Search results for: dental age estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2262

Search results for: dental age estimation

1152 Temporal Estimation of Hydrodynamic Parameter Variability in Constructed Wetlands

Authors: Mohammad Moezzibadi, Isabelle Charpentier, Adrien Wanko, Robert Mosé

Abstract:

The calibration of hydrodynamic parameters for subsurface constructed wetlands (CWs) is a sensitive process since highly non-linear equations are involved in unsaturated flow modeling. CW systems are engineered systems designed to favour natural treatment processes involving wetland vegetation, soil, and their microbial flora. Their significant efficiency at reducing the ecological impact of urban runoff has been recently proved in the field. Numerical flow modeling in a vertical variably saturated CW is here carried out by implementing the Richards model by means of a mixed hybrid finite element method (MHFEM), particularly well adapted to the simulation of heterogeneous media, and the van Genuchten-Mualem parametrization. For validation purposes, MHFEM results were compared to those of HYDRUS (a software based on a finite element discretization). As van Genuchten-Mualem soil hydrodynamic parameters depend on water content, their estimation is subject to considerable experimental and numerical studies. In particular, the sensitivity analysis performed with respect to the van Genuchten-Mualem parameters reveals a predominant influence of the shape parameters α, n and the saturated conductivity of the filter on the piezometric heads, during saturation and desaturation. Modeling issues arise when the soil reaches oven-dry conditions. A particular attention should also be brought to boundary condition modeling (surface ponding or evaporation) to be able to tackle different sequences of rainfall-runoff events. For proper parameter identification, large field datasets would be needed. As these are usually not available, notably due to the randomness of the storm events, we thus propose a simple, robust and low-cost numerical method for the inverse modeling of the soil hydrodynamic properties. Among the methods, the variational data assimilation technique introduced by Le Dimet and Talagrand is applied. To that end, a variational data assimilation technique is implemented by applying automatic differentiation (AD) to augment computer codes with derivative computations. Note that very little effort is needed to obtain the differentiated code using the on-line Tapenade AD engine. Field data are collected for a three-layered CW located in Strasbourg (Alsace, France) at the water edge of the urban water stream Ostwaldergraben, during several months. Identification experiments are conducted by comparing measured and computed piezometric head by means of the least square objective function. The temporal variability of hydrodynamic parameter is then assessed and analyzed.

Keywords: automatic differentiation, constructed wetland, inverse method, mixed hybrid FEM, sensitivity analysis

Procedia PDF Downloads 165
1151 Estimation of Soil Erosion and Sediment Yield for ONG River Using GIS

Authors: Sanjay Kumar Behera, Kanhu Charan Patra

Abstract:

A GIS-based method has been applied for the determination of soil erosion and sediment yield in a small watershed in Ong River basin, Odisha, India. The method involves spatial disintegration of the catchment into homogenous grid cells to capture the catchment heterogeneity. The gross soil erosion in each cell was calculated using Universal Soil Loss Equation (USLE) by carefully determining its various parameters. The concept of sediment delivery ratio is used to route surface erosion from each of the discretized cells to the catchment outlet. The process of sediment delivery from grid cells to the catchment outlet is represented by the topographical characteristics of the cells. The effect of DEM resolution on sediment yield is analyzed using two different resolutions of DEM. The spatial discretization of the catchment and derivation of the physical parameters related to erosion in the cell are performed through GIS techniques.

Keywords: DEM, GIS, sediment delivery ratio, sediment yield, soil erosion

Procedia PDF Downloads 450
1150 Speech Enhancement Using Kalman Filter in Communication

Authors: Eng. Alaa K. Satti Salih

Abstract:

Revolutions Applications such as telecommunications, hands-free communications, recording, etc. which need at least one microphone, the signal is usually infected by noise and echo. The important application is the speech enhancement, which is done to remove suppressed noises and echoes taken by a microphone, beside preferred speech. Accordingly, the microphone signal has to be cleaned using digital signal processing DSP tools before it is played out, transmitted, or stored. Engineers have so far tried different approaches to improving the speech by get back the desired speech signal from the noisy observations. Especially Mobile communication, so in this paper will do reconstruction of the speech signal, observed in additive background noise, using the Kalman filter technique to estimate the parameters of the Autoregressive Process (AR) in the state space model and the output speech signal obtained by the MATLAB. The accurate estimation by Kalman filter on speech would enhance and reduce the noise then compare and discuss the results between actual values and estimated values which produce the reconstructed signals.

