Search results for: drug prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4195

Search results for: drug prediction

3085 Screening of Four Malaysian Isolated Endophytes with Candesartan in a Microtiter Plate

Authors: Rasha Saad, Jean Frederic Weber, Fatimah Bebe, Sadia Sultan

Abstract:

The goal of study was to screen the effects of candesartan and four endophytic fungi for their potential in microbial biotransformation. In this experiment, four types of unidentified fungi with the codes of TH2L1, TH2R10, TH1P35 and TH1S46 were used in screening process by MECFUS (Microtiter plate, Elicitors, Combination, Freeze-drying, UHPLC, Statistical analysis) protocol. The experiment was carried out by using 96-well microtiter plate (MTP) with different media and elicitors. Various media with two concentrations of Potato Dextrose Broth (PDB) and elicitors used were to induce the production of secondary metabolites from the fungi as well as the biotransformation of the drug compound. After incubation, cultures were extracted by freeze drying method and finally analyzed by ultra-High performance Liquid Chromatography (uHPLC). The extracts analyzed by uHPLC followed by LC/Ms, demonstrated the presence of biotransformation products from the drug compound and elicitation of the secondary metabolism from the fungi by the occurrence of the additional peaks. From the four fungi, TH1S46 showed highly potential produced secondary metabolites as well as the biotransformation of candesartan. For other fungi, they responded when candesartan was introduced. Moreover, the additional peaks produced in uHPLC need to be further investigation by using LC-MS or NMR.

Keywords: biotransformation, candesartan, endophytes, secondary metabolites

Procedia PDF Downloads 263
3084 New Coating Materials Based on Mixtures of Shellac and Pectin for Pharmaceutical Products

Authors: M. Kumpugdee-Vollrath, M. Tabatabaeifar, M. Helmis

Abstract:

Shellac is a natural polyester resin secreted by insects. Pectins are natural, non-toxic and water-soluble polysaccharides extracted from the peels of citrus fruits or the leftovers of apples. Both polymers are allowed for the use in the pharmaceutical industry and as a food additive. SSB Aquagold® is the aqueous solution of shellac and can be used for a coating process as an enteric or controlled drug release polymer. In this study, tablets containing 10 mg methylene blue as a model drug were prepared with a rotary press. Those tablets were coated with mixtures of shellac and one of the pectin different types (i.e. CU 201, CU 501, CU 701 and CU 020) mostly in a 2:1 ratio or with pure shellac in a small scale fluidized bed apparatus. A stable, simple and reproducible three-stage coating process was successfully developed. The drug contents of the coated tablets were determined using UV-VIS spectrophotometer. The characterization of the surface and the film thickness were performed with the scanning electron microscopy (SEM) and the light microscopy. Release studies were performed in a dissolution apparatus with a basket. Most of the formulations were enteric coated. The dissolution profiles showed a delayed or sustained release with a lagtime of at least 4 h. Dissolution profiles of coated tablets with pure shellac had a very long lagtime ranging from 13 to 17.5 h and the slopes were quite high. The duration of the lagtime and the slope of the dissolution profiles could be adjusted by adding the proper type of pectin to the shellac formulation and by variation of the coating amount. In order to apply a coating formulation as a colon delivery system, the prepared film should be resistant against gastric fluid for at least 2 h and against intestinal fluid for 4-6 h. The required delay time was gained with most of the shellac-pectin polymer mixtures. The release profiles were fitted with the modified model of the Korsmeyer-Peppas equation and the Hixson-Crowell model. A correlation coefficient (R²) > 0.99 was obtained by Korsmeyer-Peppas equation.

Keywords: shellac, pectin, coating, fluidized bed, release, colon delivery system, kinetic, SEM, methylene blue

Procedia PDF Downloads 407
3083 Iraqi Short Term Electrical Load Forecasting Based on Interval Type-2 Fuzzy Logic

Authors: Firas M. Tuaimah, Huda M. Abdul Abbas

Abstract:

Accurate Short Term Load Forecasting (STLF) is essential for a variety of decision making processes. However, forecasting accuracy can drop due to the presence of uncertainty in the operation of energy systems or unexpected behavior of exogenous variables. Interval Type 2 Fuzzy Logic System (IT2 FLS), with additional degrees of freedom, gives an excellent tool for handling uncertainties and it improved the prediction accuracy. The training data used in this study covers the period from January 1, 2012 to February 1, 2012 for winter season and the period from July 1, 2012 to August 1, 2012 for summer season. The actual load forecasting period starts from January 22, till 28, 2012 for winter model and from July 22 till 28, 2012 for summer model. The real data for Iraqi power system which belongs to the Ministry of Electricity.

Keywords: short term load forecasting, prediction interval, type 2 fuzzy logic systems, electric, computer systems engineering

Procedia PDF Downloads 397
3082 Prediction of Gully Erosion with Stochastic Modeling by using Geographic Information System and Remote Sensing Data in North of Iran

Authors: Reza Zakerinejad

Abstract:

Gully erosion is a serious problem that threading the sustainability of agricultural area and rangeland and water in a large part of Iran. This type of water erosion is the main source of sedimentation in many catchment areas in the north of Iran. Since in many national assessment approaches just qualitative models were applied the aim of this study is to predict the spatial distribution of gully erosion processes by means of detail terrain analysis and GIS -based logistic regression in the loess deposition in a case study in the Golestan Province. This study the DEM with 25 meter result ion from ASTER data has been used. The Landsat ETM data have been used to mapping of land use. The TreeNet model as a stochastic modeling was applied to prediction the susceptible area for gully erosion. In this model ROC we have set 20 % of data as learning and 20 % as learning data. Therefore, applying the GIS and satellite image analysis techniques has been used to derive the input information for these stochastic models. The result of this study showed a high accurate map of potential for gully erosion.

