Search results for: fluid contact movement
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5453

Search results for: fluid contact movement

4343 Embodied Spirituality in Gestalt Therapy

Authors: Silvia Alaimo

Abstract:

This lecture brings to our attention the theme of spirituality within Gestalt therapy’s theoretical and clinical perspectives and which is closely connected to the fertile emptiness and creative indifference’ experiences. First of all, the premise that must be done is the overcoming traditional western culture’s philosophical and religious misunderstandings, such as the dicotomy between spirituality and pratical/material daily life, as well as the widespread secular perspective of classic psychology. Even fullness and emptiness have traditionally been associated with the concepts of being and not being. "There is only one way through which we can contact the deepest layers of our existence, rejuvenate our thinking and reach intuition (the harmony of thought and being): inner silence" (Perls) *. Therefore, "fertile void" doesn't mean empty in itself, but rather an useful condition of every creative and responsible act, making room for a deeper dimension close to spirituality. Spirituality concerns questions about the meaning of existence, which lays beyond the concrete and literal dimension, looking for the essence of things, and looking at the value of personal experience. Looking at fundamentals of Gestalt epistemology, phenomenology, aesthetics, and the relationship, we can reach the heart of a therapeutic work that takes spiritual contours and which are based on an embodied (incarnate size), through the relational aesthetic knowledge (Spagnuolo Lobb ), the deep contact with each other, the role of compassion and responsibility, as the patient's recognition criteria (Orange, 2013) rooted in the body. The aesthetic dimension, like the spiritual dimension to which it is often associated, is a subtle dimension: it is the dimension of the essence of things, of their "soul." In clinical practice, it implies that the relationship between therapist and patient is "in the absence of judgment," also called "zero point of creative indifference," expressed by ‘therapeutic mentality’. It consists in following with interest and authentic curiosity where the patient wants to go and support him in his intentionality of contact. It’s a condition of pure and simple awareness, of the full acceptance of "what is," a moment of detachment from one's own life in which one does not take oneself too seriously, a starting point for finding a center of balance and integration that brings to the creative act, to growth, and, as Perls would say, to the excitement and adventure of living.

Keywords: spirituality, bodily, embodied aesthetics, phenomenology, relationship

Procedia PDF Downloads 128
4342 Investigation of Contact Pressure Distribution at Expanded Polystyrene Geofoam Interfaces Using Tactile Sensors

Authors: Chen Liu, Dawit Negussey

Abstract:

EPS (Expanded Polystyrene) geofoam as light-weight material in geotechnical applications are made of pre-expanded resin beads that form fused cellular micro-structures. The strength and deformation properties of geofoam blocks are determined by unconfined compression of small test samples between rigid loading plates. Applied loads are presumed to be supported uniformly over the entire mating end areas. Predictions of field performance on the basis of such laboratory tests widely over-estimate actual post-construction settlements and exaggerate predictions of long-term creep deformations. This investigation examined the development of contact pressures at a large number of discrete points at low and large strain levels for different densities of geofoam. Development of pressure patterns for fine and coarse interface material textures as well as for molding skin and hot wire cut geofoam surfaces were examined. The lab testing showed that I-Scan tactile sensors are useful for detailed observation of contact pressures at a large number of discrete points simultaneously. At low strain level (1%), the lower density EPS block presents low variations in localized stress distribution compared to higher density EPS. At high strain level (10%), the dense geofoam reached the sensor cut-off limit. The imprint and pressure patterns for different interface textures can be distinguished with tactile sensing. The pressure sensing system can be used in many fields with real-time pressure detection. The research findings provide a better understanding of EPS geofoam behavior for improvement of design methods and performance prediction of critical infrastructures, which will be anticipated to guide future improvements in design and rapid construction of critical transportation infrastructures with geofoam in geotechnical applications.

Keywords: geofoam, pressure distribution, tactile pressure sensors, interface

Procedia PDF Downloads 156
4341 An Analytic Comparison between Arabic and English Prosodies: Poetical Feet and Meters

Authors: Jamil Jafari, Sharafat Karimi

Abstract:

The Arabic Language has a complicated system of prosody invented by the great grammarian Khalil Ibn Ahmad Farahidi. He could extract 15 meters out of his innovative five circles, which were used in Arabic poetry of the 7th and 8th centuries. Then after a while, his student Akhfash added or compensated another meter to his tutor's meters, so overall, we now have 16 different meters in Arabic poetry. These meters have been formed by various combinations of 8 different feet and each foot is combined of rudimentary units called Sabab and Wated which are combinations of movement (/) and silent (ʘ) letters. On the other hand in English, we are dealing with another system of metrical prosody. In this language, feet are consisted of stressed and unstressed syllables and are of six types: iamb, trochee, dactyl, anapest, spondee, and pyrrhic. Using the descriptive-analytic method, in this research we aim at making a comparison between Arabic and English systems of metrical prosody to investigate their similarities and differences. The results show that both of them are quantitative and both of them rely on syllables in afoot. But unlike Arabic, English is utilizing another rhyme system and the number of feet in a line differs from Arabic; also, its feet are combined of stressed and unstressed syllables, while those of Arabic is a combination of movement and silent letters.

Keywords: Arabic prosody, English prosody, foot, meter, poetry

Procedia PDF Downloads 130
4340 The Effect of Discontinued Water Spray Cooling on the Heat Transfer Coefficient

Authors: J. Hrabovský, M. Chabičovský, J. Horský

Abstract:

Water spray cooling is a technique typically used in heat treatment and other metallurgical processes where controlled temperature regimes are required. Water spray cooling is used in static (without movement) or dynamic (with movement of the steel plate) regimes. The static regime is notable for the fixed position of the hot steel plate and fixed spray nozzle. This regime is typical for quenching systems focused on heat treatment of the steel plate. The second application of spray cooling is the dynamic regime. The dynamic regime is notable for its static section cooling system and moving steel plate. This regime is used in rolling and finishing mills. The fixed position of cooling sections with nozzles and the movement of the steel plate produce nonhomogeneous water distribution on the steel plate. The length of cooling sections and placement of water nozzles in combination with the nonhomogeneity of water distribution leads to discontinued or interrupted cooling conditions. The impact of static and dynamic regimes on cooling intensity and the heat transfer coefficient during the cooling process of steel plates is an important issue. Heat treatment of steel is accompanied by oxide scale growth. The oxide scale layers can significantly modify the cooling properties and intensity during the cooling. The combination of the static and dynamic (section) regimes with the variable thickness of the oxide scale layer on the steel surface impact the final cooling intensity. The study of the influence of the oxide scale layers with different cooling regimes was carried out using experimental measurements and numerical analysis. The experimental measurements compared both types of cooling regimes and the cooling of scale-free surfaces and oxidized surfaces. A numerical analysis was prepared to simulate the cooling process with different conditions of the section and samples with different oxide scale layers.

