving Grade Control Turnaround Times with In-Pit Hyperspectral Assaying

Authors: Gary Pattemore, Michael Edgar, Andrew Job, Marina Auad, Kathryn Job

Abstract:

As critical commodities become more scarce, significant time and resources have been used to better understand complicated ore bodies and extract their full potential. These challenging ore bodies provide several pain points for geologists and engineers to overcome, poor handling of these issues flows downs stream to the processing plant affecting throughput rates and recovery. Many open cut mines utilise blast hole drilling to extract additional information to feed back into the modelling process. This method requires samples to be collected during or after blast hole drilling. Samples are then sent for assay with turnaround times varying from 1 to 12 days. This method is time consuming, costly, requires human exposure on the bench and collects elemental data only. To address this challenge, research has been undertaken to utilise hyperspectral imaging across a broad spectrum to scan samples, collars or take down hole measurements for minerals and moisture content and grade abundances. Automation of this process using unmanned vehicles and on-board processing reduces human in pit exposure to ensure ongoing safety. On-board processing allows data to be integrated into modelling workflows with immediacy. The preliminary results demonstrate numerous direct and indirect benefits from this new technology, including rapid and accurate grade estimates, moisture content and mineralogy. These benefits allow for faster geo modelling updates, better informed mine scheduling and improved downstream blending and processing practices. The paper presents recommendations for implementation of the technology in open cut mining environments.

Keywords: grade control, hyperspectral scanning, artificial intelligence, autonomous mining, machine learning

Procedia PDF Downloads 117
23270 Growth of SWNTs from Alloy Catalyst Nanoparticles

Authors: S. Forel, F. Bouanis, L. Catala, I. Florea, V. Huc, F. Fossard, A. Loiseau, C. Cojocaru

Abstract:

Single wall carbon nanotubes are seen as excellent candidate for application on nanoelectronic devices because of their remarkable electronic and mechanical properties. These unique properties are highly dependent on their chiral structures and the diameter. Therefore, structure controlled growth of SWNTs, especially directly on final device’s substrate surface, are highly desired for the fabrication of SWNT-based electronics. In this work, we present a new approach to control the diameter of SWNTs and eventually their chirality. Because of their potential to control the SWNT’s chirality, bi-metalics nanoparticles are used to prepare alloy nanoclusters with specific structure. The catalyst nanoparticles are pre-formed following a previously described process. Briefly, the oxide surface is first covered with a SAM (self-assembled monolayer) of a pyridine-functionalized silane. Then, bi-metallic (Fe-Ru, Co-Ru and Ni-Ru) complexes are assembled by coordination bonds on the pre-formed organic SAM. The resultant alloy nanoclusters were then used to catalyze SWNTs growth on SiO2/Si substrates via CH4/H2 double hot-filament chemical vapor deposition (d-HFCVD). The microscopy and spectroscopy analysis demonstrate the high quality of SWNTs that were furthermore integrated into high-quality SWNT-FET.

Keywords: nanotube, CVD, device, transistor

Procedia PDF Downloads 319
23269 Evaluation of Free Technologies as Tools for Business Process Management

Authors: Julio Sotomayor, Daniel Yucra, Jorge Mayhuasca

Abstract:

The article presents an evaluation of free technologies for business process automation, with emphasis only on tools compatible with the general public license (GPL). The compendium of technologies was based on promoting a service-oriented enterprise architecture (SOA) and the establishment of a business process management system (BPMS). The methodology for the selection of tools was Agile UP. This proposal allows businesses to achieve technological sovereignty and independence, in addition to the promotion of service orientation and the development of free software based on components.

Keywords: BPM, BPMS suite, open-source software, SOA, enterprise architecture, business process management

Procedia PDF Downloads 293
23268 Semi-Automatic Design and Fabrication of Water Waste Cleaning Machine

Authors: Chanida Tangjai Benchalak Muangmeesri, Dechrit Maneetham

Abstract:

Collection of marine garbage in the modern world, where technology is vital to existence. Consequently, technology can assist in reducing the duplicate labor in the subject of collecting trash in the water that must be done the same way repeatedly owing to the consequence of suffering an emerging disease or COVID-19. This is due to the rapid advancement of technology. As a result, solid trash and plastic garbage are increasing. Agricultural gardens, canals, ponds, and water basins are all sources of water. Building boat-like instruments for rubbish collection in the water will be done this time. It has two control options, boat control via remote control and boat control via an Internet of Things system. A solar panel with a power output of 40 watts powers the system being able to store so accurate and precise waste collection, allowing for thorough water cleaning. The primary goals are to keep the water's surface clean and assess its quality to support the aquatic ecology.