Keywords: TreeNet model, terrain analysis, Golestan Province, Iran

Procedia PDF Downloads 535
3081 Evaluation of QSRR Models by Sum of Ranking Differences Approach: A Case Study of Prediction of Chromatographic Behavior of Pesticides

Authors: Lidija R. Jevrić, Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević

Abstract:

The present study deals with the selection of the most suitable quantitative structure-retention relationship (QSRR) models which should be used in prediction of the retention behavior of basic, neutral, acidic and phenolic pesticides which belong to different classes: fungicides, herbicides, metabolites, insecticides and plant growth regulators. Sum of ranking differences (SRD) approach can give a different point of view on selection of the most consistent QSRR model. SRD approach can be applied not only for ranking of the QSRR models, but also for detection of similarity or dissimilarity among them. Applying the SRD analysis, the most similar models can be found easily. In this study, selection of the best model was carried out on the basis of the reference ranking (“golden standard”) which was defined as the row average values of logarithm of retention time (logtr) defined by high performance liquid chromatography (HPLC). Also, SRD analysis based on experimental logtr values as reference ranking revealed similar grouping of the established QSRR models already obtained by hierarchical cluster analysis (HCA).

Keywords: chemometrics, chromatography, pesticides, sum of ranking differences

Procedia PDF Downloads 375
3080 A New Computational Tool for Noise Prediction of Rotating Surfaces (FACT)

Authors: Ana Vieira, Fernando Lau, João Pedro Mortágua, Luís Cruz, Rui Santos

Abstract:

The air transport impact on environment is more than ever a limitative obstacle to the aeronautical industry continuous growth. Over the last decades, considerable effort has been carried out in order to obtain quieter aircraft solutions, whether by changing the original design or investigating more silent maneuvers. The noise propagated by rotating surfaces is one of the most important sources of annoyance, being present in most aerial vehicles. Bearing this is mind, CEIIA developed a new computational chain for noise prediction with in-house software tools to obtain solutions in relatively short time without using excessive computer resources. This work is based on the new acoustic tool, which aims to predict the rotor noise generated during steady and maneuvering flight, making use of the flexibility of the C language and the advantages of GPU programming in terms of velocity. The acoustic tool is based in the Formulation 1A of Farassat, capable of predicting two important types of noise: the loading and thickness noise. The present work describes the most important features of the acoustic tool, presenting its most relevant results and framework analyses for helicopters and UAV quadrotors.

Keywords: rotor noise, acoustic tool, GPU Programming, UAV noise

Procedia PDF Downloads 401
3079 An Update on Linezolid against Methicillin-Resistant Staphylococcus Aureus Clinical Isolates from Pakistan

Authors: Tayaba Dastgeer, Farhan Rasheed, Muhammad Saeed, Maqsood Ahmad, Zia Ashraf, Abdul Waheed, Muhammad Kamran, Mohsin Khurshid

Abstract:

Objectives: The study aimed to determine the efficacy of linezolid against clinical isolates of methicillin-resistant staphylococcus aureus (MRSA). Methodology: This cross-sectional study was conducted in the microbiology department of Allama Iqbal Medical College Lahore from August 2017 to September 2019. Isolates were confirmed as MRSA via the presence of the mec-A gene. Confirmed MRSA isolates were processed for susceptibility testing against different antimicrobials, especially linezolid, via the disc diffusion method. Zone sizes were interpreted according to CLSI guidelines. Results: Various types of clinical samples were included in the study; however, the highest frequency of MRSA isolates was found in pus samples, followed by other clinical samples. Among hospitalized patients, most MRSA isolates were obtained from patients in the surgical ward. Of 243 mec-A gene detected isolates, Vancomycin and linezolid showed 100% susceptibility, chloramphenicol showed declining resistance 78 (32.09%), and emerging sensitivity 165 (67.90%) against MRSA. Conclusion: Linezolid is a very efficient drug against MRSA, but the use of this novel drug must be conserved for vancomycin-resistant Staphylococcus aureus or when more resistant pathogens are suspected.

Keywords: MRSA, chloramphenicol, linezolid, nosocomial infections

Procedia PDF Downloads 97
3078 Cost Sensitive Feature Selection in Decision-Theoretic Rough Set Models for Customer Churn Prediction: The Case of Telecommunication Sector Customers

Authors: Emel Kızılkaya Aydogan, Mihrimah Ozmen, Yılmaz Delice

Abstract:

In recent days, there is a change and the ongoing development of the telecommunications sector in the global market. In this sector, churn analysis techniques are commonly used for analysing why some customers terminate their service subscriptions prematurely. In addition, customer churn is utmost significant in this sector since it causes to important business loss. Many companies make various researches in order to prevent losses while increasing customer loyalty. Although a large quantity of accumulated data is available in this sector, their usefulness is limited by data quality and relevance. In this paper, a cost-sensitive feature selection framework is developed aiming to obtain the feature reducts to predict customer churn. The framework is a cost based optional pre-processing stage to remove redundant features for churn management. In addition, this cost-based feature selection algorithm is applied in a telecommunication company in Turkey and the results obtained with this algorithm.