Keywords: heat transfer coefficient, numerical analysis, oxide layer, spray cooling

Procedia PDF Downloads 387
4339 Investigation of Fluid-Structure-Seabed Interaction of Gravity Anchor under Liquefaction and Scour

Authors: Vinay Kumar Vanjakula, Frank Adam, Nils Goseberg, Christian Windt

Abstract:

When a structure is installed on a seabed, the presence of the structure will influence the flow field around it. The changes in the flow field include, formation of vortices, turbulence generation, waves or currents flow breaking and pressure differentials around the seabed sediment. These changes allow the local seabed sediment to be carried off and results in Scour (erosion). These are a threat to the structure's stability. In recent decades, rapid developments of research work and the knowledge of scour On fixed structures (bridges and Monopiles) in rivers and oceans has been carried out, and very limited research work on scour and liquefaction for gravity anchors, particularly for floating Tension Leg Platform (TLP) substructures. Due to its importance and need for enhancement of knowledge in scour and liquefaction around marine structures, the MarTERA funded a three-year (2020-2023) research program called NuLIMAS (Numerical Modeling of Liquefaction Around Marine Structures). It’s a group consists of European institutions (Universities, laboratories, and consulting companies). The objective of this study is to build a numerical model that replicates the reality, which indeed helps to simulate (predict) underwater flow conditions and to study different marine scour and Liquefication situations. It helps to design a heavyweight anchor for the TLP substructure and to minimize the time and expenditure on experiments. And also, the achieved results and the numerical model will be a basis for the development of other design and concepts For marine structures. The Computational Fluid Dynamics (CFD) numerical model will build in OpenFOAM. A conceptual design of heavyweight anchor for TLP substructure is designed through taking considerations of available state-of-the-art knowledge on scour and Liquefication concepts and references to Previous existing designs. These conceptual designs are validated with the available similar experimental benchmark data and also with the CFD numerical benchmark standards (CFD quality assurance study). CFD optimization model/tool is designed as to minimize the effect of fluid flow, scour, and Liquefication. A parameterized model is also developed to automate the calculation process to reduce user interactions. The parameters such as anchor Lowering Process, flow optimized outer contours, seabed interaction study, and FSSI (Fluid-Structure-Seabed Interactions) are investigated and used to carve the model as to build an optimized anchor.

Keywords: gravity anchor, liquefaction, scour, computational fluid dynamics

Procedia PDF Downloads 128
4338 The Environmental Conflict over the Trans Mountain Pipeline Expansion in Burnaby, British Columbia, Canada

Authors: Emiliano Castillo

Abstract:

The aim of this research is to analyze the origins, the development and possible outcomes of the environmental conflict between grassroots organizations, indigenous communities, Kinder Morgan Corporation, and the Canadian government over the Trans Mountain pipeline expansion in Burnaby, British Columbia, Canada. Building on the political ecology and the environmental justice theoretical framework, this research examines the impacts and risks of tar sands extraction, production, and transportation on climate change, public health, the environment, and indigenous people´s rights over their lands. This study is relevant to the environmental justice and political ecology literature because it discusses the unequal distribution of environmental costs and economic benefits of tar sands development; and focuses on the competing interests, needs, values, and claims of the actors involved in the conflict. Furthermore, it will shed light on the context, conditions, and processes that lead to the organization and mobilization of a grassroots movement- comprised of indigenous communities, citizens, scientists, and non-governmental organizations- that draw significant media attention by opposing the Trans Mountain pipeline expansion. Similarly, the research will explain the differences and dynamics within the grassroots movement. This research seeks to address the global context of the conflict by studying the links between the decline of conventional oil production, the rise of unconventional fossil fuels (e.g. tar sands), climate change, and the struggles of low-income, ethnic, and racial minorities over the territorial expansion of extractive industries. Data will be collected from legislative documents, policy and technical reports, scientific journals, newspapers articles, participant observation, and semi-structured interviews with representatives and members of the grassroots organizations, indigenous communities, and Burnaby citizens that oppose the Trans Mountain pipeline. These interviews will focus on their perceptions of the risks of the Trans Mountain pipeline expansion; the roots of the anti-tar sands movement; the differences and dynamics within the movement; and the strategies to defend the livelihoods of local communities and the environment against tar sands development. This research will contribute to the understanding of the underlying causes of the environmental conflict between the Canadian government, Kinder Morgan, and grassroots organizations over tar sands extraction, production, and transportation in Burnaby, British Columbia, Canada. Moreover, this work will elucidate the transformations of society-nature relationships brought by tar sands development. Research findings will provide scientific information about how the resistance movement in British Columbia can challenge the dominant narrative on tar sands, exert greater influence in environmental politics, and efficiently defend Indigenous people´s rights to lands. Furthermore, this research will shed light into how grassroots movements can contribute towards the building of more inclusive and sustainable societies.

Keywords: environmental conflict, environmental justice, extractive industry, indigenous communities, political ecology, tar sands

Procedia PDF Downloads 263
4337 Computational Study and Wear Prediction of Steam Turbine Blade with Titanium-Nitride Coating Deposited by Physical Vapor Deposition Method

Authors: Karuna Tuchinda, Sasithon Bland

Abstract:

This work investigates the wear of a steam turbine blade coated with titanium nitride (TiN), and compares to the wear of uncoated blades. The coating is deposited on by physical vapor deposition (PVD) method. The working conditions of the blade were simulated and surface temperature and pressure values as well as flow velocity and flow direction were obtained. This data was used in the finite element wear model developed here in order to predict the wear of the blade. The wear mechanisms considered are erosive wear due to particle impingement and fluid jet, and fatigue wear due to repeated impingement of particles and fluid jet. Results show that the life of the TiN-coated blade is approximately 1.76 times longer than the life of the uncoated one.