Keywords: automatic boat, water treatment, cleaning machine, iot

Procedia PDF Downloads 94
23267 Efficiency of Treatment in Patients with Newly Diagnosed Destructive Pulmonary Tuberculosis Using Intravenous Chemotherapy

Authors: M. Kuzhko, M. Gumeniuk, D. Butov, T. Tlustova, O. Denysov, T. Sprynsian

Abstract:

Background: The aim of the research was to determine the effectiveness of chemotherapy using intravenous antituberculosis drugs compared with their oral administration during the intensive phase of treatment. Methods: 152 tuberculosis patients were randomized into 2 groups: Main (n=65) who received isoniazid, ethambutol and sodium rifamycin intravenous + pyrazinamide per os and control (n=87) who received all the drugs (isoniazid, rifampicin, ethambutol, pyrazinamide) orally. Results: After 2 weeks of treatment symptoms of intoxication disappeared in 59 (90.7±3.59 %) of patients of the main group and 60 (68.9±4.9 %) patients in the control group, p<0.05. The mean duration of symptoms of intoxication in patients main group was 9.6±0.7 days, in control group – 13.7±0.9 days. After completing intensive phase sputum conversion was found in all the patients main group and 71 (81.6±4.1 %) patients control group p < 0.05. The average time of sputum conversion in main group was 1.6±0.1 months and 1.9±0.1 months in control group, p > 0.05. In patients with destructive pulmonary tuberculosis time to sputum conversion was 1.7±0.1 months in main group and 2.2±0.2 months in control group, p < 0.05. The average time of cavities healing in main group was 2.9±0.2 months and 3.9±0.2 months in the control group, p < 0.05. Conclusions: In patients with newly diagnosed destructive pulmonary tuberculosis use of isoniazid, ethambutol and sodium rifamycin intravenous in the intensive phase of chemotherapy resulted in a significant reduction in terms of the disappearance of symptoms of intoxication and sputum conversion.

Keywords: intravenous chemotherapy, tuberculosis, treatment efficiency, tuberculosis drugs

Procedia PDF Downloads 205
23266 Vibration Control of a Functionally Graded Carbon Nanotube-Reinforced Composites Beam Resting on Elastic Foundation

Authors: Gholamhosein Khosravi, Mohammad Azadi, Hamidreza Ghezavati

Abstract:

In this paper, vibration of a nonlinear composite beam is analyzed and then an active controller is used to control the vibrations of the system. The beam is resting on a Winkler-Pasternak elastic foundation. The composite beam is reinforced by single walled carbon nanotubes. Using the rule of mixture, the material properties of functionally graded carbon nanotube-reinforced composites (FG-CNTRCs) are determined. The beam is cantilever and the free end of the beam is under follower force. Piezoelectric layers are attached to the both sides of the beam to control vibrations as sensors and actuators. The governing equations of the FG-CNTRC beam are derived based on Euler-Bernoulli beam theory Lagrange- Rayleigh-Ritz method. The simulation results are presented and the effects of some parameters on stability of the beam are analyzed.

Keywords: carbon nanotubes, vibration control, piezoelectric layers, elastic foundation

Procedia PDF Downloads 275
23265 Towards a Secure Storage in Cloud Computing

Authors: Mohamed Elkholy, Ahmed Elfatatry

Abstract:

Cloud computing has emerged as a flexible computing paradigm that reshaped the Information Technology map. However, cloud computing brought about a number of security challenges as a result of the physical distribution of computational resources and the limited control that users have over the physical storage. This situation raises many security challenges for data integrity and confidentiality as well as authentication and access control. This work proposes a security mechanism for data integrity that allows a data owner to be aware of any modification that takes place to his data. The data integrity mechanism is integrated with an extended Kerberos authentication that ensures authorized access control. The proposed mechanism protects data confidentiality even if data are stored on an untrusted storage. The proposed mechanism has been evaluated against different types of attacks and proved its efficiency to protect cloud data storage from different malicious attacks.