Keywords: churn prediction, data mining, decision-theoretic rough set, feature selection

Procedia PDF Downloads 446
3077 Applying Pre-Accident Observational Methods for Accident Assessment and Prediction at Intersections in Norrkoping City in Sweden

Authors: Ghazwan Al-Haji, Adeyemi Adedokun

Abstract:

Traffic safety at intersections is highly represented, given the fact that accidents occur randomly in time and space. It is necessary to judge whether the intersection is dangerous or not based on short-term observations, and not waiting for many years of assessing historical accident data. There are active and pro-active road infrastructure safety methods for assessing safety at intersections. This study aims to investigate the use of quantitative and qualitative pre-observational methods as the best practice for accident prediction, future black spot identification, and treatment. Historical accident data from STRADA (the Swedish Traffic Accident Data Acquisition) was used within Norrkoping city in Sweden. The ADT (Average Daily Traffic), capacity and speed were used to predict accident rates. Locations with the highest accident records and predicted accident counts were identified and hence audited qualitatively by using Street Audit. The results from these quantitative and qualitative methods were analyzed, validated and compared. The paper provides recommendations on the used methods as well as on how to reduce the accident occurrence at the chosen intersections.

Keywords: intersections, traffic conflict, traffic safety, street audit, accidents predictions

Procedia PDF Downloads 233
3076 Graph Based Traffic Analysis and Delay Prediction Using a Custom Built Dataset

Authors: Gabriele Borg, Alexei Debono, Charlie Abela

Abstract:

There on a constant rise in the availability of high volumes of data gathered from multiple sources, resulting in an abundance of unprocessed information that can be used to monitor patterns and trends in user behaviour. Similarly, year after year, Malta is also constantly experiencing ongoing population growth and an increase in mobilization demand. This research takes advantage of data which is continuously being sourced and converting it into useful information related to the traffic problem on the Maltese roads. The scope of this paper is to provide a methodology to create a custom dataset (MalTra - Malta Traffic) compiled from multiple participants from various locations across the island to identify the most common routes taken to expose the main areas of activity. This use of big data is seen being used in various technologies and is referred to as ITSs (Intelligent Transportation Systems), which has been concluded that there is significant potential in utilising such sources of data on a nationwide scale. Furthermore, a series of traffic prediction graph neural network models are conducted to compare MalTra to large-scale traffic datasets.

Keywords: graph neural networks, traffic management, big data, mobile data patterns

Procedia PDF Downloads 131
3075 Development of Trigger Tool to Identify Adverse Drug Events From Warfarin Administered to Patient Admitted in Medical Wards of Chumphae Hospital

Authors: Puntarikorn Rungrattanakasin

Abstract:

Objectives: To develop the trigger tool to warn about the risk of bleeding as an adverse event from warfarin drug usage during admission in Medical Wards of Chumphae Hospital. Methods: A retrospective study was performed by reviewing the medical records for the patients admitted between June 1st,2020- May 31st, 2021. ADEs were evaluated by Naranjo’s algorithm. The international normalized ratio (INR) and events of bleeding during admissions were collected. Statistical analyses, including Chi-square test and Reciever Operating Characteristic (ROC) curve for optimal INR threshold, were used for the study. Results: Among the 139 admissions, the INR range was found to vary between 0.86-14.91, there was a total of 15 bleeding events, out of which 9 were mild, and 6 were severe. The occurrence of bleeding started whenever the INR was greater than 2.5 and reached the statistical significance (p <0.05), which was in concordance with the ROC curve and yielded 100 % sensitivity and 60% specificity in the detection of a bleeding event. In this regard, the INR greater than 2.5 was considered to be an optimal threshold to alert promptly for bleeding tendency. Conclusions: The INR value of greater than 2.5 (>2.5) would be an appropriate trigger tool to warn of the risk of bleeding for patients taking warfarin in Chumphae Hospital.

Keywords: trigger tool, warfarin, risk of bleeding, medical wards

Procedia PDF Downloads 148
3074 Physically Informed Kernels for Wave Loading Prediction

Authors: Daniel James Pitchforth, Timothy James Rogers, Ulf Tyge Tygesen, Elizabeth Jane Cross

Abstract:

Wave loading is a primary cause of fatigue within offshore structures and its quantification presents a challenging and important subtask within the SHM framework. The accurate representation of physics in such environments is difficult, however, driving the development of data-driven techniques in recent years. Within many industrial applications, empirical laws remain the preferred method of wave loading prediction due to their low computational cost and ease of implementation. This paper aims to develop an approach that combines data-driven Gaussian process models with physical empirical solutions for wave loading, including Morison’s Equation. The aim here is to incorporate physics directly into the covariance function (kernel) of the Gaussian process, enforcing derived behaviors whilst still allowing enough flexibility to account for phenomena such as vortex shedding, which may not be represented within the empirical laws. The combined approach has a number of advantages, including improved performance over either component used independently and interpretable hyperparameters.

Keywords: offshore structures, Gaussian processes, Physics informed machine learning, Kernel design

Procedia PDF Downloads 192
3073 Experimental Study on the Creep Characteristics of FRC Base for Composite Pavement System

Authors: Woo-Tai Jung, Sung-Yong Choi, Young-Hwan Park

Abstract:

The composite pavement system considered in this paper is composed of a functional surface layer, a fiber reinforced asphalt middle layer and a fiber reinforced lean concrete base layer. The mix design of the fiber reinforced lean concrete corresponds to the mix composition of conventional lean concrete but reinforced by fibers. The quasi-absence of research on the durability or long-term performances (fatigue, creep, etc.) of such mix design stresses the necessity to evaluate experimentally the long-term characteristics of this layer composition. This study tests the creep characteristics as one of the long-term characteristics of the fiber reinforced lean concrete layer for composite pavement using a new creep device. The test results reveal that the lean concrete mixed with fiber reinforcement and fly ash develops smaller creep than the conventional lean concrete. The results of the application of the CEB-FIP prediction equation indicate that a modified creep prediction equation should be developed to fit with the new mix design of the layer.