Keywords: physical vapour deposition, steam turbine blade, titanium-based coating, wear prediction

Procedia PDF Downloads 359
4336 Non-Newtonian Fluid Flow Simulation for a Vertical Plate and a Square Cylinder Pair

Authors: Anamika Paul, Sudipto Sarkar

Abstract:

The flow behaviour of non-Newtonian fluid is quite complicated, although both the pseudoplastic (n < 1, n being the power index) and dilatant (n > 1) fluids under this category are used immensely in chemical and process industries. A limited research work is carried out for flow over a bluff body in non-Newtonian flow environment. In the present numerical simulation we control the vortices of a square cylinder by placing an upstream vertical splitter plate for pseudoplastic (n=0.8), Newtonian (n=1) and dilatant (n=1.2) fluids. The position of the upstream plate is also varied to calculate the critical distance between the plate and cylinder, below which the cylinder vortex shedding suppresses. Here the Reynolds number is considered as Re = 150 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid), which comes under laminar periodic vortex shedding regime. The vertical plate is having a dimension of 0.5a × 0.05a and it is placed at the cylinder centre-line. Gambit 2.2.30 is used to construct the flow domain and to impose the boundary conditions. In detail, we imposed velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. The unsteady 2-D Navier Stokes equations in fully conservative form are then discretized in second-order spatial and first-order temporal form. These discretized equations are then solved by Ansys Fluent 14.5 implementing SIMPLE algorithm written in finite volume method. Here, fine meshing is used surrounding the plate and cylinder. Away from the cylinder, the grids are slowly stretched out in all directions. To get an account of mesh quality, a total of 297 × 208 grid points are used for G/a = 3 (G being the gap between the plate and cylinder) in the streamwise and flow-normal directions respectively after a grid independent study. The computed mean flow quantities obtained from Newtonian flow are agreed well with the available literatures. The results are depicted with the help of instantaneous and time-averaged flow fields. Qualitative and quantitative noteworthy differences are obtained in the flow field with the changes in rheology of fluid. Also, aerodynamic forces and vortex shedding frequencies differ with the gap-ratio and power index of the fluid. We can conclude from the present simulation that fluent is capable to capture the vortex dynamics of unsteady laminar flow regime even in the non-Newtonian flow environment.

Keywords: CFD, critical gap-ratio, splitter plate, wake-wake interactions, dilatant, pseudoplastic

Procedia PDF Downloads 103
4335 Fluid–Structure Interaction Modeling of Wind Turbines

Authors: Andre F. A. Cyrino

Abstract:

Knowing that the technological advance is the focus on the efficient extraction of energy from wind, and therefore in the design of wind turbine structures, this work aims the study of the fluid-structure interaction of an idealized wind turbine. The blade was studied as a beam attached to a cylindrical Hub with rotation axis pointing the air flow that passes through the rotor. Using the calculus of variations and the finite difference method the blade will be simulated by a discrete number of nodes and the aerodynamic forces were evaluated. The study presented here was written on Matlab and performs a numeric simulation of a simplified model of windmill containing a Hub and three blades modeled as Euler-Bernoulli beams for small strains and under the constant and uniform wind. The mathematical approach is done by Hamilton’s Extended Principle with the aerodynamic loads applied on the nodes considering the local relative wind speed, angle of attack and aerodynamic lift and drag coefficients. Due to the wide range of angles of attack, a wind turbine blade operates, the airfoil used on the model was NREL SERI S809 which allowed obtaining equations for Cl and Cd as functions of the angle of attack, based on a NASA study. Tridimensional flow effects were no taken in part, as well as torsion of the beam, which only bends. The results showed the dynamic response of the system in terms of displacement and rotational speed as the turbine reached the final speed. Although the results were not compared to real windmills or more complete models, the resulting values were consistent with the size of the system and wind speed.

Keywords: blade aerodynamics, fluid–structure interaction, wind turbine aerodynamics, wind turbine blade

Procedia PDF Downloads 250
4334 Thermal Securing of Electrical Contacts inside Oil Power Transformers

Authors: Ioan Rusu

Abstract:

In the operation of power transformers of 110 kV/MV from substations, these are traveled by fault current resulting from MV line damage. Defect electrical contacts are heated when they are travelled from fault currents. In the case of high temperatures when 135 °C is reached, the electrical insulating oil in the vicinity of the electrical faults comes into contact with these contacts releases gases, and activates the electrical protection. To avoid auto-flammability of electro-insulating oil, we designed a security system thermal of electrical contact defects by pouring fire-resistant polyurethane foam, mastic or mortar fire inside a cardboard electro-insulating cylinder. From practical experience, in the exploitation of power transformers of 110 kV/MT in oil electro-insulating were recorded some passing disconnecting commanded by the gas protection at internal defects. In normal operation and in the optimal load, nominal currents do not require thermal secure contacts inside electrical transformers, contacts are made at the fabrication according to the projects or to repair by solder. In the case of external short circuits close to the substation, the contacts inside electrical transformers, even if they are well made in sizes of Rcontact = 10‑6 Ω, are subjected to short-circuit currents of the order of 10 kA-20 kA which lead to the dissipation of some significant second-order electric powers, 100 W-400 W, on contact. At some internal or external factors which action on electrical contacts, including electrodynamic efforts at short-circuits, these factors could be degraded over time to values in the range of 10-4 Ω to 10-5 Ω and if the action time of protection is great, on the order of seconds, power dissipation on electrical contacts achieve high values of 1,0 kW to 40,0 kW. This power leads to strong local heating, hundreds of degrees Celsius and can initiate self-ignition and burning oil in the vicinity of electro-insulating contacts with action the gas relay. Degradation of electrical contacts inside power transformers may not be limited for the duration of their operation. In order to avoid oil burn with gas release near electrical contacts, at short-circuit currents 10 kA-20 kA, we have outlined the following solutions: covering electrical contacts in fireproof materials that would avoid direct burn oil at short circuit and transmission of heat from electrical contact along the conductors with heat dissipation gradually over time, in a large volume of cooling. Flame retardant materials are: polyurethane foam, mastic, cement (concrete). In the normal condition of operation of transformer, insulating of conductors coils is with paper and insulating oil. Ignition points of its two components respectively are approximated: 135 °C heat for oil and 200 0C for paper. In the case of a faulty electrical contact, about 10-3 Ω, at short-circuit; the temperature can reach for a short time, a value of 300 °C-400 °C, which ignite the paper and also the oil. By burning oil, there are local gases that disconnect the power transformer. Securing thermal electrical contacts inside the transformer, in cardboard tube with polyurethane foams, mastik or cement, ensures avoiding gas release and also gas protection working.

