Search results for: fuel theft
586 Development of a Drive Cycle Based Control Strategy for the KIIRA-EV SMACK Hybrid
Authors: Richard Madanda, Paul Isaac Musasizi, Sandy Stevens Tickodri-Togboa, Doreen Orishaba, Victor Tumwine
Abstract:
New vehicle concepts targeting specific geographical markets are designed to satisfy a unique set of road and load requirements. The KIIRA-EV SMACK (KES) hybrid vehicle is designed in Uganda for the East African market. The engine and generator added to the KES electric power train serve both as the range extender and the power assist. In this paper, the design consideration taken to achieve the proper management of the on-board power from the batteries and engine-generator based on the specific drive cycle are presented. To harness the fuel- efficiency benefits of the power train, a specific control philosophy operating the engine and generator at the most efficient speed- torque and speed-power regions is presented. By using a suitable model developed in MATLAB using Simulink and Stateflow, preliminary results show that the steady-state response of the vehicle for a particular hypothetical drive cycle mimicking the expected drive conditions in the city and highway traffic is sufficient.Keywords: control strategy, drive cycle, hybrid vehicle, simulation
Procedia PDF Downloads 380585 A Small-Scale Study of Fire Whirls and Investigation of the Effects of Near-Ground Height on the Behavior of Fire Whirls
Authors: M. Arabghahestani, A. Darwish Ahmad, N. K. Akafuah
Abstract:
In this work, small-scale experiments of fire whirl were conducted to study the spinning fire phenomenon and to gain comprehensive understandings of fire tornadoes and the factors that affect their behavior. High speed imaging was used to track the flames at both temporal and spatial scales. This allowed us to better understand the role of the near-ground height in creating a boundary layer flow profile that, in turn contributes to formation of vortices around the fire, and consequent fire whirls. Based on the results obtained from these observations, we were able to spot the differences in the fuel burning rate of the fire itself as a function of a newly defined specific non-dimensional near-ground height. Based on our observations, there is a cutoff non-dimensional height, beyond which a normal fire can be turned into a fire whirl. Additionally, the results showed that the fire burning rate decreases by moving the fire to a height higher than the ground level. These effects were justified by the interactions between vortices formed by, the back pressure and the boundary layer velocity profile, and the vortices generated by the fire itself.Keywords: boundary layer profile, fire whirls, near-ground height, vortex interactions
Procedia PDF Downloads 163584 Economic Growth through Quality in Higher Education
Authors: Mohammad Mushir Khan, C. Satyanarayana
Abstract:
Education is considered as one of the prime bottlenecks in the economic growth of India. The Ministry of Human Resource & Development, Government of India has, therefore, given special attention to this issue and the Gross Enrollment Ratio (GER) in Higher Education has increased marginally during last five years, with the efforts and various policy decisions like Right to Education (RTE) and other fee reimbursement schemes, initiated by the State Governments. But still this is one of the lowest, if assessed at the global level. It is true that the GER has improved but the survey reveals that the quality has been badly affected. This paper tries to assess the impact of lack of quality education in various sectors that affects Indian Economy and thereby signifies the need of immediate policy decision at the government level. It is to be noted that in higher education, science, management, engineering and technology plays vital role as far as shaping country’s economy is concerned and as such the quality needs to be addressed, particularly, in these streams. The paper, after carefully studying lots of survey reports and other government/ non-government documents recommends measures to be initiated by the Central Government, on priority, for improving quality of education. The quality up-gradation in higher education single handedly provides real fuel to the India’s growth Engine, as it has potential to touch each and every sector that strengthens country’s economy.Keywords: higher education, economy, accreditation, industry, technology
Procedia PDF Downloads 425583 Mooring Analysis of Duct-Type Tidal Current Power System in Shallow Water
Authors: Chul H. Jo, Do Y. Kim, Bong K. Cho, Myeong J. Kim
Abstract:
The exhaustion of oil and the environmental pollution from the use of fossil fuel are increasing. Tidal current power (TCP) has been proposed as an alternative energy source because of its predictability and reliability. By applying a duct and single point mooring (SPM) system, a TCP device can amplify the generating power and keep its position properly. Because the generating power is proportional to cube of the current stream velocity, amplifying the current speed by applying a duct to a TCP system is an effective way to improve the efficiency of the power device. An SPM system can be applied at any water depth and is highly cost effective. Simple installation and maintenance procedures are also merits of an SPM system. In this study, we designed an SPM system for a duct-type TCP device for use in shallow water. Motions of the duct are investigated to obtain the response amplitude operator (RAO) as the magnitude of the transfer function. Parameters affecting the stability of the SPM system such as the fairlead departure angle, current velocity, and the number of clamp weights are analyzed and/or optimized. Wadam and OrcaFlex commercial software is used to design the mooring line.Keywords: mooring design, parametric analysis, RAO (Response Amplitude Operator), SPM (Single Point Mooring)