Keywords: creep, lean concrete, pavement, fiber reinforced concrete, base

Procedia PDF Downloads 522
3072 Establishing a Surrogate Approach to Assess the Exposure Concentrations during Coating Process

Authors: Shan-Hong Ying, Ying-Fang Wang

Abstract:

A surrogate approach was deployed for assessing exposures of multiple chemicals at the selected working area of coating processes and applied to assess the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. For the selected area, 6 to 12 portable photoionization detector (PID) were placed uniformly in its workplace to measure its total VOCs concentrations (CT-VOCs) for 6 randomly selected workshifts. Simultaneously, one sampling strain was placed beside one of these portable PIDs, and the collected air sample was analyzed for individual concentration (CVOCi) of 5 VOCs (xylene, butanone, toluene, butyl acetate, and dimethylformamide). Predictive models were established by relating the CT-VOCs to CVOCi of each individual compound via simple regression analysis. The established predictive models were employed to predict each CVOCi based on the measured CT-VOC for each the similar working area using the same portable PID. Results show that predictive models obtained from simple linear regression analyses were found with an R2 = 0.83~0.99 indicating that CT-VOCs were adequate for predicting CVOCi. In order to verify the validity of the exposure prediction model, the sampling analysis of the above chemical substances was further carried out and the correlation between the measured value (Cm) and the predicted value (Cp) was analyzed. It was found that there is a good correction between the predicted value and measured value of each measured chemical substance (R2=0.83~0.98). Therefore, the surrogate approach could be assessed the exposure concentration of similar exposed groups using the same chemicals but different formula ratios. However, it is recommended to establish the prediction model between the chemical substances belonging to each coater and the direct-reading PID, which is more representative of reality exposure situation and more accurately to estimate the long-term exposure concentration of operators.

Keywords: exposure assessment, exposure prediction model, surrogate approach, TVOC

Procedia PDF Downloads 150
3071 Open Forging of Cylindrical Blanks Subjected to Lateral Instability

Authors: A. H. Elkholy, D. M. Almutairi

Abstract:

The successful and efficient execution of a forging process is dependent upon the correct analysis of loading and metal flow of blanks. This paper investigates the Upper Bound Technique (UBT) and its application in the analysis of open forging process when a possibility of blank bulging exists. The UBT is one of the energy rate minimization methods for the solution of metal forming process based on the upper bound theorem. In this regards, the kinematically admissible velocity field is obtained by minimizing the total forging energy rate. A computer program is developed in this research to implement the UBT. The significant advantages of this method is the speed of execution while maintaining a fairly high degree of accuracy and the wide prediction capability. The information from this analysis is useful for the design of forging processes and dies. Results for the prediction of forging loads and stresses, metal flow and surface profiles with the assured benefits in terms of press selection and blank preform design are outlined in some detail. The obtained predictions are ready for comparison with both laboratory and industrial results.

Keywords: forging, upper bound technique, metal forming, forging energy, forging die/platen

Procedia PDF Downloads 293
3070 Urban Big Data: An Experimental Approach to Building-Value Estimation Using Web-Based Data

Authors: Sun-Young Jang, Sung-Ah Kim, Dongyoun Shin

Abstract:

Current real-estate value estimation, difficult for laymen, usually is performed by specialists. This paper presents an automated estimation process based on big data and machine-learning technology that calculates influences of building conditions on real-estate price measurement. The present study analyzed actual building sales sample data for Nonhyeon-dong, Gangnam-gu, Seoul, Korea, measuring the major influencing factors among the various building conditions. Further to that analysis, a prediction model was established and applied using RapidMiner Studio, a graphical user interface (GUI)-based tool for derivation of machine-learning prototypes. The prediction model is formulated by reference to previous examples. When new examples are applied, it analyses and predicts accordingly. The analysis process discerns the crucial factors effecting price increases by calculation of weighted values. The model was verified, and its accuracy determined, by comparing its predicted values with actual price increases.

Keywords: apartment complex, big data, life-cycle building value analysis, machine learning

Procedia PDF Downloads 374
3069 Machine Learning Assisted Prediction of Sintered Density of Binary W(MO) Alloys

Authors: Hexiong Liu

Abstract:

Powder metallurgy is the optimal method for the consolidation and preparation of W(Mo) alloys, which exhibit excellent application prospects at high temperatures. The properties of W(Mo) alloys are closely related to the sintered density. However, controlling the sintered density and porosity of these alloys is still challenging. In the past, the regulation methods mainly focused on time-consuming and costly trial-and-error experiments. In this study, the sintering data for more than a dozen W(Mo) alloys constituted a small-scale dataset, including both solid and liquid phases of sintering. Furthermore, simple descriptors were used to predict the sintered density of W(Mo) alloys based on the descriptor selection strategy and machine learning method (ML), where the ML algorithm included the least absolute shrinkage and selection operator (Lasso) regression, k-nearest neighbor (k-NN), random forest (RF), and multi-layer perceptron (MLP). The results showed that the interpretable descriptors extracted by our proposed selection strategy and the MLP neural network achieved a high prediction accuracy (R>0.950). By further predicting the sintered density of W(Mo) alloys using different sintering processes, the error between the predicted and experimental values was less than 0.063, confirming the application potential of the model.