Keywords: power transformer, oil insulatation, electric contacts, Bucholtz relay

Procedia PDF Downloads 141
4333 TiO2 Formation after Nanotubes Growth on Ti-15Mo Alloy Surface for Different Annealing Temperatures

Authors: A. L. R. Rangel, J. A. M. Chaves, A. P. R. Alves Claro

Abstract:

Surface modification of titanium and its alloys using TiO2 nanotube growth has been widely studied for biomedical field due to excellent interaction between implant and biological environment. The success of this treatment is directly related to anatase phase formation (TiO2 phase) which affects the cells growth. The aim of this study was to evaluate the phases formed in the nanotubes growth on the Ti-15Mo surface. Nanotubes were grown by electrochemical anodization of the alloy in ammonium fluoride based glycerol electrolyte for 24 hours at 20V. Then, the samples were annealed at 200°,400°, 450°, 500°, 600°, and 800° C for 1 hour. Contact angles measurements, scanning electron microscopy images and X rays diffraction analysis (XRD) were carried out for all samples. Raman Spectroscopy was used to evaluate TiO2 phases transformation in nanotubes samples as well. The results of XRD showed anatase formation for lower temperatures, while at 800 ° C the rutile phase was observed all over the surface. Raman spectra indicate that this phase transition occurs between 500 and 600 °C. The different phases formed have influenced the nanotubes morphologies, since higher annealing temperatures induced agglutination of the TiO2 layer, disrupting the tubular structure. On the other hand, the nanotubes drastically reduced the contact angle, regardless the annealing temperature.

Keywords: nanotubes, TiO2, titanium alloys, Ti-15Mo

Procedia PDF Downloads 367
4332 Liquid-Liquid Extraction of Uranium(vi) from Aqueous Solution Using 1-Hydroxyalkylidene-1,1-Diphosphonic Acids

Authors: M. Bouhoun Ali, A. Y. Badjah Hadj Ahmed, M. Attou, A. Elias, M. A. Didi

Abstract:

The extraction of uranium(VI) from aqueous solutions has been investigated using 1-hydroxyhexadecylidene-1,1-diphosphonic acid (HHDPA) and 1-hydroxydodecylidene-1,1-diphosphonic acid (HDDPA), which were synthesized and characterized by elemental analysis and by FT-IR, 1H NMR, 31P NMR spectroscopy. In this paper, we propose a tentative assignment for the shifts of those two ligands and their specific complexes with uranium(VI). We carried out the extraction of uranium(VI) by HHDPA and HDDPA from [carbon tetrachloride + 2-octanol (v/v: 90%/10%)] solutions. Various factors such as contact time, pH, organic/aqueous phase ratio and extractant concentration were considered. The optimum conditions obtained were: contact time= 20 min, organic/aqueous phase ratio = 1, pH value = 3.0 and extractant concentration = 0.3M. The extraction yields are more significant in the case of the HHDPA which is equipped with a hydrocarbon chain, longer than that of the HDDPA. Logarithmic plots of the uranium(VI) distribution ratio vs. pHeq and the extractant concentration showed that the ratio of extractant to extracted uranium(VI) (ligand/metal) is 2:1. The formula of the complex of uranium(VI) with the HHDPA and the DHDPA is UO2(H3L)2 (HHDPA and DHDPA are denoted as H4L). A spectroscopic analysis has showed that coordination of uranium(VI) takes place via oxygen atoms.

Keywords: liquid-liquid extraction, uranium(vi), 1-hydroxyalkylidene-1, 1-diphosphonic acids, hhdpa, hddpa, aqueous solution

Procedia PDF Downloads 258
4331 The Nimbārka School of Vedānta and the Indian Classical Dance: The Philosophical Relevance through Rasa Theory

Authors: Shubham Arora

Abstract:

This paper illustrates a relationship between the Dvaitādvaita (dualistic non-dualistic) doctrine of Nimbārka school of Vedānta and philosophy of Indian classical dance, through the Rasa theory. There would be a separate focus on the philosophies of both the disciplines and then analyzing Rasa theory as a connexion between them. The paper presents ideas regarding the similarity between the Brahman and the dancer, manifestation of enacting character and the Jīva (soul), the existence of the phenomenal world and the imaginary world classification of rasa on the basis of three modes of nature, and the feelings and expressions depicting the Dvaita and Advaita. The reason behind choosing such a topic is an intention to explore the relativity of the Vedantic philosophy of this school in real manner. It is really important to study the practical implications and relevance of the doctrine with other disciplines for perceiving it cogently. In our daily lives, we use various forms of facial expressions and bodily gestures in order to communicate, along with the oral and written means of communication. What if, when gestures and expressions mingle with the music beats, in order to present an idea? Indian Classical dance is highly rich in expressing the emotions using extraordinary expressions, unconventional bodily gestures and mesmerizing music beats. Ancient scriptures like Nāṭyaśāstra of Bharata Muni and Abhinava Bhārati by Abhinavaguptā recount aesthetics in a well-defined and structured way of acting and dancing and also reveal the grammar of rasa theory. Indian Classical dance is not only for entertainment but it is deeply in contact with divinity. During the period of Bhakti movement in India, this art form was used as a means to narrate the vignettes from epics like Rāmāyana and Mahābhārata and Purānas. Even in present era, this art has a deep rooted philosophy within.

Keywords: Advaita, Brahman, Dvaita, Jiva, Nimbarka, Rasa, Vedanta

Procedia PDF Downloads 284
4330 Computational Fluid Dynamics Modeling of Liquefaction of Wood and It's Model Components Using a Modified Multistage Shrinking-Core Model

Authors: K. G. R. M. Jayathilake, S. Rudra

Abstract:

Wood degradation in hot compressed water is modeled with a Computational Fluid Dynamics (CFD) code using cellulose, xylan, and lignin as model compounds. Model compounds are reacted under catalyst-free conditions in a temperature range from 250 to 370 °C. Using a simplified reaction scheme where water soluble products, methanol soluble products, char like compounds and gas are generated through intermediates with each model compound. A modified multistage shrinking core model is developed to simulate particle degradation. In the modified shrinking core model, each model compound is hydrolyzed in separate stages. Cellulose is decomposed to glucose/oligomers before producing degradation products. Xylan is decomposed through xylose and then to degradation products where lignin is decomposed into soluble products before producing the total guaiacol, organic carbon (TOC) and then char and gas. Hydrolysis of each model compound is used as the main reaction of the process. Diffusion of water monomers to the particle surface to initiate hydrolysis and dissolution of the products in water is given importance during the modeling process. In the developed model the temperature variation depends on the Arrhenius relationship. Kinetic parameters from the literature are used for the mathematical model. Meanwhile, limited initial fast reaction kinetic data limit the development of more accurate CFD models. Liquefaction results of the CFD model are analyzed and validated using the experimental data available in the literature where it shows reasonable agreement.