Procedia PDF Downloads 289582 High Temperature Behavior of a 75Cr3C2–25NiCr Coated T91 Boiler Steel in an Actual Industrial Environment of a Coal Fired Boiler
Authors: Buta Singh Sidhu, Sukhpal Singh Chatha, Hazoor Singh Sidhu
Abstract:
In the present investigation, 75Cr3C2-25NiCr coating was deposited on T91 boiler tube steel substrate by high velocity oxy-fuel (HVOF) process to enhance high-temperature corrosion resistance. High-temperature performance of bare, as well as HVOF-coated steel specimens was evaluated for 1500 h under cyclic conditions in the platen superheater zone coal-fired boiler, where the temperature was around 900 °C. Experiments were carried out for 15 cycles each of 100 h duration followed by 1 h cooling at ambient temperature. The performance of the bare and coated specimens was assessed via metal thickness loss corresponding to the corrosion scale formation and the depth of internal corrosion attack. 75Cr3C2-25NiCr coating deposited on T91 steel imparted better hot corrosion resistance than the uncoated steel. Inferior resistance of bare T91 steel is attributed to the formation of pores and loosely bounded oxide scale rich in Fe2O3.Keywords: 75Cr3C2-25NiCr, HVOF process, boiler steel, coal fired boilers
Procedia PDF Downloads 609581 Effect of Aging Time on CeO2 Nanoparticle Size Distribution Synthesized via Sol-Gel Method
Authors: Navid Zanganeh, Hafez Balavi, Farbod Sharif, Mahla Zabet, Marzieh Bakhtiary Noodeh
Abstract:
Cerium oxide (CeO2) also known as cerium dioxide or ceria is a pale yellow-white powder with various applications in the industry from wood coating to cosmetics, filtration, fuel cell electrolytes, gas sensors, hybrid solar cells and catalysts. In this research, attempts were made to synthesize and characterization of CeO2 nano-particles via sol-gel method. In addition, the effect of aging time on the size of particles was investigated. For this purpose, the aging times adjusted 48, 56, 64, and 72 min. The obtained particles were characterized by x-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), transmitted electron microscopy (TEM), and Brunauer–Emmett–Teller (BET). As a result, XRD patterns confirmed the formation of CeO2 nanoparticles. SEM and TEM images illustrated the nano-particles with cluster shape, spherical and a nano-size range which was in agreement with XRD results. The finest particles (7.3 nm) was obtained at the optimum condition which was aging time of 48 min, calcination temperature at 400 ⁰C, and cerium concentration of 0.004 mol. Average specific surface area of the particles at optimum condition was measured by BET analysis and recorded as 47.57 m2/g.Keywords: aging time, CeO2 nanoparticles, size distribution, sol-gel
Procedia PDF Downloads 456580 Thermodynamic Analysis of a Multi-Generation Plant Driven by Pine Sawdust as Primary Fuel
Authors: Behzad Panahirad, UğUr Atikol
Abstract:
The current study is based on a combined heat and power system with multi-objectives, driven by biomass. The system consists of a combustion chamber (CC), a single effect absorption cooling system (SEACS), an air conditioning unit (AC), a reheat steam Rankine cycle (RRC), an organic Rankine cycle (ORC) and an electrolyzer. The purpose of this system is to produce hydrogen, electricity, heat, cooling, and air conditioning. All the simulations had been performed by Engineering Equation Solver (EES) software. Pine sawdust is the selected biofuel for the combustion process. The overall utilization factor (εₑₙ) and exergetic efficiency (ψₑₓ) were calculated to be 2.096 and 24.03% respectively. The performed renewable and environmental impact analysis indicated a sustainability index of 1.316 (SI) and a specific CO2 emission of 353.8 kg/MWh. The parametric study is conducted based on the variation of ambient (sink) temperature, biofuel mass flow rate, and boilers outlet temperatures. The parametric simulation showed that the increase in biofuel mass flow rate has a positive effect on the sustainability of the system.Keywords: biomass, exergy assessment, multi-objective plant, CO₂ emission, irreversibility
Procedia PDF Downloads 169579 A Computational Analysis of Flow and Acoustics around a Car Wing Mirror
Authors: Aidan J. Bowes, Reaz Hasan
Abstract:
The automotive industry is continually aiming to develop the aerodynamics of car body design. This may be for a variety of beneficial reasons such as to increase speed or fuel efficiency by reducing drag. However recently there has been a greater amount of focus on wind noise produced while driving. Designers in this industry seek a combination of both simplicity of approach and overall effectiveness. This combined with the growing availability of commercial CFD (Computational Fluid Dynamics) packages is likely to lead to an increase in the use of RANS (Reynolds Averaged Navier-Stokes) based CFD methods. This is due to these methods often being simpler than other CFD methods, having a lower demand on time and computing power. In this investigation the effectiveness of turbulent flow and acoustic noise prediction using RANS based methods has been assessed for different wing mirror geometries. Three different RANS based models were used, standard k-ε, realizable k-ε and k-ω SST. The merits and limitations of these methods are then discussed, by comparing with both experimental and numerical results found in literature. In general, flow prediction is fairly comparable to more complex LES (Large Eddy Simulation) based methods; in particular for the k-ω SST model. However acoustic noise prediction still leaves opportunities for more improvement using RANS based methods.Keywords: acoustics, aerodynamics, RANS models, turbulent flow
Procedia PDF Downloads 446578 Feasibility of Agro Waste-Derived Adsorbent for Colour Removal
Authors: U. P. L. Wijayarathne, P. W. Vidanage, H. K. D. Jayampath, K. W. P. M. Kothalawala
Abstract:
Feasibility of utilizing Empty Bunch (EB) fibre, a solid waste of palm oil extraction process, as an adsorbent is analysed in this study. Empty bunch fibre is generated after the extraction of retained oil in the sterilized and threshed empty fruit bunches. Besides the numerous characteristics of EB fibre, which enable its utilization as a fuel, a bio-composite material, or mulch, EB fibre also shows exceptional characteristics of a good adsorbent. Fixed bed adsorption method is used to study the adsorptivity of EB fibre using a continuous adsorption column with Methyl-blue (1.13ppm) as the feed. Adsorptivity is assumed to be solely dependent on the bed porosity keeping other parameters (feed flow rate, bed height, bed diameter, and operating temperature) constant. Bed porosity is changed by means of compact ratio and the variation of the feed concentration is analysed using a photometric method. Break through curves are plotted at different porosity levels and optimum bed porosity is identified for a given feed stream. Feasibility of using the EB fibre as an inexpensive and an abundant adsorbent in wastewater treatment facilities, where the effluent colour reduction is adamant, is also discussed.Keywords: adsorption, fixed bed, break through time, methylene blue, oil palm fibre
Procedia PDF Downloads 289577 LCA/CFD Studies of Artisanal Brick Manufacture in Mexico
Authors: H. A. Lopez-Aguilar, E. A. Huerta-Reynoso, J. A. Gomez, J. A. Duarte-Moller, A. Perez-Hernandez
Abstract:
Environmental performance of artisanal brick manufacture was studied by Lifecycle Assessment (LCA) methodology and Computational Fluid Dynamics (CFD) analysis in Mexico. The main objective of this paper is to evaluate the environmental impact during artisanal brick manufacture. LCA cradle-to-gate approach was complemented with CFD analysis to carry out an Environmental Impact Assessment (EIA). The lifecycle includes the stages of extraction, baking and transportation to the gate. The functional unit of this study was the production of a single brick in Chihuahua, Mexico and the impact categories studied were carcinogens, respiratory organics and inorganics, climate change radiation, ozone layer depletion, ecotoxicity, acidification/ eutrophication, land use, mineral use and fossil fuels. Laboratory techniques for fuel characterization, gas measurements in situ, and AP42 emission factors were employed in order to calculate gas emissions for inventory data. The results revealed that the categories with greater impacts are ecotoxicity and carcinogens. The CFD analysis is helpful in predicting the thermal diffusion and contaminants from a defined source. LCA-CFD synergy complemented the EIA and allowed us to identify the problem of thermal efficiency within the system.Keywords: LCA, CFD, brick, artisanal
Procedia PDF Downloads 393576 Improving the Foult Ride through Capability and Stability of Wind Farms with DFIG Wind Turbine by Using Statcom
Authors: Abdulfetah Shobole, Arif Karakas, Ugur Savas Selamogullari, Mustafa Baysal
Abstract:
The concern of reducing emissions of Co2 from the fossil fuel generating units and using renewable energy sources increased in our world. Due this fact the integration ratio of wind farms to grid reached 20-30% in some part of our world. With increased integration of large MW scaled wind farms to the electric grid, the stability of the electrical system is a great concern. Thus, operators of power systems usually deman the wind turbine generators to obey the same rules as other traditional kinds of generation, such as thermal and hydro, i.e. not affect the grid stability. FACTS devices such as SVC or STATCOM are mostly installed close to the connection point of the wind farm to the grid in order to increase the stability especially during faulty conditions. In this paper wind farm with DFIG turbine type and STATCOM are dynamically modeled and simulated under three phase short circuit fault condition. The dynamic modeling is done by DigSILENT PowerFactory for the wind farm, STATCOM and the network. The simulation results show improvement of system stability near to the connection point of the STATCOM.Keywords: DFIG wind turbine, statcom, dynamic modeling, digsilent
Procedia PDF Downloads 712575 Warm Mix and Reclaimed Asphalt Pavement: A Greener Road Approach
Authors: Lillian Gungat, Meor Othman Hamzah, Mohd Rosli Mohd Hasan, Jan Valentin
Abstract:
Utilization of a high percentage of reclaimed asphalt pavement (RAP) requires higher production temperatures and consumes more energy. High production temperature expedites the aging of bitumen in RAP, which could affect the mixture performance. Warm mix asphalt (WMA) additive enables reduced production temperatures as a result of viscosity reduction. This paper evaluates the integration of a high percentage of RAP with a WMA additive known as RH-WMA. The optimum dosage of RH-WMA was determined from basic properties tests. A total of 0%, 30% and 50% RAP contents from two roads sources were modified with RH-WMA. The modified RAP bitumen were examined for viscosity, stiffness, rutting resistance and greenhouse gas emissions. The addition of RH-WMA improved the flow of bitumen by reducing the viscosity, and thus, decreased the construction temperature. The stiffness of the RAP modified bitumen reduced with the incorporation of RH-WMA. The positive improvement in rutting resistance was observed on bitumen with the addition of RAP and RH-WMA in comparison with control. It was estimated that the addition of RH-WMA could potentially reduce fuel usage and GHG emissions by 22 %. Hence, the synergy of RAP and WMA technology can be an alternative in green road construction.Keywords: reclaimed asphalt pavement, WMA additive, viscosity, stiffness, emissions
Procedia PDF Downloads 355574 Economic Load Dispatch with Valve-Point Loading Effect by Using Differential Evolution Immunized Ant Colony Optimization Technique
Authors: Nur Azzammudin Rahmat, Ismail Musirin, Ahmad Farid Abidin
Abstract:
Economic load dispatch is performed by the utilities in order to determine the best generation level at the most feasible operating cost. In order to guarantee satisfying energy delivery to the consumer, a precise calculation of generation level is required. In order to achieve accurate and practical solution, several considerations such as prohibited operating zones, valve-point effect and ramp-rate limit need to be taken into account. However, these considerations cause the optimization to become complex and difficult to solve. This research focuses on the valve-point effect that causes ripple in the fuel-cost curve. This paper also proposes Differential Evolution Immunized Ant Colony Optimization (DEIANT) in solving economic load dispatch problem with valve-point effect. Comparative studies involving DEIANT, EP and ACO are conducted on IEEE 30-Bus RTS for performance assessments. Results indicate that DEIANT is superior to the other compared methods in terms of calculating lower operating cost and power loss.Keywords: ant colony optimization (ACO), differential evolution (DE), differential evolution immunized ant colony optimization (DEIANT), economic load dispatch (ELD)
Procedia PDF Downloads 449573 [Keynote Talk]: Analysis of Intelligent Based Fault Tolerant Capability System for Solar Photovoltaic Energy Conversion
Authors: Albert Alexander Stonier
Abstract:
Due to the fossil fuel exhaustion and environmental pollution, renewable energy sources especially solar photovoltaic system plays a predominant role in providing energy to the consumers. It has been estimated that by 2050 the renewable energy sources will satisfy 50% of the total energy requirement of the world. In this context, the faults in the conversion process require a special attention which is considered as a major problem. A fault which remains even for a few seconds will cause undesirable effects to the system. The presentation comprises of the analysis, causes, effects and mitigation methods of various faults occurring in the entire solar photovoltaic energy conversion process. In order to overcome the faults in the system, an intelligent based artificial neural networks and fuzzy logic are proposed which can significantly mitigate the faults. Hence the presentation intends to find the problem in renewable energy and provides the possible solution to overcome it with simulation and experimental results. The work performed in a 3kWp solar photovoltaic plant whose results cites the improvement in reliability, availability, power quality and fault tolerant ability.Keywords: solar photovoltaic, power electronics, power quality, PWM
Procedia PDF Downloads 281572 Multiscale Computational Approach to Enhance the Understanding, Design and Development of CO₂ Catalytic Conversion Technologies
Authors: Agnieszka S. Dzielendziak, Lindsay-Marie Armstrong, Matthew E. Potter, Robert Raja, Pier J. A. Sazio
Abstract:
Reducing carbon dioxide, CO₂, is one of the greatest global challenges. Conversion of CO₂ for utilisation across synthetic fuel, pharmaceutical, and agrochemical industries offers a promising option, yet requires significant research to understanding the complex multiscale processes involved. To experimentally understand and optimize such processes at that catalytic sites and exploring the impact of the process at reactor scale, is too expensive. Computational methods offer significant insight and flexibility but require a more detailed multi-scale approach which is a significant challenge in itself. This work introduces a computational approach which incorporates detailed catalytic models, taken from experimental investigations, into a larger-scale computational flow dynamics framework. The reactor-scale species transport approach is modified near the catalytic walls to determine the influence of catalytic clustering regions. This coupling approach enables more accurate modelling of velocity, pressures, temperatures, species concentrations and near-wall surface characteristics which will ultimately enable the impact of overall reactor design on chemical conversion performance.Keywords: catalysis, CCU, CO₂, multi-scale model
Procedia PDF Downloads 253571 Hazardous Gas Detection Robot in Coal Mines
Authors: Kanchan J. Kakade, S. A. Annadate
Abstract:
This paper presents design and development of underground coal mine monitoring using mbed arm cortex controller and ZigBee communication. Coal mine is a special type of mine which is dangerous in nature. Safety is the most important feature of a coal industry for proper functioning. It’s not only for employees and workers but also for environment and nation. Many coal producing countries in the world face phenomenal frequently occurred accidents in coal mines viz, gas explosion, flood, and fire breaking out during coal mines exploitation. Thus, such emissions of various gases from coal mines are necessary to detect with the help of robot. Coal is a combustible, sedimentary, organic rock, which is made up of mainly carbon, hydrogen and oxygen. Coal Mine Detection Robot mainly detects mash gas and carbon monoxide. The mash gas is the kind of the mixed gas which mainly make up of methane in the underground of the coal mine shaft, and sometimes it abbreviate to methane. It is formed from vegetation, which has been fused between other rock layers and altered by the combined effects of heat and pressure over millions of years to form coal beds. Coal has many important uses worldwide. The most significant uses of coal are in electricity generation, steel production, cement manufacturing and as a liquid fuel.Keywords: Zigbee communication, various sensors, hazardous gases, mbed arm cortex M3 core controller
Procedia PDF Downloads 468570 Numerical Study on Parallel Rear-Spoiler on Super Cars
Authors: Anshul Ashu
Abstract:
Computers are applied to the vehicle aerodynamics in two ways. One of two is Computational Fluid Dynamics (CFD) and other is Computer Aided Flow Visualization (CAFV). Out of two CFD is chosen because it shows the result with computer graphics. The simulation of flow field around the vehicle is one of the important CFD applications. The flow field can be solved numerically using panel methods, k-ε method, and direct simulation methods. The spoiler is the tool in vehicle aerodynamics used to minimize unfavorable aerodynamic effects around the vehicle and the parallel spoiler is set of two spoilers which are designed in such a manner that it could effectively reduce the drag. In this study, the standard k-ε model of the simplified version of Bugatti Veyron, Audi R8 and Porsche 911 are used to simulate the external flow field. Flow simulation is done for variable Reynolds number. The flow simulation consists of three different levels, first over the model without a rear spoiler, second for over model with single rear spoiler, and third over the model with parallel rear-spoiler. The second and third level has following parameter: the shape of the spoiler, the angle of attack and attachment position. A thorough analysis of simulations results has been found. And a new parallel spoiler is designed. It shows a little improvement in vehicle aerodynamics with a decrease in vehicle aerodynamic drag and lift. Hence, it leads to good fuel economy and traction force of the model.Keywords: drag, lift, flow simulation, spoiler
Procedia PDF Downloads 500569 Children’s Experience of the Built Environment in the Initial Stages of a Settlement Formation: Case Study of Shahid-Keshvari New Settlement, Isfahan, Iran
Authors: Hassan Sheikh, Mehdi Nilipour, Amiraslan Fila
Abstract:
Many conventional town planning processes do little to give children and young people a voice on what is important about the urban environment. As a result of paying little attention to the children, their physical, social and mental needs are hardly met in urban environments. Therefore, urban spaces are impotent to attract children, while their recreational space has been confined to home or virtual spaces. Since children are just taking the first steps to learn the world beyond house borders, their living environment will profoundly influence almost all aspects of their lives. This puts a great deal of responsibility on the shoulders of planners, who need to balance a number of different issues in urban design to make places more child-friendly. The main purpose of present research is to analyze and plan a child-friendly environment in an on-going urban settlement development for the benefit of all residents. Assessing children’s needs and regard them in development strategies and policies will help to “plan for children”. Following this purpose, based on child-friendly environment studies, indicators of child-friendly environments were collected. Then three distinct characteristics of case study, which are being under-construction, lack of social ties between dwellers and high-rise building, determined seven indicators included basic services, Urban and environmental qualities, Family, kin, peers and community, Sense of belonging and continuity, participation, Safety, security and freedom of movement and human scale. With the survey, Informal observation and participation in small communities, essential data has been collected and analyzed by SPSS software. The field study is Shahid-Keshvari town in Isfahan, Iran. Eighty-six middle childhood, children (ages 8-13) participated. The results show Children's satisfaction is correlated with basic services and the quality of the environment, social environment and the safety and security. The considerable number of children and youth (55%) like to live somewhere other than the town. Satisfaction and sense of belonging and continuity have a strong inverse correlation with age. In other words, as age increases, satisfaction and consequently a sense of belonging will be reduced; thus children and youth consider their future somewhere out of the town. The main reason for dissatisfaction was the basic services and social environment. More than half of children (55%) expressed their wish to develop basic services in terms of availability, hierarchy, and quality. Among all recreational places, children showed more interest to the parks. About three-quarters (76%) considered building a park as a crucial item for residents. The significant number of children (54%) want to have a relationship with more friends. This could be due to the serious shortage of the leisure spaces such as parks or playgrounds. Also, the space around the house or space between the apartments has not been designed for play or children’s activities. Moreover, the presence of strangers and construction workers have a negative impact on children's sense of peace and security; 60% of children are afraid of theft and 36% of children found strangers as a menace. The analysis of children’s issues and suggestions provides an insight to plan and design of child-friendly environment in new towns.Keywords: child-friendly city (CFC), child-friendly environment, child participation, under-construction environment, Isfahan Shahid-Keshvari Town
Procedia PDF Downloads 375568 Biodiversity Conservation: A Path to a Healthy Afghanistan
Authors: Nadir Sidiqi
Abstract:
Biodiversity conservation is humanity’s building block to sustain lives - ultimately allowing all living and nonliving creatures to interact in a balanced proportion. Humanity’s challenge in the 21st century is to maintain biodiversity without harming the natural habitat of plants, animals and beneficial microorganisms. There are many good reasons to consider why biodiversity is important to every nation around the world, especially for a nation like Afghanistan. One of the major values of biodiversity is its economic value: biodiversity provides goods and services to the Afghan nation directly through links and components such as the maintenance of traditional crops, medicine, fruits, animals, grazing, fuel, timber, harvesting, fishing, hunting and related supplies. Biodiversity is the variety of the living components, such as humans, plants, animals, and microorganisms, and nonliving components interaction, including air, water, sunlight, soil, humidity and environmental factors in an area. There are many ways of gauging the value of biodiversity. As an ecosystem, biodiversity includes such benefits as soil fertility, erosion control, crop pollination, crop rotation, and pest control. The conservation of biodiversity is crucial for these benefits, which would be impossible to replace. Biodiversity conservation also has heritage values; this wealth of genetic diversity provides backup to rural people living close together.Keywords: Afghanistan, biodiversity, conservation, economy, environment