Keywords: sintered density, machine learning, interpretable descriptors, W(Mo) alloy

Procedia PDF Downloads 82
3068 Prospectivity Mapping of Orogenic Lode Gold Deposits Using Fuzzy Models: A Case Study of Saqqez Area, Northwestern Iran

Authors: Fanous Mohammadi, Majid H. Tangestani, Mohammad H. Tayebi

Abstract:

This research aims to evaluate and compare Geographical Information Systems (GIS)-based fuzzy models for producing orogenic gold prospectivity maps in the Saqqez area, NW of Iran. Gold occurrences are hosted in sericite schist and mafic to felsic meta-volcanic rocks in this area and are associated with hydrothermal alterations that extend over ductile to brittle shear zones. The predictor maps, which represent the Pre-(Source/Trigger/Pathway), syn-(deposition/physical/chemical traps) and post-mineralization (preservation/distribution of indicator minerals) subsystems for gold mineralization, were generated using empirical understandings of the specifications of known orogenic gold deposits and gold mineral systems and were then pre-processed and integrated to produce mineral prospectivity maps. Five fuzzy logic operators, including AND, OR, Fuzzy Algebraic Product (FAP), Fuzzy Algebraic Sum (FAS), and GAMMA, were applied to the predictor maps in order to find the most efficient prediction model. Prediction-Area (P-A) plots and field observations were used to assess and evaluate the accuracy of prediction models. Mineral prospectivity maps generated by AND, OR, FAP, and FAS operators were inaccurate and, therefore, unable to pinpoint the exact location of discovered gold occurrences. The GAMMA operator, on the other hand, produced acceptable results and identified potentially economic target sites. The P-A plot revealed that 68 percent of known orogenic gold deposits are found in high and very high potential regions. The GAMMA operator was shown to be useful in predicting and defining cost-effective target sites for orogenic gold deposits, as well as optimizing mineral deposit exploitation.

Keywords: mineral prospectivity mapping, fuzzy logic, GIS, orogenic gold deposit, Saqqez, Iran

Procedia PDF Downloads 121
3067 Curcumin Nanomedicine: A Breakthrough Approach for Enhanced Lung Cancer Therapy

Authors: Shiva Shakori Poshteh

Abstract:

Lung cancer is a highly prevalent and devastating disease, representing a significant global health concern with profound implications for healthcare systems and society. Its high incidence, mortality rates, and late-stage diagnosis contribute to its formidable nature. To address these challenges, nanoparticle-based drug delivery has emerged as a promising therapeutic strategy. Curcumin (CUR), a natural compound derived from turmeric, has garnered attention as a potential nanomedicine for lung cancer treatment. Nanoparticle formulations of CUR offer several advantages, including improved drug delivery efficiency, enhanced stability, controlled release kinetics, and targeted delivery to lung cancer cells. CUR exhibits a diverse array of effects on cancer cells. It induces apoptosis by upregulating pro-apoptotic proteins, such as Bax and Bak, and downregulating anti-apoptotic proteins, such as Bcl-2. Additionally, CUR inhibits cell proliferation by modulating key signaling pathways involved in cancer progression. It suppresses the PI3K/Akt pathway, crucial for cell survival and growth, and attenuates the mTOR pathway, which regulates protein synthesis and cell proliferation. CUR also interferes with the MAPK pathway, which controls cell proliferation and survival, and modulates the Wnt/β-catenin pathway, which plays a role in cell proliferation and tumor development. Moreover, CUR exhibits potent antioxidant activity, reducing oxidative stress and protecting cells from DNA damage. Utilizing CUR as a standalone treatment is limited by poor bioavailability, lack of targeting, and degradation susceptibility. Nanoparticle-based delivery systems can overcome these challenges. They enhance CUR’s bioavailability, protect it from degradation, and improve absorption. Further, Nanoparticles enable targeted delivery to lung cancer cells through surface modifications or ligand-based targeting, ensuring sustained release of CUR to prolong therapeutic effects, reduce administration frequency, and facilitate penetration through the tumor microenvironment, thereby enhancing CUR’s access to cancer cells. Thus, nanoparticle-based CUR delivery systems promise to improve lung cancer treatment outcomes. This article provides an overview of lung cancer, explores CUR nanoparticles as a treatment approach, discusses the benefits and challenges of nanoparticle-based drug delivery, and highlights prospects for CUR nanoparticles in lung cancer treatment. Future research aims to optimize these delivery systems for improved efficacy and patient prognosis in lung cancer.

Keywords: lung cancer, curcumin, nanomedicine, nanoparticle-based drug delivery

Procedia PDF Downloads 72
3066 Long Short-Term Memory Based Model for Modeling Nicotine Consumption Using an Electronic Cigarette and Internet of Things Devices

Authors: Hamdi Amroun, Yacine Benziani, Mehdi Ammi

Abstract:

In this paper, we want to determine whether the accurate prediction of nicotine concentration can be obtained by using a network of smart objects and an e-cigarette. The approach consists of, first, the recognition of factors influencing smoking cessation such as physical activity recognition and participant’s behaviors (using both smartphone and smartwatch), then the prediction of the configuration of the e-cigarette (in terms of nicotine concentration, power, and resistance of e-cigarette). The study uses a network of commonly connected objects; a smartwatch, a smartphone, and an e-cigarette transported by the participants during an uncontrolled experiment. The data obtained from sensors carried in the three devices were trained by a Long short-term memory algorithm (LSTM). Results show that our LSTM-based model allows predicting the configuration of the e-cigarette in terms of nicotine concentration, power, and resistance with a root mean square error percentage of 12.9%, 9.15%, and 11.84%, respectively. This study can help to better control consumption of nicotine and offer an intelligent configuration of the e-cigarette to users.