Keywords: computational fluid dynamics, liquefaction, shrinking-core, wood

Procedia PDF Downloads 105
4329 Characteristics of Elastic Tracked-Crawler Based on Worm-Rack Mechanism

Authors: Jun-ya Nagase

Abstract:

There are many pipes such as a water pipe and a gas pipe in a chemical plant and house. It is possible to prevent accidents by these inspections. However, many pipes are very narrow and it is difficult for people to inspect directly. Therefore, development of a robot that can move in narrow pipe is necessary. A wheel movement type robot, a snake-like robot and a multi-leg robot are all described in the relevant literature as pipe inspection robots that are currently studied. Among them, the tracked crawler robot can travel by traversing uneven ground flexibly with a crawler belt attached firmly to the ground surface. Although conventional crawler robots have high efficiency and/or high ground-covering ability, they require a comparatively large space to move. In this study, a cylindrical crawler robot based on worm-rack mechanism, which does not need large space to move and which has high ground-covering ability, is proposed. Experiments have demonstrated smooth operation and a forward movement of the robot by application of voltage to the motor. In addition, performance tests show that it can propel itself in confined spaces. This paper reports the structure, drive mechanism, prototype, and experimental evaluation.

Keywords: tracked-crawler, pipe inspection robot, worm-rack mechanism, amoeba locomotion

Procedia PDF Downloads 418
4328 Study of Natural Convection Heat Transfer of Plate-Fin Heat Sink

Authors: Han-Taw Chen, Tzu-Hsiang Lin, Chung-Hou Lai

Abstract:

This study applies the inverse method and three-dimensional CFD commercial software in conjunction with the experimental temperature data to investigate the heat transfer and fluid flow characteristics of the plate-fin heat sink in a rectangular closed enclosure. The inverse method with the finite difference method and the experimental temperature data is applied to determine the approximate heat transfer coefficient. Later, based on the obtained results, the zero-equation turbulence model is used to obtain the heat transfer and fluid flow characteristics between two fins. To validate the accuracy of the results obtained, the comparison of the heat transfer coefficient is made. The obtained temperature at selected measurement locations of the fin is also compared with experimental data. The effect of the height of the rectangular enclosure on the obtained results is discussed.

Keywords: inverse method, fluent, heat transfer characteristics, plate-fin heat sink

Procedia PDF Downloads 376
4327 Study on the Characteristics of Victims and Victimizers of Intimate Partner Violence in Spain and Its Impact on Criminal Intervention

Authors: María José Benitez Jimenez

Abstract:

This research is based on the hypothesis that, despite being found that the problem of violence against the female partner occurs in all social classes, the criminal intervention falls, above all, on victims and aggressors with sociodemographic characteristics of the most excluded social groups. The methodology used in this study has been a collection of information through Spanish official statistics from 2004 to 2016: population, police, judicial and penitentiary data from Ministry of Interior, Ministry of Justice and statistics National Institute. The data provided show that women victims and aggressors who come into contact with criminal intervention bodies for filing a complaint or having been reported, respectively, show a very high percentage, usually well above 50%, only primary studies or even that. Their employment situation is also precarious, in a percentage that could also be around 70%. The percentage distribution of these two variables is clearly above that which occurs in the whole of the Spanish population, in a particularly marked way as regards the employment situation. Immigrants triple, as victims or as aggressors of gender violence, the percentages of the Spanish population in terms of their contact with the organs of criminal intervention. Also the rate of foreign inmates in prisons for violence against the female couple doubles that of Spanish inmates.

Keywords: inmigrants, intimate partner violence, Spain, sociodemographic characteristics

Procedia PDF Downloads 181
4326 Enhancing Athlete Training using Real Time Pose Estimation with Neural Networks

Authors: Jeh Patel, Chandrahas Paidi, Ahmed Hambaba

Abstract:

Traditional methods for analyzing athlete movement often lack the detail and immediacy required for optimal training. This project aims to address this limitation by developing a Real-time human pose estimation system specifically designed to enhance athlete training across various sports. This system leverages the power of convolutional neural networks (CNNs) to provide a comprehensive and immediate analysis of an athlete’s movement patterns during training sessions. The core architecture utilizes dilated convolutions to capture crucial long-range dependencies within video frames. Combining this with the robust encoder-decoder architecture to further refine pose estimation accuracy. This capability is essential for precise joint localization across the diverse range of athletic poses encountered in different sports. Furthermore, by quantifying movement efficiency, power output, and range of motion, the system provides data-driven insights that can be used to optimize training programs. Pose estimation data analysis can also be used to develop personalized training plans that target specific weaknesses identified in an athlete’s movement patterns. To overcome the limitations posed by outdoor environments, the project employs strategies such as multi-camera configurations or depth sensing techniques. These approaches can enhance pose estimation accuracy in challenging lighting and occlusion scenarios, where pose estimation accuracy in challenging lighting and occlusion scenarios. A dataset is collected From the labs of Martin Luther King at San Jose State University. The system is evaluated through a series of tests that measure its efficiency and accuracy in real-world scenarios. Results indicate a high level of precision in recognizing different poses, substantiating the potential of this technology in practical applications. Challenges such as enhancing the system’s ability to operate in varied environmental conditions and further expanding the dataset for training were identified and discussed. Future work will refine the model’s adaptability and incorporate haptic feedback to enhance the interactivity and richness of the user experience. This project demonstrates the feasibility of an advanced pose detection model and lays the groundwork for future innovations in assistive enhancement technologies.

Keywords: computer vision, deep learning, human pose estimation, U-NET, CNN

Procedia PDF Downloads 14
4325 An Artificial Intelligence Supported QUAL2K Model for the Simulation of Various Physiochemical Parameters of Water

Authors: Mehvish Bilal, Navneet Singh, Jasir Mushtaq

Abstract:

Water pollution puts people's health at risk, and it can also impact the ecology. For practitioners of integrated water resources management (IWRM), water quality modelling may be useful for informing decisions about pollution control (such as discharge permitting) or demand management (such as abstraction permitting). To comprehend the current pollutant load, movement of effective load movement of contaminants generates effective relation between pollutants, mathematical simulation, source, and water quality is regarded as one of the best estimating tools. The current study involves the Qual2k model, which includes manual simulation of the various physiochemical characteristics of water. To this end, various sensors could be installed for the automatic simulation of various physiochemical characteristics of water. An artificial intelligence model has been proposed for the automatic simulation of water quality parameters. Models of water quality have become an effective tool for identifying worldwide water contamination, as well as the ultimate fate and behavior of contaminants in the water environment. Water quality model research is primarily conducted in Europe and other industrialized countries in the first world, where theoretical underpinnings and practical research are prioritized.