Keywords: autoregressive process, Kalman filter, Matlab, noise speech

Procedia PDF Downloads 345
1149 Chemometric Estimation of Inhibitory Activity of Benzimidazole Derivatives by Linear Least Squares and Artificial Neural Networks Modelling

Authors: Sanja O. Podunavac-Kuzmanović, Strahinja Z. Kovačević, Lidija R. Jevrić, Stela Jokić

Abstract:

The subject of this paper is to correlate antibacterial behavior of benzimidazole derivatives with their molecular characteristics using chemometric QSAR (Quantitative Structure–Activity Relationships) approach. QSAR analysis has been carried out on the inhibitory activity of benzimidazole derivatives against Staphylococcus aureus. The data were processed by linear least squares (LLS) and artificial neural network (ANN) procedures. The LLS mathematical models have been developed as a calibration models for prediction of the inhibitory activity. The quality of the models was validated by leave one out (LOO) technique and by using external data set. High agreement between experimental and predicted inhibitory acivities indicated the good quality of the derived models. These results are part of the CMST COST Action No. CM1306 "Understanding Movement and Mechanism in Molecular Machines".

Keywords: Antibacterial, benzimidazoles, chemometric, QSAR.

Procedia PDF Downloads 317
1148 Phenol Degradation via Photocatalytic Oxidation Using Fe Doped TiO₂

Authors: Sherif Ismail

Abstract:

Degradation of phenol-contaminated wastewater using Photocatalytic oxidation process was investigated in batch experiments using Fe doped TiO₂. Moreover, the effect of oxygen aeration on the performance of photocatalytic oxidation process by iron (Fe⁺²) doped titanium dioxide (TiO₂) was assessed. Photocatalytic oxidation using Fe doped TiO₂ effectively reduce the phenol concentration in wastewater with optimum condition of light intensity, pH, catalyst-dosing and initial concentration of phenol were 50 W/m2, 5.3, 600 mg/l and 10 mg/l respectively. The results obtained that removal efficiency of phenol was 88% after 180 min in case of N₂ addition. However, aeration by oxygen resulted in a 99% removal efficiency in 120 min. The results of photo-catalysis oxidation experiments fitted the pseudo-first-order kinetic equation with high correlation. Costs estimation of 30 m3/d full-scale photo-catalysis oxidation plant was assessed.

Keywords: phenol degradation, Fe-doped TiO2, AOPs, cost analysis

Procedia PDF Downloads 166
1147 Gaussian Particle Flow Bernoulli Filter for Single Target Tracking

Authors: Hyeongbok Kim, Lingling Zhao, Xiaohong Su, Junjie Wang

Abstract:

The Bernoulli filter is a precise Bayesian filter for single target tracking based on the random finite set theory. The standard Bernoulli filter often underestimates the number of targets. This study proposes a Gaussian particle flow (GPF) Bernoulli filter employing particle flow to migrate particles from prior to posterior positions to improve the performance of the standard Bernoulli filter. By employing the particle flow filter, the computational speed of the Bernoulli filters is significantly improved. In addition, the GPF Bernoulli filter provides a more accurate estimation compared with that of the standard Bernoulli filter. Simulation results confirm the improved tracking performance and computational speed in two- and three-dimensional scenarios compared with other algorithms.

Keywords: Bernoulli filter, particle filter, particle flow filter, random finite sets, target tracking

Procedia PDF Downloads 94
1146 An Algorithm for Estimating the Stable Operation Conditions of the Synchronous Motor of the Ore Mill Electric Drive

Authors: M. Baghdasaryan, A. Sukiasyan

Abstract:

An algorithm for estimating the stable operation conditions of the synchronous motor of the ore mill electric drive is proposed. The stable operation conditions of the synchronous motor are revealed, taking into account the estimation of the q angle change and the technological factors. The stability condition obtained allows to ensure the stable operation of the motor in the synchronous mode, taking into account the nonlinear character of the mill loading. The developed algorithm gives an opportunity to present the undesirable phenomena, arising in the electric drive system. The obtained stability condition can be successfully applied for the optimal control of the electromechanical system of the mill.

Keywords: electric drive, synchronous motor, ore mill, stability, technological factors

Procedia PDF Downloads 426
1145 Loan Portfolio Quality and the Bank Soundness in the Eccas: An Empirical Evaluation of Cameroonians Banks

Authors: Andre Kadandji, Mouhamadou Fall, Francois Koum Ekalle

Abstract:

This paper aims to analyze the sound banking through the effects of the damage of the loan portfolio in the Cameroonian banking sector through the Z-score. The approach is to test the effect of other CAMEL indicators and macroeconomics indicators on the relationship between the non-performing loan and the soundness of Cameroonian banks. We use a dynamic panel data, made by 13 banks for the period 2010-2013. The analysis provides a model equations embedded in panel data. For the estimation, we use the generalized method of moments to understand the effects of macroeconomic and CAMEL type variables on the ability of Cameroonian banks to face a shock. We find that the management quality and macroeconomic variables neutralize the effects of the non-performing loan on the banks soundness.