Keywords: Iot, activity recognition, automatic classification, unconstrained environment

Procedia PDF Downloads 224
3065 Evaluation of Medication Administration Process in a Paediatric Ward

Authors: Zayed Alsulami, Asma Aldosseri, Ahmed Ezziden, Abdulrahman Alonazi

Abstract:

Children are more susceptible to medication errors than adults. Medication administration process is the last stage in the medication treatment process and most of the errors detected in this stage. Little research has been undertaken about medication errors in children in the Middle East countries. This study was aimed to evaluate how the paediatric nurses adhere to the medication administration policy and also to identify any medication preparation and administration errors or any risk factors. An observational, prospective study of medication administration process from when the nurses preparing patient medication until administration stage (May to August 2014) was conducted in Saudi Arabia. Twelve paediatric nurses serving 90 paediatric patients were observed. 456 drug administered doses were evaluated. Adherence rate was variable in 7 steps out of 16 steps. Patient allergy information, dose calculation, drug expiry date were the steps in medication administration with lowest adherence rates. 63 medication preparation and administration errors were identified with error rate 13.8% of medication administrations. No potentially life-threating errors were witnessed. Few logistic and administrative factors were reported. The results showed that the medication administration policy and procedure need an urgent revision to be more sensible for nurses in practice. Nurses’ knowledge and skills regarding the medication administration process should be improved.

Keywords: medication sasfety, paediatric, medication errors, paediatric ward

Procedia PDF Downloads 396
3064 Comparative in vitro Anticancer Activity of Two Siddha Formulations: Neeradi Muthu Vallathymezugu and Thamira Kattu Chendooram

Authors: Vasudha Devi, Arul Amuthan, K. Narayanan, Praveen KS, Venkata Rao J

Abstract:

Background: Siddha Medicine is one of the Indian traditional medical systems, in which the cancer disease is mentioned as 'putrunoi' which literally means the disease of growth like termite mound. There are number of formulations available for the treatment of cancer disease. Neeradi muthu vallathymezugu (NMV) and thamira kattu chendooram (TKC) are two drugs commonly prescribed by Siddha physicians. These drugs have been clinically reported to be safe and effective when given orally. Though these formulations are in practice for centuries, no efforts have been made to standardize them and explore their anti-cancer potential systematically. Objective: To compare the cytotoxic activity of NMV and TKC with doxorubicin using cancer cell lines. Materials and methods: For this study, ethanol extract of NMV was taken, whereas TKC was used as such. In vitro cytotoxic activity was evaluated by sulphorhodamine (SRB) assay against human hepatic cancer cells (HepG2), human breast cancer cells (MCF-7) and human cervical cancer cells [KeLa]. Doxorubicin was used as the standard. The SRB assay is based on the ability of cellular proteins to bind with sulphorhodamine-B. The number of live cells in drug treated cell lines directly affects the color formation in the assay, which is estimated calorimetrically by measuring the absorbance at 540 nm to calculate the cytotoxicity (inhibitory concentration - IC50 value) of the drug. Results: The IC50values of NMV, TKC and doxorubicin against HepG2 were 3.08 µg/ml, 20.21 µg/ml and 1.21µg/ml respectively. In MCF-7, it was 11.75 µg/ml, 17.67 µg/ml and 2.8µg/ml. In HeLa, the values were 24.76 µg/ml, 73.35 µg/ml and 1.12µg/ml. Conclusions: The study proves the possible anti-cancer potential of these two formulations. Compared to TKC, NMV showed good cytotoxic effect even at low dose. Human hepatic cancer cells responded well even at very low dose, when compared to other cancer cells. Though, cytotoxic potential of these compounds was found to be less compared to doxorubicin, the isolated lead compound may have the potential to be used as an anticancer drug clinically.

Keywords: Neeradi muthu vallathymezugu (Hydnocarpus laurifolia), thamira kattu chendooram, cytotoxicity, in-vitro, Siddha Medicine

Procedia PDF Downloads 473
3063 Effect of Anionic Lipid on Zeta Potential Values and Physical Stability of Liposomal Amikacin

Authors: Yulistiani, Muhammad Amin, Fasich

Abstract:

A surface charge of the nanoparticle is a very important consideration in pulmonal drug delivery system. The zeta potential (ZP) is related to the surface charge which can predict stability of nanoparticles as nebules of liposomal amikacin. Anionic lipid such as 1,2-dipalmitoyl-sn-glycero-3-phosphatidylglycerol (DPPG) is expected to contribute to the physical stability of liposomal amikacin and the optimal ZP value. Suitable ZP can improve drug release profiles at specific sites in alveoli as well as their stability in dosage form. This study aimed to analyze the effect of DPPG on ZP values and physical stability of liposomal amikacin. Liposomes were prepared by using the reserved phase evaporation method. Liposomes consisting of DPPG, 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC), cholesterol and amikacin were formulated in five different compositions 0/150/5/100, 10//150/5/100, 20/150/5/100, 30/150/5/100 and 40/150/5/100 (w/v) respectively. A chloroform/methanol mixture in the ratio of 1 : 1 (v/v) was used as solvent to dissolve lipids. These systems were adjusted in the phosphate buffer at pH 7.4. Nebules of liposomal amikacin were produced by using the vibrating nebulizer and then characterized by the X-ray diffraction, differential scanning calorimetry, particle size and zeta potential analyzer, and scanning electron microscope. Amikacin concentration from liposome leakage was determined by the immunoassay method. The study revealed that presence of DPPG could increase the ZP value. The addition of 10 mg DPPG in the composition resulted in increasing of ZP value to 3.70 mV (negatively charged). The optimum ZP value was reached at -28.780 ± 0.70 mV and particle size of nebules 461.70 ± 21.79 nm. Nebulizing process altered parameters such as particle size, conformation of lipid components and the amount of surface charges of nanoparticles which could influence the ZP value. These parameters might have profound effects on the application of nebules in the alveoli; however, negatively charge nanoparticles were unexpected to have a high ZP value in this system due to increased macrophage uptake and pulmonal clearance. Therefore, the ratio of liposome 20/150/5/100 (w/v) resulted in the most stable colloidal system and might be applicable to pulmonal drug delivery system.