Procedia PDF Downloads 529567 Solid Biofuel Production by Hydrothermal Carbonization of Wood Shavings: Effect of Carbonization Temperature and Biomass-to-Water Ratio on Hydrochar’s Properties
Authors: Mohammed Aliyu, Kazunori Iwabuchi, Ibrahim Shaba Mohammed, Abubakar Sadeeq Mohammed, Solomon Musa Dauda, Zinash Delebo Osunde
Abstract:
Hydrothermal carbonization (HTC) is recognised as a low temperature and effective technique for the conversion of biomass to solid biofuel. In this study, the effect of process temperature and biomass-to-water ratio (B/W) on the fuel properties of hydrochar produced from wood shavings was investigated. HTC was conducted in an autoclave using reaction temperature of 230 °C and 260 °C for 20 minutes with B/W ratio of 0.11 to 0.43. The produced hydrochars were characterised by the mass yield (MY), higher heating value (HHV), proximate and ultimate properties. The results showed that the properties of the hydrochars improved with increasing process temperature and B/W ratio. The higher heating value (HHV) increased to 26.74 MJ/kg as the severity of the reaction was increased to the process temperature of 260 °C. Also, the atomic H/C and O/C ratios of hydrochars produced at 230 °C and 260 °C were closed to the regions of a peat and lignite on the plotted van Krevelen diagram. Hence, the produced hydrochar has a promising potential as a sustainable solid biofuel for energy application.Keywords: wood shavings, biomass/water ratio, thermochemical conversion, hydrothermal carbonization, hydrochar
Procedia PDF Downloads 116566 Environmental Quality On-Line Monitoring Based on Enterprises Resource Planning on Implementation ISO 14001:2004
Authors: Ahmad Badawi Saluy
Abstract:
This study aims to develop strategies for the prevention or elimination of environmental pollution as well as changes in external variables of the environment in order to implement the environmental management system ISO 14001:2004 by integrating analysis of environmental issues data, RKL-RPL transactional data and regulation as part of ERP on the management dashboard. This research uses a quantitative descriptive approach with analysis method comparing with air quality standard (PP 42/1999, LH 21/2008), water quality standard (permenkes RI 416/1990, KepmenLH 51/2004, kepmenLH 55/2013 ), and biodiversity indicators. Based on the research, the parameters of RPL monitoring have been identified, among others, the quality of emission air (SO₂, NO₂, dust, particulate) due to the influence of fuel quality, combustion performance in a combustor and the effect of development change around the generating area. While in water quality (TSS, TDS) there was an increase due to the flow of water in the cooling intake carrying sedimentation from the flow of Banjir Kanal Timur. Including compliance with the ISO 14001:2004 clause on application design significantly contributes to the improvement of the quality of power plant management.Keywords: environmental management systems, power plant management, regulatory compliance , enterprises resource planning
Procedia PDF Downloads 179565 Titania Assisted Metal-Organic Framework Matrix for Elevated Hydrogen Generation Combined with the Production of Graphene Sheets through Water-Splitting Process
Authors: Heba M. Gobara, Ahmed A. M. El-Naggar, Rasha S. El-Sayed, Amal A. AlKahlawy
Abstract:
In this study, metal organic framework (Cr-MIL-101) and TiO₂ nanoparticles were utilized as two semiconductors for water splitting process. The coupling of both semiconductors in order to improve the photocatalytic reactivity for the hydrogen production in presence of methanol as a hole scavenger under visible light (sunlight) has been performed. The forementioned semiconductors and the collected samples after water splitting application are characterized by several techniques viz., XRD, N₂ adsorption-desorption, TEM, ED, EDX, Raman spectroscopy and the total content of carbon. The results revealed an efficient yield of H₂ production with maximum purity 99.3% with the in-situ formation of graphene oxide nanosheets and multiwalled carbon nanotubes coated over the surface of the physically mixed Cr-MIL-101–TiO₂ system. The amount of H₂ gas produced was stored when using Cr-MIL-101 catalyst individually. The obtained data in this work provides promising candidate materials for pure hydrogen production as a clean fuel acquired from the water splitting process. In addition, the in-situ production of graphene nanosheets and carbon nanotubes is counted as promising advances for the presented process.Keywords: hydrogen production, water splitting, photocatalysts, Graphene
Procedia PDF Downloads 188564 Fluidized-Bed Combustion of Biomass with Elevated Alkali Content: A Comparative Study between Two Alternative Bed Materials
Authors: P. Ninduangdee, V. I. Kuprianov
Abstract:
Palm kernel shell is an important bioenergy resource in Thailand. However, due to elevated alkali content in biomass ash, this oil palm residue shows high tendency to bed agglomeration in a fluidized-bed combustion system using conventional bed material (silica sand). In this study, palm kernel shell was burned in the conical fluidized-bed combustor (FBC) using alumina and dolomite as alternative bed materials to prevent bed agglomeration. For each bed material, the combustion tests were performed at 45kg/h fuel feed rate with excess air within 20–80%. Experimental results revealed rather weak effects of the bed material type but substantial influence of excess air on the behaviour of temperature, O2, CO, CxHy, and NO inside the reactor, as well as on the combustion efficiency and major gaseous emissions of the conical FBC. The optimal level of excess air ensuring high combustion efficiency (about 98.5%) and acceptable level of the emissions was found to be about 40% when using alumina and 60% with dolomite. By using these alternative bed materials, bed agglomeration can be prevented when burning the shell in the proposed conical FBC. However, both bed materials exhibited significant changes in their morphological, physical and chemical properties in the course of the time.Keywords: palm kernel shell, fluidized-bed combustion, alternative bed materials, combustion and emission performance, bed agglomeration prevention
Procedia PDF Downloads 247563 Correlation and Prediction of Biodiesel Density
Authors: Nieves M. C. Talavera-Prieto, Abel G. M. Ferreira, António T. G. Portugal, Rui J. Moreira, Jaime B. Santos
Abstract:
The knowledge of biodiesel density over large ranges of temperature and pressure is important for predicting the behavior of fuel injection and combustion systems in diesel engines, and for the optimization of such systems. In this study, cottonseed oil was transesterified into biodiesel and its density was measured at temperatures between 288 K and 358 K and pressures between 0.1 MPa and 30 MPa, with expanded uncertainty estimated as ±1.6 kg.m^-3. Experimental pressure-volume-temperature (pVT) cottonseed data was used along with literature data relative to other 18 biodiesels, in order to build a database used to test the correlation of density with temperarure and pressure using the Goharshadi–Morsali–Abbaspour equation of state (GMA EoS). To our knowledge, this is the first that density measurements are presented for cottonseed biodiesel under such high pressures, and the GMA EoS used to model biodiesel density. The new tested EoS allowed correlations within 0.2 kg•m-3 corresponding to average relative deviations within 0.02%. The built database was used to develop and test a new full predictive model derived from the observed linear relation between density and degree of unsaturation (DU), which depended from biodiesel FAMEs profile. The average density deviation of this method was only about 3 kg.m-3 within the temperature and pressure limits of application. These results represent appreciable improvements in the context of density prediction at high pressure when compared with other equations of state.Keywords: biodiesel density, correlation, equation of state, prediction
Procedia PDF Downloads 615562 Reclaiming Properties of Bituminous Concrete Using Cold Mix Design Technology
Authors: Pradeep Kumar, Shalinee Shukla
Abstract:
Pavement plays a vital role in the socio-economic development of a country. Bituminous roads construction with conventional paving grade bitumen obtained from hot mix plant creates pollution and involves emission of greenhouse gases, also the construction of pavements at very high temperature is not feasible or desirable for high rainfall and snowfall areas. This problem of overheating can be eliminated by the construction of pavements with the usage of emulsified cold mixes which will eliminate emissions and help in the reduction of fuel requirement at mixing plant, which leads to energy conservation. Cold mix is a mixture of unheated aggregate and emulsion or cutback and filler. The primary objective of this research is to assess the volumetric mix design parameters of recycled aggregates with cold mixing technology and also to assess the impact of additives on volumetric mix characteristics. In this present study, bituminous pavement materials are reclaimed using cold mix technology, and Marshall specimens are prepared with the help of slow setting type 2 (SS-2) cationic bitumen emulsion as a binder for recycled aggregates. This technique of road construction is more environmentally friendly and can be done in adverse weather conditions.Keywords: cold mixes, bitumen emulsion, recycled aggregates, volumetric properties
Procedia PDF Downloads 137561 Recycling of Polymers in the Presence of Nanocatalysts: A Green Approach towards Sustainable Environment
Authors: Beena Sethi
Abstract:
This work involves the degradation of plastic waste in the presence of three different nanocatalysts. A thin film of LLDPE was formed with all three nanocatalysts separately in the solvent. Thermo Gravimetric Analysis (TGA) and Differential Scanning Calorimetric (DSC) analysis of polymers suggest that the presence of these catalysts lowers the degradation temperature and the change mechanism of degradation. Gas chromatographic analysis was carried out for two films. In gas chromatography (GC) analysis, it was found that degradation of pure polymer produces only 32% C3/C4 hydrocarbons and 67.6% C5/C9 hydrocarbons. In the presence of these catalysts, more than 80% of polymer by weight was converted into either liquid or gaseous hydrocarbons. Change in the mechanism of degradation of polymer was observed therefore more C3/C4 hydrocarbons along with valuable feedstock are produced. Adjustment of dose of nanocatalyst, use of nano-admixtures and recycling of catalyst can make this catalytic feedstock recycling method a good tool to get sustainable environment. The obtained products can be utilized as fuel or can be transformed into other useful products. In accordance with the principles of sustainable development, chemical recycling i.e. tertiary recycling of polymers along with the reuse (zero order recycling) of plastics can be the most appropriate and promising method in this direction. The tertiary recycling is attracting much attention from the viewpoint of the energy resource.Keywords: degradation, differential scanning calorimetry, feedstock recycling, gas chromatography, thermogravimetric analysis
Procedia PDF Downloads 422560 The Circularity of Re-Refined Used Motor Oils: Measuring Impacts and Ensuring Responsible Procurement