Keywords: loan portfolio, sound banking, Z-score, dynamic panel

Procedia PDF Downloads 294
1144 Liquid Chromatographic Determination of Alprazolam with ACE Inhibitors in Bulk, Respective Pharmaceutical Products and Human Serum

Authors: Saeeda Nadir Ali, Najma Sultana, Muhammad Saeed Arayne, Amtul Qayoom

Abstract:

Present study describes a simple and a fast liquid chromatographic method using ultraviolet detector for simultaneous determination of anxiety relief medicine alprazolam with ACE inhibitors i.e; lisinopril, captopril and enalapril employing purospher star C18 (25 cm, 0.46 cm, 5 µm). Separation was achieved within 5 min at ambient temperature via methanol: water (8:2 v/v) with pH adjusted to 2.9, monitoring the detector response at 220 nm. Optimum parameters were set up as per ICH (2006) guidelines. Calibration range was found out to be 0.312-10 µg mL-1 for alprazolam and 0.625-20 µg mL-1 for all the ACE inhibitors with correlation coefficients > 0.998 and detection limits 85, 37, 68 and 32 ng mL-1 for lisinopril, captopril, enalapril and alprazolam respectively. Intra-day, inter-day precision and accuracy of the assay were in acceptable range of 0.05-1.62% RSD and 98.85-100.76% recovery. Method was determined to be robust and effectively useful for the estimation of studied drugs in dosage formulations and human serum without obstruction of excipients or serum components.

Keywords: alprazolam, ACE inhibitors, RP HPLC, serum

Procedia PDF Downloads 516
1143 Comparison of Sediment Rating Curve and Artificial Neural Network in Simulation of Suspended Sediment Load

Authors: Ahmad Saadiq, Neeraj Sahu

Abstract:

Sediment, which comprises of solid particles of mineral and organic material are transported by water. In river systems, the amount of sediment transported is controlled by both the transport capacity of the flow and the supply of sediment. The transport of sediment in rivers is important with respect to pollution, channel navigability, reservoir ageing, hydroelectric equipment longevity, fish habitat, river aesthetics and scientific interests. The sediment load transported in a river is a very complex hydrological phenomenon. Hence, sediment transport has attracted the attention of engineers from various aspects, and different methods have been used for its estimation. So, several experimental equations have been submitted by experts. Though the results of these methods have considerable differences with each other and with experimental observations, because the sediment measures have some limits, these equations can be used in estimating sediment load. In this present study, two black box models namely, an SRC (Sediment Rating Curve) and ANN (Artificial Neural Network) are used in the simulation of the suspended sediment load. The study is carried out for Seonath subbasin. Seonath is the biggest tributary of Mahanadi river, and it carries a vast amount of sediment. The data is collected for Jondhra hydrological observation station from India-WRIS (Water Resources Information System) and IMD (Indian Meteorological Department). These data include the discharge, sediment concentration and rainfall for 10 years. In this study, sediment load is estimated from the input parameters (discharge, rainfall, and past sediment) in various combination of simulations. A sediment rating curve used the water discharge to estimate the sediment concentration. This estimated sediment concentration is converted to sediment load. Likewise, for the application of these data in ANN, they are normalised first and then fed in various combinations to yield the sediment load. RMSE (root mean square error) and R² (coefficient of determination) between the observed load and the estimated load are used as evaluating criteria. For an ideal model, RMSE is zero and R² is 1. However, as the models used in this study are black box models, they don’t carry the exact representation of the factors which causes sedimentation. Hence, a model which gives the lowest RMSE and highest R² is the best model in this study. The lowest values of RMSE (based on normalised data) for sediment rating curve, feed forward back propagation, cascade forward back propagation and neural network fitting are 0.043425, 0.00679781, 0.0050089 and 0.0043727 respectively. The corresponding values of R² are 0.8258, 0.9941, 0.9968 and 0.9976. This implies that a neural network fitting model is superior to the other models used in this study. However, a drawback of neural network fitting is that it produces few negative estimates, which is not at all tolerable in the field of estimation of sediment load, and hence this model can’t be crowned as the best model among others, based on this study. A cascade forward back propagation produces results much closer to a neural network model and hence this model is the best model based on the present study.

Keywords: artificial neural network, Root mean squared error, sediment, sediment rating curve

Procedia PDF Downloads 326
1142 Prevalence of Malocclusion and Assessment of Orthodontic Treatment Needs in Malay Transfusion-Dependent Thalassemia Patients

Authors: Mohamed H. Kosba, Heba A. Ibrahim, H. Rozita

Abstract:

Statement of the Problem: The life expectancy for transfusion-dependent thalassemia patients has increased dramatically with iron-chelation therapy and other modern management modalities. In these patients, the most dominant maxillofacial manifestations are protrusion of zygomatic bones and premaxilla due to the hyperplasia of bone marrow. The purpose of this study is to determine the prevalence of malocclusion and orthodontic treatment needs according to the Dental Aesthetic Index (DAI) among Malay transfusion-dependent thalassemia patients. Orientation: This is a cross-sectional study consist of 43 Malay transfusion-dependent thalassemia patients, 22 males, and 19 females with the mean age of 15.9 years old (SD 3.58). The subjects were selected randomly from patients attending Paediatrics and Internal Medicine Clinic at Hospital USM and Hospital Sultana Bahiyah. The subjects were assessed for malocclusion according to Angle’s classification, and orthodontic treatment needs using DAI. The results show that 22 of the subjects (51.1%) have class II malocclusion, 12 subjects (28%) have class І, while 9 subjects (20.9%) have class Ⅲ. The assessment of orthodontic treatment needs to reveal 22 cases (51.1%) fall in the normal/minor needs category, 12 subjects (28%) fall in the severe and very severe category, while 9 subjects (20.9%) fall in the definite category. Conclusion & Significance: Half of Malay transfusion-dependent thalassemia patients have Class Ⅱmalocclusion. About 28% had malocclusion and required orthodontic treatment. This research shows that Malay transfusion-dependent thalassemia may require orthodontic management; earlier intervention to reduce the complexity of the treatment later, suggesting functional appliance as a suitable treatment option for them, a twin block appliance together with headgear to restrict maxillary growth suggested for management. The current protocol implemented by the Malaysian Ministry of Health for the management of these patients seems to be sufficient since the result shows that about 28% require orthodontic treatment need, according to DAI.

Keywords: prevalence, DAI, thalassaemia, angle classification

Procedia PDF Downloads 144
1141 Evaluation of Fluoride Contents of Kirkuk City's Drinking Water and Its Source: Lesser Zab River and Its Effect on Human Health

Authors: Abbas R. Ali, Safa H. Abdulrahman

Abstract:

In this study, forty samples had been collected from water of Lesser Zab River and drinking water to determine fluoride concentration and show the impact of fluoride on general health of society of Kirkuk city. Estimation of fluoride concentration and determination of its proportion in water samples were performed attentively using a fluoride ion selective electrode. The fluoride concentrations in the Lesser Zab River samples were between 0.0265 ppm and 0.0863 ppm with an average of 0.0451 ppm, whereas the average fluoride concentration in drinking water samples was 0.102 ppm and ranged from 0.010 to 0.289 ppm. A comparison between results obtained with World Health Organization (WHO) show a low concentration of fluoride in the samples of the study. Thus, for health concerns we should increase the concentration of this ion in water of Kirkuk city at least to about (1.0 ppm) and this will take place after fluorination process.

Keywords: fluoride concentration, lesser zab river, drinking water, health society, Kirkuk city

Procedia PDF Downloads 372
1140 Analysis of the Degradation of the I-V Curve of the PV Module in a Harsh Environment: Estimation of the Site-Specific Factor (Installation Area)

Authors: Maibigue Nanglet, Arafat Ousman Béchir, Mahamat Hassan Béchir

Abstract:

The economy of Central African countries is growing very fast, and the demand for energy is increasing every day. As a result, insufficient power generation is one of the major problems slowing down development. This paper explores the factors of degradation of the I-V curve of the PV Generator (GPV) in harsh environments, taking the case of two locals: Mongo and Abeche. Its objective is to quantify the voltage leaks due to the different GPV installation areas; after using the Newton-Raphson numerical method of the solar cell, a survey of several experimental measurement points was made. The results of the simulation in MATLAB/Simulink show a relative power loss factor of 11.8765% on the GPVs installed in Mongo and 8.5463% on those installed in Abeche; these results allow us to say that the supports on which the modules are installed have an average impact of 10.2114% on their efficiency.

Keywords: calculation, degradation, site, GPV, severe environment

Procedia PDF Downloads 41
1139 Assessment of the Energy Balance Method in the Case of Masonry Domes

Authors: M. M. Sadeghi, S. Vahdani

Abstract:

Masonry dome structures had been widely used for covering large spans in the past. The seismic assessment of these historical structures is very complicated due to the nonlinear behavior of the material, their rigidness, and special stability configuration. The assessment method based on energy balance concept, as well as the standard pushover analysis, is used to evaluate the effectiveness of these methods in the case of masonry dome structures. The Soltanieh dome building is used as an example to which two methods are applied. The performance points are given from superimposing the capacity, and demand curves in Acceleration Displacement Response Spectra (ADRS) and energy coordination are compared with the nonlinear time history analysis as the exact result. The results show a good agreement between the dynamic analysis and the energy balance method, but standard pushover method does not provide an acceptable estimation.

Keywords: energy balance method, pushover analysis, time history analysis, masonry dome

Procedia PDF Downloads 281
1138 Robust Model Predictive Controller for Uncertain Nonlinear Wheeled Inverted Pendulum Systems: A Tube-Based Approach

Authors: Tran Gia Khanh, Dao Phuong Nam, Do Trong Tan, Nguyen Van Huong, Mai Xuan Sinh

Abstract:

This work presents the problem of tube-based robust model predictive controller for a class of continuous-time systems in the presence of input disturbances. The main objective is to point out the state trajectory of closed system being maintained inside a sequence of tubes. An estimation of attraction region of the closed system is pointed out based on input state stability (ISS) theory and linearized model in each time interval. The theoretical analysis and simulation results demonstrate the performance of the proposed algorithm for a wheeled inverted pendulum system.