Keywords: anionic lipid, dipalmitoylphosphatidylglycerol, liposomal amikacin, stability, zeta potential

Procedia PDF Downloads 339
3062 Influence of Flexible Plate's Contour on Dynamic Behavior of High Speed Flexible Coupling of Combat Aircraft

Authors: Dineshsingh Thakur, S. Nagesh, J. Basha

Abstract:

A lightweight High Speed Flexible Coupling (HSFC) is used to connect the Engine Gear Box (EGB) with an Accessory Gear Box (AGB) of the combat aircraft. The HSFC transmits the power at high speeds ranging from 10000 to 18000 rpm from the EGB to AGB. The HSFC is also accommodates larger misalignments resulting from thermal expansion of the aircraft engine and mounting arrangement. The HSFC has the series of metallic contoured annular thin cross-sectioned flexible plates to accommodate the misalignments. The flexible plates are accommodating the misalignment by the elastic material flexure. As the HSFC operates at higher speed, the flexural and axial resonance frequencies are to be kept away from the operating speed and proper prediction is required to prevent failure in the transmission line of a single engine fighter aircraft. To study the influence of flexible plate’s contour on the lateral critical speed (LCS) of HSFC, a mathematical model of HSFC as a elven rotor system is developed. The flexible plate being the bending member of the system, its bending stiffness which results from the contoured governs the LCS. Using transfer matrix method, Influence of various flexible plate contours on critical speed is analyzed. In the above analysis, the support bearing flexibility on critical speed prediction is also considered. Based on the study, a model is built with the optimum contour of flexible plate, for validation by experimental modal analysis. A good correlation between the theoretical prediction and model behavior is observed. From the study, it is found that the flexible plate’s contour is playing vital role in modification of system’s dynamic behavior and the present model can be extended for the development of similar type of flexible couplings for its computational simplicity and reliability.

Keywords: flexible rotor, critical speed, experimental modal analysis, high speed flexible coupling (HSFC), misalignment

Procedia PDF Downloads 215
3061 The Power House of Mind: Determination of Action

Authors: Sheetla Prasad

Abstract:

The focus issue of this article is to determine the mechanism of mind with geometrical analysis of human face. Research paradigm has been designed for study of spatial dynamic of face and it was found that different shapes of face have their own function for determine the action of mind. The functional ratio (FR) of face has determined the behaviour operation of human beings. It is not based on the formulistic approach of prediction but scientific dogmatism and mathematical analysis is the root of the prediction of behaviour. For analysis, formulae were developed and standardized. It was found that human psyche is designed in three forms; manipulated, manifested and real psyche. Functional output of the psyche has been determined by degree of energy flow in the psyche and reserve energy for future. Face is the recipient and transmitter of energy but distribution and control is the possible by mind. Mind directs behaviour. FR indicates that the face is a power house of energy and as per its geometrical domain force of behaviours has been designed and actions are possible in the nature of individual. The impact factor of this study is the promotion of human capital for job fitness objective and minimization of criminalization in society.

Keywords: functional ratio, manipulated psyche, manifested psyche, real psyche

Procedia PDF Downloads 453
3060 An Empirical Study to Predict Myocardial Infarction Using K-Means and Hierarchical Clustering

Authors: Md. Minhazul Islam, Shah Ashisul Abed Nipun, Majharul Islam, Md. Abdur Rakib Rahat, Jonayet Miah, Salsavil Kayyum, Anwar Shadaab, Faiz Al Faisal

Abstract:

The target of this research is to predict Myocardial Infarction using unsupervised Machine Learning algorithms. Myocardial Infarction Prediction related to heart disease is a challenging factor faced by doctors & hospitals. In this prediction, accuracy of the heart disease plays a vital role. From this concern, the authors have analyzed on a myocardial dataset to predict myocardial infarction using some popular Machine Learning algorithms K-Means and Hierarchical Clustering. This research includes a collection of data and the classification of data using Machine Learning Algorithms. The authors collected 345 instances along with 26 attributes from different hospitals in Bangladesh. This data have been collected from patients suffering from myocardial infarction along with other symptoms. This model would be able to find and mine hidden facts from historical Myocardial Infarction cases. The aim of this study is to analyze the accuracy level to predict Myocardial Infarction by using Machine Learning techniques.

Keywords: Machine Learning, K-means, Hierarchical Clustering, Myocardial Infarction, Heart Disease

Procedia PDF Downloads 203
3059 Safety Profile of Anti-Retroviral Medicine in South Africa Based on Reported Adverse Drug Reactions

Authors: Sarah Gounden, Mukesh Dheda, Boikhutso Tlou, Elizabeth Ojewole, Frasia Oosthuizen

Abstract:

Background: Antiretroviral therapy (ART) has been effective in the reduction of mortality and resulted in an improvement in the prognosis of HIV-infected patients. However, treatment with antiretrovirals (ARVs) has led to the development of many adverse drug reactions (ADRs). It is, therefore, necessary to determine the safety profile of these medicines in a South African population in order to ensure safe and optimal medicine use. Objectives: The aim of this study was to quantify ADRs experienced with the different ARVs currently used in South Africa, to determine the safety profile of ARV medicine in South Africa based on reported ADRs, and to determine the ARVs with the lowest risk profile based on specific patient populations. Methodology: This was a quantitative study. Individual case safety reports for the period January 2010 – December 2013 were obtained from the National Pharmacovigilance Center; these reports contained information on ADRs, ARV medicine, and patient demographics. Data was analysed to find associations that may exist between ADRs experienced, ARV medicines used and patient demographics. Results: A total of 1916 patient reports were received of which 1534 met the inclusion criteria for the study. The ARV with the lowest risk of ADRs were found to be lamivudine (0.51%, n=12), followed by lopinavir/ritonavir combination (0.8%, n=19) and abacavir (0.64%, n=15). A higher incidence of ADRs was observed in females compared to males. The age group 31–50 years and the weight group 61–80 kg had the highest incidence of ADRs reported. Conclusion: This study found that the safest ARVs to be used in a South African population are lamivudine, abacavir, and the lopinavir/ritonavir combination. Gender differences play a significant role in the occurrence of ADRs and both anatomical and physiological differences account for this. An increased BMI (body mass index) in both men and women showed an increase in the incidence of ADRs associated with ARV therapy.