Keywords: artificial intelligence, QUAL2K, simulation, physiochemical parameters

Procedia PDF Downloads 79
4324 Understanding Children’s Visual Attention to Personal Protective Equipment Using Eye-Tracking

Authors: Vanessa Cho, Janet Hsiao, Nigel King, Robert Anthonappa

Abstract:

Background: The personal protective equipment (PPE) requirements for health care workers (HCWs) have changed significantly during the COVID-19 pandemic. Aim: To ascertain, using eye-tracking technology, what children notice the most when seeing HCWs in various PPE. Design: A Tobii nano pro-eye-tracking camera tracked 156 children's visual attention while they viewed photographs of HCWs in various PPEs. Eye Movement analysis with Hidden Markov Models (EMHMM) was employed to analyse 624 recordings using two approaches, namely (i) data-driven where children's fixation determined the regions of interest (ROIs), and (ii) fixed ROIs where the investigators predefined the ROIs. Results: Two significant eye movement patterns, namely distributed(85.2%) and selective(14.7%), were identified(P<0.05). Most children fixated primarily on the face regardless of the different PPEs. Children fixated equally on all PPE images in the distributed pattern, while a strong preference for unmasked faces was evident in the selective pattern (P<0.01). Conclusion: Children as young as 2.5 years used a top-down visual search behaviour and demonstrated their face processing ability. Most children did not show a strong visual preference for a specific PPE, while a minority preferred PPE with distinct facial features, namely without masks and loupes.

Keywords: COVID-19, PPE, dentistry, pediatric

Procedia PDF Downloads 66
4323 The Creation of Micromedia on Social Networking Sites as a Social Movement Strategy: The Case of Migration Aid, a Hungarian Refugee Relief Group

Authors: Zsofia Nagy, Tibor Dessewffy

Abstract:

The relationship between social movements and the media that represents them comprises both of the media representation of movements on the one hand, and the media strategies employed by movements on the other. A third possible approach is to connect the two and look at the interactions connecting the two sides. This relationship has been affected by the emergence of social networking sites (SNS) that have a transformative effect on both actors. However, the extent and direction of these changes needs to be investigated. Empirical case studies that focus on newly enabled forms of social movements can contribute to these debates in an analytically fruitful way. Therefore in our study, we use the case of Migration Aid, a Hungarian Facebook-based grassroots relief organization that gained prominence during the refugee crisis that unfolded in Hungary in 2015. Migration Aid formed without the use of traditional mobilizational agents, and that took over roles traditionally occupied by formal NGOs or the state. Analyzing different movement strategies towards the media - we find evidence that while effectively combining these strategies, SNSs also create affordances for movements to shift their strategy towards creating alternatives, their own micromedia. Beyond the practical significance of this – the ability to disseminate alternative information independently from traditional media – it also allowed the group to frame the issue in their own terms and to replace vertical modes of communication with horizontal ones. The creation of micromedia also shifts the relationship between social movements and the media away from an asymmetrical and towards a more symbiotic co-existence. We provide four central factors – project identity, the mobilization potential of SNSs, the disruptiveness of the event and selectivity in the construction of social knowledge – that explain this shift. Finally, we look at the specific processes that contribute to the creation of the movement’s own micromedia. We posit that these processes were made possible by the rhizomatic structure of the group and a function of SNSs we coin the Social Information Thermostat function. We conclude our study by positioning our findings in relation with the broader context.

Keywords: social networking sites, social movements, micromedia, media strategies

Procedia PDF Downloads 245
4322 Hydrodynamics Study on Planing Hull with and without Step Using Numerical Solution

Authors: Koe Han Beng, Khoo Boo Cheong

Abstract:

The rising interest of stepped hull design has been led by the demand of more efficient high-speed boat. At the same time, the need of accurate prediction method for stepped planing hull is getting more important. By understanding the flow at high Froude number is the key in designing a practical step hull, the study surrounding stepped hull has been done mainly in the towing tank which is time-consuming and costly for initial design phase. Here the feasibility of predicting hydrodynamics of high-speed planing hull both with and without step using computational fluid dynamics (CFD) with the volume of fluid (VOF) methodology is studied in this work. First the flow around the prismatic body is analyzed, the force generated and its center of pressure are compared with available experimental and empirical data from the literature. The wake behind the transom on the keel line as well as the quarter beam buttock line are then compared with the available data, this is important since the afterbody flow of stepped hull is subjected from the wake of the forebody. Finally the calm water performance prediction of a conventional planing hull and its stepped version is then analyzed. Overset mesh methodology is employed in solving the dynamic equilibrium of the hull. The resistance, trim, and heave are then compared with the experimental data. The resistance is found to be predicted well and the dynamic equilibrium solved by the numerical method is deemed to be acceptable. This means that computational fluid dynamics will be very useful in further study on the complex flow around stepped hull and its potential usage in the design phase.

Keywords: planing hulls, stepped hulls, wake shape, numerical simulation, hydrodynamics

Procedia PDF Downloads 267
4321 A Particle Image Velocimetric (PIV) Experiment on Simplified Bottom Hole Flow Field

Authors: Heqian Zhao, Huaizhong Shi, Zhongwei Huang, Zhengliang Chen, Ziang Gu, Fei Gao

Abstract:

Hydraulics mechanics is significantly important in the drilling process of oil or gas exploration, especially for the drill bit. The fluid flows through the nozzles on the bit and generates a water jet to remove the cutting at the bottom hole. In this paper, a simplified bottom hole model is established. The Particle Image Velocimetric (PIV) is used to capture the flow field of the single nozzle. Due to the limitation of the bottom and wellbore, the potential core is shorter than that of the free water jet. The velocity magnitude rapidly attenuates when fluid close to the bottom is lower than about 5 mm. Besides, a vortex zone appears near the middle of the bottom beside the water jet zone. A modified exponential function can be used to fit the centerline velocity well. On the one hand, the results of this paper can provide verification for the numerical simulation of the bottom hole flow field. On the other hand, it also can provide an experimental basis for the hydraulic design of the drill bit.