Keywords: input state stability (ISS), tube-based robust MPC, continuous-time nonlinear systems, wheeled inverted pendulum

Procedia PDF Downloads 220
1137 Mixtures of Length-Biased Weibull Distributions for Loss Severity Modelling

Authors: Taehan Bae

Abstract:

In this paper, a class of length-biased Weibull mixtures is presented to model loss severity data. The proposed model generalizes the Erlang mixtures with the common scale parameter, and it shares many important modelling features, such as flexibility to fit various data distribution shapes and weak-denseness in the class of positive continuous distributions, with the Erlang mixtures. We show that the asymptotic tail estimate of the length-biased Weibull mixture is Weibull-type, which makes the model effective to fit loss severity data with heavy-tailed observations. A method of statistical estimation is discussed with applications on real catastrophic loss data sets.

Keywords: Erlang mixture, length-biased distribution, transformed gamma distribution, asymptotic tail estimate, EM algorithm, expectation-maximization algorithm

Procedia PDF Downloads 224
1136 Development of DNDC Modelling Method for Evaluation of Carbon Dioxide Emission from Arable Soils in European Russia

Authors: Olga Sukhoveeva

Abstract:

Carbon dioxide (CO2) is the main component of carbon biogeochemical cycle and one of the most important greenhouse gases (GHG). Agriculture, particularly arable soils, are one the largest sources of GHG emission for the atmosphere including CO2.Models may be used for estimation of GHG emission from agriculture if they can be adapted for different countries conditions. The only model used in officially at national level in United Kingdom and China for this purpose is DNDC (DeNitrification-DeComposition). In our research, the model DNDC is offered for estimation of GHG emission from arable soils in Russia. The aim of our research was to create the method of DNDC using for evaluation of CO2 emission in Russia based on official statistical information. The target territory was European part of Russia where many field experiments are located. At the first step of research the database on climate, soil and cropping characteristics for the target region from governmental, statistical, and literature sources were created. All-Russia Research Institute of Hydrometeorological Information – World Data Centre provides open daily data about average meteorological and climatic conditions. It must be calculated spatial average values of maximum and minimum air temperature and precipitation over the region. Spatial average values of soil characteristics (soil texture, bulk density, pH, soil organic carbon content) can be determined on the base of Union state register of soil recourses of Russia. Cropping technologies are published by agricultural research institutes and departments. We offer to define cropping system parameters (annual information about crop yields, amount and types of fertilizers and manure) on the base of the Federal State Statistics Service data. Content of carbon in plant biomass may be calculated via formulas developed and published by Ministry of Natural Resources and Environment of the Russian Federation. At the second step CO2 emission from soil in this region were calculated by DNDC. Modelling data were compared with empirical and literature data and good results were obtained, modelled values were equivalent to the measured ones. It was revealed that the DNDC model may be used to evaluate and forecast the CO2 emission from arable soils in Russia based on the official statistical information. Also, it can be used for creation of the program for decreasing GHG emission from arable soils to the atmosphere. Financial Support: fundamental scientific researching theme 0148-2014-0005 No 01201352499 ‘Solution of fundamental problems of analysis and forecast of Earth climatic system condition’ for 2014-2020; fundamental research program of Presidium of RAS No 51 ‘Climate change: causes, risks, consequences, problems of adaptation and regulation’ for 2018-2020.

Keywords: arable soils, carbon dioxide emission, DNDC model, European Russia

Procedia PDF Downloads 193
1135 A Project-Orientated Training Concept to Prepare Students for Systems Engineering Activities

Authors: Elke Mackensen

Abstract:

Systems Engineering plays a key role during industrial product development of complex technical systems. The need for systems engineers in industry is growing. However, there is a gap between the industrial need and the academic education. Normally the academic education is focused on the domain specific design, implementation and testing of technical systems. Necessary systems engineering expertise like knowledge about requirements analysis, product cost estimation, management or social skills are poorly taught. Thus, there is the need of new academic concepts for teaching systems engineering skills. This paper presents a project-orientated training concept to prepare students from different technical degree programs for systems engineering activities. The training concept has been initially implemented and applied in the industrial engineering master program of the University of Applied Sciences Offenburg.

Keywords: educational systems engineering training, requirements analysis, system modelling, SysML

Procedia PDF Downloads 348
1134 Diagnostic Evaluation of Urinary Angiogenin (ANG) and Clusterin (CLU) as Biomarker for Bladder Cancer

Authors: Marwa I. Shabayek, Ola A. Said, Hanan A. Attaia, Heba A. Awida

Abstract:

Bladder carcinoma is an important worldwide health problem. Both cystoscopy and urine cytology used in detecting bladder cancer suffer from drawbacks where cystoscopy is an invasive method and urine cytology shows low sensitivity in low grade tumors. This study validates easier and less time-consuming techniques to evaluate the value of combined use of angiogenin and clusterin in comparison and combination with voided urine cytology in the detection of bladder cancer patients. This study includes malignant (bladder cancer patients, n= 50), benign (n=20), and healthy (n=20) groups. The studied groups were subjected to cystoscopic examination, detection of bilharzial antibodies, urine cytology, and estimation of urinary angiogenin and clusterin by ELISA. The overall sensitivity and specifcity were 66% and 75% for angiogenin, 70% and 82.5% for clusterin and 46% and 80% for voided urine cytology. Combined sensitivity of angiogenin and clusterin with urine cytology increased from 82 to 88%.