Keywords: adverse drug reaction, antiretrovirals, HIV/AIDS, pharmacovigilance, South Africa

Procedia PDF Downloads 351
3058 Antimycobacterial Activity of Ethanolic Extract of Artemisia absinthium

Authors: T. Hojageldiyev, Y. Bolmammedov, S. Gurbanaliyev

Abstract:

It is known that drugs used in the treatment of tuberculosis show toxic effect to organism especially to liver besides its therapeutic effect. Because of ineffectiveness of drugs used in the treatment regimen of tuberculosis against multidrug resistance (MDR) and extensively drug-resistance (XDR) tuberculosis requires the development of new treatment methods and new, novel drugs. Considering the usage of Artemisia absinthium in traditional medicine in treatment of wounds which suggests its antibacterial activity it seems that, also it may have significant antimycobacterial activity. The objective of present study was to evaluate antibacterial activity of ethanolic extract of A. absinthium against M. tuberculosis. In this study, the effect of ethanolic extract of A. absinthium was tested against tuberculosis and pharmaco-toxicological properties evaluated on laboratory animals. The 20%, 40%, 70% and 96% ethanolic extracts of A. absinthium prepared then its bacteriostatic and bactericidal activities were evaluated by validated methods. Data were analyzed by GraphPad Prism 7.0 at the level P < 0.05. Results showed that ethanolic extracts of A. absinthium show no toxicological properties with having high LD50. All concentrations of extract show high bacteriostatic activity on M. tuberculosis. 96% ethanolic extract has highest bactericidal effect among other concentrations. By conducting further studies, as a result of our study, antimycobacterial drug can be prepared from A. absinthium.

Keywords: Artemisia absinthium, antimycobacterial, ethanolic extract, Mycobacteria tuberculosis

Procedia PDF Downloads 292
3057 Copper Related Toxicity of 1-Hydroxy-2-Thiopyridines

Authors: Elena G. Salina, Vadim A. Makarov

Abstract:

With the emergence of primary resistance to the current drugs and wide distribution of latent tuberculosis infection, a need for new compounds with a novel mode of action is growing steadily. Copper-mediated innate immunity and antibacterial toxicity propose novel strategies in TB drug discovery and development. Transcriptome of M. tuberculosis was obtained by RNA-seq, intracellular copper content was measured by ISP MS and complexes of 1-hydroxy-2-thiopyridines with copper were detected by HPLC.1-hydroxy-2-thiopyridine derivatives were found to be highly active in vitro against both actively growing and dormant non-culturable M. tuberculosis. Transcriptome response to 1-hydroxy-2-thiopyridines revealed signs of copper toxicity in M. tuberculosis bacilli. Indeed, Cu was found to accumulate inside cells treated with 1-hydroxy-2-thiopyridines. These compounds were found to form stable charged lipophylic complexes with Cu²⁺ ions which transport into mycobacterial cell. Subsequent metabolic destruction of the complex led to transformation of 1-hydroxy-2-thiopyridines into 2-methylmercapto-2-ethoxycarbonylpyridines, which did not possess antitubercular activity and releasing of free Cu²⁺ in the cytoplasm. 1-hydroxy-2-thiopyridines are a potent class of Cu-dependent inhibitors of M. tuberculosis which may control M. tuberculosis infection by impairment of copper homeostasis. Acknowledgment: This work was financially supported by the Ministry of Education and Science of the RussianFederation (Agreement No 14.616.21.0065; unique identifier RFMEFI61616X0065).

Keywords: copper toxicity, drug discovery, M. tuberculosis inhibitors, 2-thiopyridines

Procedia PDF Downloads 169
3056 Deepnic, A Method to Transform Each Variable into Image for Deep Learning

Authors: Nguyen J. M., Lucas G., Brunner M., Ruan S., Antonioli D.

Abstract:

Deep learning based on convolutional neural networks (CNN) is a very powerful technique for classifying information from an image. We propose a new method, DeepNic, to transform each variable of a tabular dataset into an image where each pixel represents a set of conditions that allow the variable to make an error-free prediction. The contrast of each pixel is proportional to its prediction performance and the color of each pixel corresponds to a sub-family of NICs. NICs are probabilities that depend on the number of inputs to each neuron and the range of coefficients of the inputs. Each variable can therefore be expressed as a function of a matrix of 2 vectors corresponding to an image whose pixels express predictive capabilities. Our objective is to transform each variable of tabular data into images into an image that can be analysed by CNNs, unlike other methods which use all the variables to construct an image. We analyse the NIC information of each variable and express it as a function of the number of neurons and the range of coefficients used. The predictive value and the category of the NIC are expressed by the contrast and the color of the pixel. We have developed a pipeline to implement this technology and have successfully applied it to genomic expressions on an Affymetrix chip.

Keywords: tabular data, deep learning, perfect trees, NICS

Procedia PDF Downloads 90