Keywords: oil and gas, hydraulic mechanic of drilling, PIV, bottom hole

Procedia PDF Downloads 194
4320 Study on the Effects of Geometrical Parameters of Helical Fins on Heat Transfer Enhancement of Finned Tube Heat Exchangers

Authors: H. Asadi, H. Naderan Tahan

Abstract:

The aim of this paper is to investigate the effect of geometrical properties of helical fins in double pipe heat exchangers. On the other hand, the purpose of this project is to derive the hydraulic and thermal design tables and equations of double heat exchangers with helical fins. The numerical modeling is implemented to calculate the considered parameters. Design tables and correlated equations are generated by repeating the parametric numerical procedure for different fin geometries. Friction factor coefficient and Nusselt number are calculated for different amounts of Reynolds, fluid Prantle and fin twist angles for the range of laminar fluid flow in annular tube with helical fins. Results showed that friction factor coefficient and Nusselt number will be increased for higher Reynolds numbers and fins’ twist angles in general. These two parameters follow different patterns in response to Reynolds number increment. Thermal performance factor is defined to analyze these different patterns. Temperature and velocity contours are plotted against twist angle and number of fins to describe the changes in flow patterns in different geometries of twisted finned annulus. Finally twisted finned annulus friction factor coefficient, Nusselt Number and thermal performance factor are correlated by simulating the model in different design points.

Keywords: double pipe heat exchangers, heat exchanger performance, twisted fins, computational fluid dynamics

Procedia PDF Downloads 271
4319 Passport Bros: Exploring Neocolonial Masculinity and Sex Tourism as a Response to Shifting Gender Dynamics

Authors: Kellen Sharp

Abstract:

This study explores the phenomenon of ‘Passport Bros’, a subset within the manosphere responding to perceived crises in masculinity amidst changing gender dynamics. Focusing on a computational analysis of the passport bro community, the research addresses normative beliefs, deviations from MGTOW ideology, and discussions on nationality, race, and gender. Originating from the MGTOW movement, passport bros engage in a neocolonial approach by seeking traditional, non-Western women, attributing this pursuit to dissatisfaction with modern Western women. The paper examines how hetero pessimism within MGTOW shapes the emergence of passport bros, leading to the adoption of red pill ideologies and ultimately manifesting in the form of sex tourism. Analyzing data collected from passport bro forums through computer-assisted content analysis, the study identifies key discourses such as questions and answers, money, attitudes towards Western and traditional women, and discussions about the movement itself. The findings highlight the nuanced intersection of gender, race, and global power dynamics within the passport bro community, shedding light on their motivations and impact on neocolonial legacies.

Keywords: toxic online community, manosphere, gender and media, neocolonialism

Procedia PDF Downloads 41
4318 Investigation of Adherence to Treatment, Perception, and Predictors of Adherence among Patients with End-Stage Renal Disease on Haemodialysis in the Eastern Region of Saudi Arabia: A Descriptive Cross-Sectional Study

Authors: Rima Al Garni, Emad Al Shdaifat, Sahar Elmetwalli, Mohammad Alzaid, Abdulrahman Alghothayyan, Sara Al Abd Al Hai, Seham Al Rashidi

Abstract:

Aim: To investigate the prevalence of non-adherence of patients on haemodialysis and explore their perception of the importance of adherence to the therapeutic regime and estimate the predictors for adherence to the therapeutic regime. Background: End-stage renal disease is commonly treated by haemodialysis. Haemodialysis treatment alone is not effective in replacing kidney function. Diet and fluid restrictions, along with supplementary medications, are mandatory for the survival and well-being of patients. Hence, adherence to this therapeutic regimen is essential. However, non-adherence to diet and fluid restrictions, medications, and dialysis is common among patients on haemodialysis. Design: Descriptive cross-sectional method was applied to investigate the prevalence of non-adherence to treatment, including adherence to diet and fluid restrictions, medications, and dialysis sessions. Methods: Structured interviews were conducted using the Arabic version of the End-Stage Renal Disease Adherence Questionnaire. The sample included 230 patients undergoing haemodialysis in the Eastern Region of Saudi Arabia. Data were analysed using descriptive statistics and multiple regressions. Results/Findings: Most patients had good adherence (71.3%), and only 3.9% had poor adherence. The divorced or widowed patient had higher adherence compared with single (P=0.011) and married participants (P=0.045) through using the post hoc test. Patients above 60 years had higher adherence compared to patients below 40 years old (P=0.016) using the post hoc test. For the perception of the importance of adherence to the therapeutic regime subscale, two-thirds of the patients had lower scores (<=11). Conclusion: Adherence to therapeutic regime is high for three fourth of patients undergoing haemodialysis in the Eastern Region of Saudi Arabia; this finding is similar to results abstracted from the local literature. This result would help us highlight the needs of patients who are not compliant with their treatment plans and investigate the consequences of non-adherence on their well-being and general health. Hence, plan individualised therapeutic programmes that could raise their awareness and influence their adherence to therapeutic regimes.

Keywords: adherence to treatment, haemodialysis, end stage renal disease, diet and fluid restrictions

Procedia PDF Downloads 70
4317 Streamlines: Paths of Fluid Flow through Sandstone Samples Based on Computed Microtomography

Authors: Ł. Kaczmarek, T. Wejrzanowski, M. Maksimczuk

Abstract:

The study presents the use of the numerical calculations based on high-resolution computed microtomography in analysis of fluid flow through Miocene sandstones. Therefore, the permeability studies of rocks were performed. Miocene samples were taken from well S-3, located in the eastern part of the Carpathian Foredeep. For aforementioned analysis, two series of X-ray irradiation were performed. The first set of samples was selected to obtain the spatial distribution of grains and pores. At this stage of the study length of voxel side amounted 27 microns. The next set of X-ray irradation enabled recognition of microstructural components as well as petrophysical features. The length of voxel side in this stage was up to 2 µm. Based on this study, the samples were broken down into two distinct groups. The first one represents conventional reservoir deposits, in opposite to second one - unconventional type. Appropriate identification of petrophysical parameters such as porosity and permeability of the formation is a key element for optimization of the reservoir development.