Authors: Farah Kanani
Abstract:
Blue Tide Environmental is a company focused on developing a network of used motor oil recycling facilities across the U.S. They initiated the redesign of its recycling plant in Texas, and aimed to establish an updated carbon footprint of re-refined used motor oils compared to an equivalent product derived from virgin stock that is not re-refined. The aim was to quantify emissions savings of a circular alternative to conventional end-of-life combustion of used motor oil (UMO). To do so, they mandated an ISO-compliant carbon footprint, utilizing complex models requiring geographical and temporal accuracy to accommodate the U.S. refinery market. The quantification of linear and circular flows, proxies for fuel substitution and system expansion for multi-product outputs were all critical methodological choices and were tested through sensitivity analyses. The re-refined system consisted of continuous recycling of UMO and thus, end-of-life is considered non-existent. The unique perspective to this topic will be from a life cycle i.e. holistic one and essentially demonstrate using this example of how a cradle-to-cradle model can be used to quantify a comparative carbon footprint. The intended audience is lubricant manufacturers as the consumers, motor oil industry professionals and other industry members interested in performing a cradle-to-cradle modeling.Keywords: circularity, used motor oil, re-refining, systems expansion
Procedia PDF Downloads 31559 Prime Mover Sizing for Base-Loaded Combined Heating and Power Systems
Authors: Djalal Boualili
Abstract:
This article considers the problem of sizing prime movers for combined heating and power (CHP) systems operating at full load to satisfy a fraction of a facility's electric load, i.e. a base load. Prime mover sizing is examined using three criteria: operational cost, carbon dioxide emissions (CDE), and primary energy consumption (PEC). The sizing process leads to consider ratios of conversion factors applied to imported electricity to conversion factors applied to fuel consumed. These ratios are labelled RCost, R CDE, R PEC depending on whether the conversion factors are associated with operational cost, CDE, or PEC, respectively. Analytical results show that in order to achieve savings in operational cost, CDE, or PEC, the ratios must be larger than a unique constant R Min that only depends on the CHP components efficiencies. Savings in operational cost, CDE, or PEC due to CHP operation are explicitly formulated using simple equations. This facilitates the process of comparing the tradeoffs of optimizing the savings of one criterion over the other two – a task that has traditionally been accomplished through computer simulations. A hospital building, located in Chlef, Algeria, was used as an example to apply the methodology presented in this article.Keywords: sizing, heating and power, ratios, energy consumption, carbon dioxide emissions
Procedia PDF Downloads 231558 Evaluation of Biogas Potential from Livestock in Malawi
Authors: Regina Kulugomba, Richard Blanchard, Harold Mapoma, Gregory Gamula, Stanley Mlatho
Abstract:
Malawi is a country with low energy access with only 10% of people having access to electricity and 97% of people relying on charcoal and fuel wood. The over dependence on the traditional biomass has brought in a number of negative consequences on people’s health and the environment. To curb the situation, the Government of Malawi (GoM), through its national policy of 2018 and charcoal strategies of 2007, identified biogas as a suitable alternative energy source for cooking. The GoM intends to construct tubular digesters across the country and one of the most crucial factors is the availability of livestock manure. The study was conducted to assess biogas potential from livestock manure by using Quantum Geographic information system (QGIS) software. Potential methane was calculated based on the population of livestock, amount of manure produced per capita and year, total solids, biogas yield and availability coefficient. The results of the study estimated biogas potential at 687 million m3 /year. Districts identified with highest biogas potential were Lilongwe, Ntcheu, Mangochi, Neno, Mwanza, Blantyre, Chiradzulu and Mulanje. The information will help investors and the Government of Malawi to locate potential sites for biogas plants installation.Keywords: biogas, energy, feedstock, livestock
Procedia PDF Downloads 175557 Spillage Prediction Using Fluid-Structure Interaction Simulation with Coupled Eulerian-Lagrangian Technique
Authors: Ravi Soni, Irfan Pathan, Manish Pande
Abstract:
The current product development process needs simultaneous consideration of different physics. The performance of the product needs to be considered under both structural and fluid loads. Examples include ducts and valves where structural behavior affects fluid motion and vice versa. Simulation of fluid-structure interaction involves modeling interaction between moving components and the fluid flow. In these scenarios, it is difficult to calculate the damping provided by fluid flow because of dynamic motions of components and the transient nature of the flow. Abaqus Explicit offers general capabilities for modeling fluid-structure interaction with the Coupled Eulerian-Lagrangian (CEL) method. The Coupled Eulerian-Lagrangian technique has been used to simulate fluid spillage through fuel valves during dynamic closure events. The technique to simulate pressure drops across Eulerian domains has been developed using stagnation pressure. Also, the fluid flow is calculated considering material flow through elements at the outlet section of the valves. The methodology has been verified on Eaton products and shows a good correlation with the test results.Keywords: Coupled Eulerian-Lagrangian Technique, fluid structure interaction, spillage prediction, stagnation pressure
Procedia PDF Downloads 379