Keywords: angiogenin, bladder cancer, clusterin, cytology

Procedia PDF Downloads 299
1133 Observer-based Robust Diagnosis for Wind Turbine System

Authors: Sarah Odofin, Zhiwei Gao

Abstract:

Operations and maintenance of wind turbine have received much attention by researcher due to rapid expansion of wind farms. This paper explores a novel fault diagnosis that is designed and optimized to be very sensitive to faults and robust to disturbances. The faults considered are the sensor faults of which the augmented observer is considered to enlarge faults and to be robust to disturbance. A qualitative model based analysis is proposed for early fault diagnosis to minimize downtime mostly caused by components breakdown and exploit productivity. Simulation results are computed validating the models provided which demonstrates system performance using practical application of fault type examples. The results demonstrate the effectiveness of the developed techniques investigated in a Matlab/Simulink environment.

Keywords: wind turbine, condition monitoring, genetic algorithm, fault diagnosis, augmented observer, disturbance robustness, fault estimation, sensor monitoring

Procedia PDF Downloads 498
1132 Retina Registration for Biometrics Based on Characterization of Retinal Feature Points

Authors: Nougrara Zineb

Abstract:

The unique structure of the blood vessels in the retina has been used for biometric identification. The retina blood vessel pattern is a unique pattern in each individual and it is almost impossible to forge that pattern in a false individual. The retina biometrics’ advantages include high distinctiveness, universality, and stability overtime of the blood vessel pattern. Once the creases have been extracted from the images, a registration stage is necessary, since the position of the retinal vessel structure could change between acquisitions due to the movements of the eye. Image registration consists of following steps: Feature detection, feature matching, transform model estimation and image resembling and transformation. In this paper, we present an algorithm of registration; it is based on the characterization of retinal feature points. For experiments, retinal images from the DRIVE database have been tested. The proposed methodology achieves good results for registration in general.

Keywords: fovea, optic disc, registration, retinal images

Procedia PDF Downloads 267
1131 Direct Composite Veneers as Treatment of Anterior Teeth: Case Report

Authors: Amerah Alsalem

Abstract:

Aim: Laminate veneers are restorations which are envisioned to correct existing abnormalities, esthetic deficiencies, and discolorations. Laminate veneer restorations may be processed in two different ways: direct or indirect. Materials and methods: Direct composite laminate veneers require minimal preparation compared to indirect composite veneers, cost less and are easier to repair, so are useful in young patients. However, composites can have inherent limitations such as shrinkage, limited toughness; color instability and susceptibility to wear that reduce the lifespan of the restoration and cause postoperative complications. Every new material or method introduced to the field of dentistry aims to achieve esthetics and successful dental treatments with minimal invasiveness. Therefore, direct laminate veneer restorations have been developed for advanced esthetic problems of anterior teeth. Tooth discolorations, rotated teeth, coronal fractures, congenital or acquired malformations, diastemas, discolored restorations, palatally positioned teeth, the absence of lateral incisors, abrasions and erosions are the main indications for direct laminate veneer restorations. Result: Direct veneers, as esthetic procedures, have become treatment alternatives for patients with esthetic problems of anterior teeth in recent years. The cost, social and time factors have to be considered. Although ceramic laminate veneer restorations have some advantages like color stability and high resistance against abrasion, they have also some disadvantages, including high cost and long chair time. Moreover, they have some problems such as the necessity of an additional adhesive cement. Conclusion: Although there are still some disadvantages, especially discolorations and fragility, with the development of new composite resins, direct laminate veneer restorations can be a treatment option for patients with esthetic problems of anterior teeth, when applied judiciously with good patient hygiene motivation.

Keywords: direct, veneers, composite, anterior

Procedia PDF Downloads 285
1130 Predicting Provider Service Time in Outpatient Clinics Using Artificial Intelligence-Based Models

Authors: Haya Salah, Srinivas Sharan

Abstract:

Healthcare facilities use appointment systems to schedule their appointments and to manage access to their medical services. With the growing demand for outpatient care, it is now imperative to manage physician's time effectively. However, high variation in consultation duration affects the clinical scheduler's ability to estimate the appointment duration and allocate provider time appropriately. Underestimating consultation times can lead to physician's burnout, misdiagnosis, and patient dissatisfaction. On the other hand, appointment durations that are longer than required lead to doctor idle time and fewer patient visits. Therefore, a good estimation of consultation duration has the potential to improve timely access to care, resource utilization, quality of care, and patient satisfaction. Although the literature on factors influencing consultation length abound, little work has done to predict it using based data-driven approaches. Therefore, this study aims to predict consultation duration using supervised machine learning algorithms (ML), which predicts an outcome variable (e.g., consultation) based on potential features that influence the outcome. In particular, ML algorithms learn from a historical dataset without explicitly being programmed and uncover the relationship between the features and outcome variable. A subset of the data used in this study has been obtained from the electronic medical records (EMR) of four different outpatient clinics located in central Pennsylvania, USA. Also, publicly available information on doctor's characteristics such as gender and experience has been extracted from online sources. This research develops three popular ML algorithms (deep learning, random forest, gradient boosting machine) to predict the treatment time required for a patient and conducts a comparative analysis of these algorithms with respect to predictive performance. The findings of this study indicate that ML algorithms have the potential to predict the provider service time with superior accuracy. While the current approach of experience-based appointment duration estimation adopted by the clinic resulted in a mean absolute percentage error of 25.8%, the Deep learning algorithm developed in this study yielded the best performance with a MAPE of 12.24%, followed by gradient boosting machine (13.26%) and random forests (14.71%). Besides, this research also identified the critical variables affecting consultation duration to be patient type (new vs. established), doctor's experience, zip code, appointment day, and doctor's specialty. Moreover, several practical insights are obtained based on the comparative analysis of the ML algorithms. The machine learning approach presented in this study can serve as a decision support tool and could be integrated into the appointment system for effectively managing patient scheduling.

Keywords: clinical decision support system, machine learning algorithms, patient scheduling, prediction models, provider service time

Procedia PDF Downloads 123
1129 Remote Radiation Mapping Based on UAV Formation

Authors: Martin Arguelles Perez, Woosoon Yim, Alexander Barzilov

Abstract:

High-fidelity radiation monitoring is an essential component in the enhancement of the situational awareness capabilities of the Department of Energy’s Office of Environmental Management (DOE-EM) personnel. In this paper, multiple units of unmanned aerial vehicles (UAVs) each equipped with a cadmium zinc telluride (CZT) gamma-ray sensor are used for radiation source localization, which can provide vital real-time data for the EM tasks. To achieve this goal, a fully autonomous system of multicopter-based UAV swarm in 3D tetrahedron formation is used for surveying the area of interest and performing radiation source localization. The CZT sensor used in this study is suitable for small-size multicopter UAVs due to its small size and ease of interfacing with the UAV’s onboard electronics for high-resolution gamma spectroscopy enabling the characterization of radiation hazards. The multicopter platform with a fully autonomous flight feature is suitable for low-altitude applications such as radiation contamination sites. The conventional approach uses a single UAV mapping in a predefined waypoint path to predict the relative location and strength of the source, which can be time-consuming for radiation localization tasks. The proposed UAV swarm-based approach can significantly improve its ability to search for and track radiation sources. In this paper, two approaches are developed using (a) 2D planar circular (3 UAVs) and (b) 3D tetrahedron formation (4 UAVs). In both approaches, accurate estimation of the gradient vector is crucial for heading angle calculation. Each UAV carries the CZT sensor; the real-time radiation data are used for the calculation of a bulk heading vector for the swarm to achieve a UAV swarm’s source-seeking behavior. Also, a spinning formation is studied for both cases to improve gradient estimation near a radiation source. In the 3D tetrahedron formation, a UAV located closest to the source is designated as a lead unit to maintain the tetrahedron formation in space. Such a formation demonstrated a collective and coordinated movement for estimating a gradient vector for the radiation source and determining an optimal heading direction of the swarm. The proposed radiation localization technique is studied by computer simulation and validated experimentally in the indoor flight testbed using gamma sources. The technology presented in this paper provides the capability to readily add/replace radiation sensors to the UAV platforms in the field conditions enabling extensive condition measurement and greatly improving situational awareness and event management. Furthermore, the proposed radiation localization approach allows long-term measurements to be efficiently performed at wide areas of interest to prevent disasters and reduce dose risks to people and infrastructure.

Keywords: radiation, unmanned aerial system(UAV), source localization, UAV swarm, tetrahedron formation

Procedia PDF Downloads 102
1128 Forecasting Models for Steel Demand Uncertainty Using Bayesian Methods

Authors: Watcharin Sangma, Onsiri Chanmuang, Pitsanu Tongkhow

Abstract:

A forecasting model for steel demand uncertainty in Thailand is proposed. It consists of trend, autocorrelation, and outliers in a hierarchical Bayesian frame work. The proposed model uses a cumulative Weibull distribution function, latent first-order autocorrelation, and binary selection, to account for trend, time-varying autocorrelation, and outliers, respectively. The Gibbs sampling Markov Chain Monte Carlo (MCMC) is used for parameter estimation. The proposed model is applied to steel demand index data in Thailand. The root mean square error (RMSE), mean absolute percentage error (MAPE), and mean absolute error (MAE) criteria are used for model comparison. The study reveals that the proposed model is more appropriate than the exponential smoothing method.