Keywords: grains, permeability, pores, pressure distribution

Procedia PDF Downloads 234
4316 Vortex Control by a Downstream Splitter Plate in Psudoplastic Fluid Flow

Authors: Sudipto Sarkar, Anamika Paul

Abstract:

Pseudoplastic (n<1, n is the power index) fluids have great importance in food, pharmaceutical and chemical process industries which require a lot of attention. Unfortunately, due to its complex flow behavior inadequate research works can be found even in laminar flow regime. A practical problem is solved in the present research work by numerical simulation where we tried to control the vortex shedding from a square cylinder using a horizontal splitter plate placed at the downstream flow region. The position of the plate is at the centerline of the cylinder with varying distance from the cylinder to calculate the critical gap-ratio. If the plate is placed inside this critical gap, the vortex shedding from the cylinder suppressed completely. The Reynolds number considered here is in unsteady laminar vortex shedding regime, Re = 100 (Re = U∞a/ν, where U∞ is the free-stream velocity of the flow, a is the side of the cylinder and ν is the maximum value of kinematic viscosity of the fluid). Flow behavior has been studied for three different gap-ratios (G/a = 2, 2.25 and 2.5, where G is the gap between cylinder and plate) and for a fluid with three different flow behavior indices (n =1, 0.8 and 0.5). The flow domain is constructed using Gambit 2.2.30 and this software is also used to generate the mesh and to impose the boundary conditions. For G/a = 2, the domain size is considered as 37.5a × 16a with 316 × 208 grid points in the streamwise and flow-normal directions respectively after a thorough grid independent study. Fine and equal grid spacing is used close to the geometry to capture the vortices shed from the cylinder and the boundary layer developed over the flat plate. Away from the geometry meshes are unequal in size and stretched out. For other gap-ratios, proportionate domain size and total grid points are used with similar kind of mesh distribution. Velocity inlet (u = U∞), pressure outlet (Neumann condition), symmetry (free-slip boundary condition) at upper and lower domain boundary conditions are used for the simulation. Wall boundary condition (u = v = 0) is considered both on the cylinder and the splitter plate surfaces. Discretized forms of fully conservative 2-D unsteady Navier Stokes equations are then solved by Ansys Fluent 14.5. SIMPLE algorithm written in finite volume method is selected for this purpose which is a default solver inculcate in Fluent. The results obtained for Newtonian fluid flow agree well with previous works supporting Fluent’s usefulness in academic research. A thorough analysis of instantaneous and time-averaged flow fields are depicted both for Newtonian and pseudoplastic fluid flow. It has been observed that as the value of n reduces the stretching of shear layers also reduce and these layers try to roll up before the plate. For flow with high pseudoplasticity (n = 0.5) the nature of vortex shedding changes and the value of critical gap-ratio reduces. These are the remarkable findings for laminar periodic vortex shedding regime in pseudoplastic flow environment.

Keywords: CFD, pseudoplastic fluid flow, wake-boundary layer interactions, critical gap-ratio

Procedia PDF Downloads 100
4315 Computational Fluid Dynamics-Coupled Optimisation Strategy for Aerodynamic Design

Authors: Anvar Atayev, Karl Steinborn, Aleksander Lovric, Saif Al-Ibadi, Jorg Fliege

Abstract:

In this paper, we present results obtained from optimising the aerodynamic performance of aerostructures in external ow. The optimisation method used was developed to efficiently handle multi-variable problems with numerous black-box objective functions and constraints. To demonstrate these capabilities, a series of CFD problems were considered; (1) a two-dimensional NACA aerofoil with three variables, (2) a two-dimensional morphing aerofoil with 17 variables, and (3) a three-dimensional morphing aeroplane tail with 33 variables. The objective functions considered were related to combinations of the mean aerodynamic coefficients, as well as their relative variations/oscillations. It was observed that for each CFD problem, an improved objective value was found. Notably, the scale-up in variables for the latter problems did not greatly hinder optimisation performance. This makes the method promising for scaled-up CFD problems, which require considerable computational resources.

Keywords: computational fluid dynamics, optimisation algorithms, aerodynamic design, engineering design

Procedia PDF Downloads 104
4314 Numerical Prediction of Width Crack of Concrete Dapped-End Beams

Authors: Jatziri Y. Moreno-Martinez, Arturo Galvan, Xavier Chavez Cardenas, Hiram Arroyo

Abstract:

Several methods have been utilized to study the prediction of cracking of concrete structural under loading. The finite element analysis is an alternative that shows good results. The aim of this work was the numerical study of the width crack in reinforced concrete beams with dapped ends, these are frequently found in bridge girders and precast concrete construction. Properly restricting cracking is an important aspect of the design in dapped ends, it has been observed that the cracks that exceed the allowable widths are unacceptable in an aggressive environment for reinforcing steel. For simulating the crack width, the discrete crack approach was considered by means of a Cohesive Zone (CZM) Model using a function to represent the crack opening. Two cases of dapped-end were constructed and tested in the laboratory of Structures and Materials of Engineering Institute of UNAM. The first case considers a reinforcement based on hangers as well as on vertical and horizontal ring, the second case considers 50% of the vertical stirrups in the dapped end to the main part of the beam were replaced by an equivalent area (vertically projected) of diagonal bars under. The loading protocol consisted on applying symmetrical loading to reach the service load. The models were performed using the software package ANSYS v. 16.2. The concrete structure was modeled using three-dimensional solid elements SOLID65 capable of cracking in tension and crushing in compression. Drucker-Prager yield surface was used to include the plastic deformations. The reinforcement was introduced with smeared approach. Interface delamination was modeled by traditional fracture mechanics methods such as the nodal release technique adopting softening relationships between tractions and the separations, which in turn introduce a critical fracture energy that is also the energy required to break apart the interface surfaces. This technique is called CZM. The interface surfaces of the materials are represented by a contact elements Surface-to-Surface (CONTA173) with bonded (initial contact). The Mode I dominated bilinear CZM model assumes that the separation of the material interface is dominated by the displacement jump normal to the interface. Furthermore, the opening crack was taken into consideration according to the maximum normal contact stress, the contact gap at the completion of debonding, and the maximum equivalent tangential contact stress. The contact elements were placed in the crack re-entrant corner. To validate the proposed approach, the results obtained with the previous procedure are compared with experimental test. A good correlation between the experimental and numerical Load-Displacement curves was presented, the numerical models also allowed to obtain the load-crack width curves. In these two cases, the proposed model confirms the capability of predicting the maximum crack width, with an error of ± 30 %. Finally, the orientation of the crack is a fundamental for the prediction of crack width. The results regarding the crack width can be considered as good from the practical point view. Load-Displacement curve of the test and the location of the crack were able to obtain favorable results.

Keywords: cohesive zone model, dapped-end beams, discrete crack approach, finite element analysis

Procedia PDF Downloads 148