Keywords: access control, data integrity, data confidentiality, Kerberos authentication, cloud security

Procedia PDF Downloads 336
23264 Retrofitted Semi-Active Suspension System for a Eelectric Model Vehicle

Authors: Shiuh-Jer Huang, Yun-Han Yeh

Abstract:

A 40 steps manual adjusting shock absorber was refitted with DC motor driving mechanism to construct as a semi-active suspension system for a four-wheel drive electric vehicle. Accelerometer and potentiometer sensors are installed to measure the sprung mass acceleration and suspension system compression or rebound states for control purpose. A fuzzy logic controller was designed to derive appropriate damping target based on vehicle running condition for semi-active suspension system to follow. The damping ratio control of each wheel axis suspension system is executed with a robust fuzzy sliding mode controller (FSMC). Different road surface conditions are chosen to evaluate the control performance of this semi-active suspension system based on wheel axis acceleration signal.

Keywords: semi-active suspension, electric vehicle, fuzzy sliding mode control, accelerometer

Procedia PDF Downloads 484
23263 Systems and Procedures in Indonesian Administrative Law

Authors: Andhika Danesjvara

Abstract:

Governance of the Republic of Indonesia should be based on the principle of sovereignty and the rule of law. Based on these principles, all forms of decisions and/or actions of government administration should be based on the sovereignty of the people and the law. Decisions and/or actions for citizens should be based on the provisions of the legislation and the general principles of good governance. Control of the decisions and/or actions is a part of administrative review and also judicial control. The control is part of the administrative justice system, which is intended for people affected by the decisions or administrative actions. This control is the duty and authority of the government or independent administrative court. Therefore, systems and procedures for the implementation of the task of governance and development must be regulated by law. Systems and procedures of governance is a subject studied in administrative law, therefore, the research also includes a review of the principles of law in administrative law. The administrative law procedure is important for the government to make decisions, the question is whether the procedures are part of the justice system itself.

Keywords: administrative court, administrative justice, administrative law, administrative procedures

Procedia PDF Downloads 287
23262 The Effect of Intimate Partner Violence on Child Abuse in South Korea: Focused on the Moderating Effects of Patriarchal Attitude and Informal Social Control

Authors: Hye Lin Yang, Clifton R. Emery

Abstract:

Purpose: The purpose of this study is to examine the effects of intimate partner violence on child abuse, whether patriarchal attitude and informal social control moderate the relationship between intimate partner violence and child abuse. This study was conducted with data from The Seoul Families and Neighborhoods Study (SFNS). The SFNS is a representative random probability 3-stage cluster sample of 541 cohabiting couples in Seoul, South Korea collected in 2012. To verify research models, Random effect analysis were used. All analyses were performed using the Stata program. Results: Crucial findings are the following. First, intimate partner violence showed a significantly positive relationship with Child abuse. Second, there are significant moderating effects of informal social control on intimate partner violence - child abuse. Third, there are significant moderating effects of patriarchal attitude on intimate partner violence - child abuse. In other words, Patriarchal attitude is a significant risk factor of child abuse and informal social control is a significant Protection factor of child abuse. Based on results, the policy and practical implications for preventing child abuse, promoting informal social control were discussed.

Keywords: Intimate partner violence, child abuse, informal social control, patriarchal attitude

Procedia PDF Downloads 307
23261 A Controlled Mathematical Model for Population Dynamics in an Infested Honeybees Colonies

Authors: Chakib Jerry, Mounir Jerry

Abstract:

In this paper, a mathematical model of infested honey bees colonies is formulated in order to investigate Colony Collapse Disorder in a honeybee colony. CCD, as it is known, is a major problem on honeybee farms because of the massive decline in colony numbers. We introduce to the model a control variable which represents forager protection. We study the controlled model to derive conditions under which the bee colony can fight off epidemic. Secondly we study the problem of minimizing prevention cost under model’s dynamics constraints.

Keywords: honey bee, disease transmission model, disease control honeybees, optimal control

Procedia PDF Downloads 431