Keywords: forecasting model, steel demand uncertainty, hierarchical Bayesian framework, exponential smoothing method

Procedia PDF Downloads 351
1127 Effect of Leadership Style on Organizational Performance

Authors: Khadija Mushtaq, Mian Saqib Mehmood

Abstract:

This paper attempts to determine the impact of leadership style and learning orientation on organizational performance in Pakistan. A sample of 158 middle managers selected from sports and surgical factories from Sialkot. The empirical estimation is based on a multiple linear regression analysis of the relationship between leadership style, learning orientation and organizational performance. Leadership style is measure through transformational leadership and transactional leadership. The transformational leadership has insignificant impact on organizational performance. The transactional leadership has positive and significant relation with organizational performance. Learning orientation also has positive and significant relation with organizational performance. Linear regression used to estimate the relation between dependent and independent variables. This study suggests top manger should prefer continuous process for improvement for any change in system rather radical change.

Keywords: transformational leadership, transactional leadership, learning orientation, organizational performance, Pakistan

Procedia PDF Downloads 406
1126 Nonparametric Estimation of Risk-Neutral Densities via Empirical Esscher Transform

Authors: Manoel Pereira, Alvaro Veiga, Camila Epprecht, Renato Costa

Abstract:

This paper introduces an empirical version of the Esscher transform for risk-neutral option pricing. Traditional parametric methods require the formulation of an explicit risk-neutral model and are operational only for a few probability distributions for the returns of the underlying. In our proposal, we make only mild assumptions on the pricing kernel and there is no need for the formulation of the risk-neutral model for the returns. First, we simulate sample paths for the returns under the physical distribution. Then, based on the empirical Esscher transform, the sample is reweighted, giving rise to a risk-neutralized sample from which derivative prices can be obtained by a weighted sum of the options pay-offs in each path. We compare our proposal with some traditional parametric pricing methods in four experiments with artificial and real data.

Keywords: esscher transform, generalized autoregressive Conditional Heteroscedastic (GARCH), nonparametric option pricing

Procedia PDF Downloads 490
1125 Overview of Time, Resource and Cost Planning Techniques in Construction Management Research

Authors: R. Gupta, P. Jain, S. Das

Abstract:

One way to approach construction scheduling optimization problem is to focus on the individual aspects of planning, which can be broadly classified as time scheduling, crew and resource management, and cost control. During the last four decades, construction planning has seen a lot of research, but to date, no paper had attempted to summarize the literature available under important heads. This paper addresses each of aspects separately, and presents the findings of an in-depth literature of the various planning techniques. For techniques dealing with time scheduling, the authors have adopted a rough chronological documentation. For crew and resource management, classification has been done on the basis of the different steps involved in the resource planning process. For cost control, techniques dealing with both estimation of costs and the subsequent optimization of costs have been dealt with separately.

Keywords: construction planning techniques, time scheduling, resource planning, cost control

Procedia PDF Downloads 488
1124 A Comprehensive Procedure of Spatial Panel Modelling with R, A Study of Agricultural Productivity Growth of the 38 East Java’s Regencies/Municipalities

Authors: Rahma Fitriani, Zerlita Fahdha Pusdiktasari, Herman Cahyo Diartho

Abstract:

Spatial panel model is commonly used to specify more complicated behavior of economic agent distributed in space at an individual-spatial unit level. There are several spatial panel models which can be adapted based on certain assumptions. A package called splm in R has several functions, ranging from the estimation procedure, specification tests, and model selection tests. In the absence of prior assumptions, a comprehensive procedure which utilizes the available functions in splm must be formed, which is the objective of this study. In this way, the best specification and model can be fitted based on data. The implementation of the procedure works well. It specifies SARAR-FE as the best model for agricultural productivity growth of the 38 East Java’s Regencies/Municipalities.

Keywords: spatial panel, specification, splm, agricultural productivity growth

Procedia PDF Downloads 173
1123 Overconfidence and Self-Attribution Bias: The Difference among Economic Students at Different Stage of the Study and Non-Economic Students

Authors: Vera Jancurova

Abstract:

People are, in general, exposed to behavioral biases, however, the degree and impact are affected by experience, knowledge, and other characteristics. The purpose of this article is to study two of defined behavioral biases, the overconfidence and self-attribution bias, and its impact on economic and non-economic students at different stage of the study. The research method used for the purpose of this study is a controlled field study that contains questions on perception of own confidence and self-attribution and estimation of limits to analyse actual abilities. The results of the research show that economic students seem to be more overconfident than their non–economic colleagues, which seems to be caused by the fact the questionnaire was asking for predicting economic indexes and own knowledge and abilities in financial environment. Surprisingly, the most overconfidence was detected by the students at the beginning of their study (1st-semester students). However, the estimations of real numbers do not point out, that economic students have better results by the prediction itself. The study confirmed the presence of self-attribution bias at all of the respondents.

Keywords: behavioral finance, overconfidence, self-attribution, heuristics and biases

Procedia PDF Downloads 258