Search results for: data infrastructure
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 26547

Search results for: data infrastructure

25437 Knowledge Discovery and Data Mining Techniques in Textile Industry

Authors: Filiz Ersoz, Taner Ersoz, Erkin Guler

Abstract:

This paper addresses the issues and technique for textile industry using data mining techniques. Data mining has been applied to the stitching of garments products that were obtained from a textile company. Data mining techniques were applied to the data obtained from the CHAID algorithm, CART algorithm, Regression Analysis and, Artificial Neural Networks. Classification technique based analyses were used while data mining and decision model about the production per person and variables affecting about production were found by this method. In the study, the results show that as the daily working time increases, the production per person also decreases. In addition, the relationship between total daily working and production per person shows a negative result and the production per person show the highest and negative relationship.

Keywords: data mining, textile production, decision trees, classification

Procedia PDF Downloads 357
25436 Experience of Continuous Ambulatory Peritoneal Dialysis in Remote Area of Southeast Bangladesh

Authors: Rafiqul Hasan, A. S. M. Tanim Anwar, Mohammad Azizul Hakim

Abstract:

Background: Chronic kidney disease (CKD) is a major public health problem that continues to increase in prevalence globally. The prevalence of chronic kidney disease is increasing day by day in low to middle income countries (LMICs). People living in LMICs have the highest need for renal replacement therapy (RRT) despite they have lowest access to various modalities of treatment. As continuous ambulatory peritoneal dialysis (CAPD) does not require advanced technologies, very much infrastructure, dialysis staff support, it should be an ideal form of RRT in LMICs, particularly for those living in remote areas. To authors knowledge there was scarcity of data regarding CAPD performance in remote area of Bangladesh. This study was aimed to report the characteristics and outcomes of CAPD in ESRD patients lived in least developed area of Bangladesh. Methods: This prospective study was conducted in Cox’sbazar Medical College Hospital, Cox’sbazar and Parkview hospital Ltd, Chattogram, Bangladesh. Data were collected by questionnaire from the patients of any age with end-stage renal disease (ESRD) who underwent CAPD in 2018–2021. The baseline characteristics, PD-related complication as well as patient and technique survivals were analyzed. Results: Out of 31 patients who underwent CAPD, 18 (58%) were male on the age range of 15–79 years. The mean follow-up duration was 18 months. Mortality was inversely related with the EF of echocardiography. The peritonitis rate was 0.48 episodes per patient per year. The 1, 3 and 4-year patient survival rates were 64.34% (95% CI = 52.5–81.5), 23.79% (95% CI = 17.9 – 57.4) and 3.22% (95% CI = 31.2–77.5) respectively. Conclusions: In this study, CAPD performance was poorer than usual reference. Cardiac compromised patient and inappropriate dwell might be the main contributing factors behind this scenario. The peritonitis rate was nearly similar to that of developed countries. CAPD was cost effective than HD in remote area. Some accessible measures may be taken to make CAPD a more acceptable RRT modality with improved outcomes in poor socioeconomic backgrounds.

Keywords: dialysis cost, peritoneal dialysis, peritonitis, CAPD, least developed area, remote area, Bangladesh

Procedia PDF Downloads 71
25435 Urban Hydrology in Morocco: Navigating Challenges and Seizing Opportunities

Authors: Abdelghani Qadem

Abstract:

Urbanization in Morocco has ushered in profound shifts in hydrological dynamics, presenting a spectrum of challenges and avenues for sustainable water management. This abstract delves into the nuances of urban hydrology in Morocco, spotlighting the ramifications of rapid urban expansion, the imprint of climate change, and the imperative for cohesive water management strategies. The swift urban sprawl across Morocco has engendered a surge in impermeable surfaces, reshaping the natural hydrological cycle and amplifying quandaries such as urban inundations and water scarcity. Moreover, the specter of climate change looms large, heralding alterations in precipitation regimes and a heightened frequency of extreme meteorological events, thus compounding the hydrological conundrum. However, amidst these challenges, urban hydrology in Morocco also unfolds vistas of innovation and sustainability. The integration of green infrastructure, encompassing solutions like permeable pavements and vegetated roofs, emerges as a linchpin in ameliorating the hydrological imbalances wrought by urbanization, fostering infiltration, and curbing surface runoff. Additionally, embracing the tenets of water-sensitive urban design promises to fortify water efficiency and resilience in urban landscapes. Effectively navigating urban hydrology in Morocco mandates a cross-disciplinary approach that interweaves urban planning, water resource governance, and climate resilience strategies. A collaborative ethos, bridging governmental entities, academic institutions, and grassroots communities, assumes paramount importance in crafting and executing comprehensive solutions that grapple with the intricate interplay of urbanization, hydrology, and climate dynamics. In summation, confronting the labyrinthine challenges of urban hydrology in Morocco necessitates proactive strides toward fostering sustainable urban growth and bolstering resilience to climate vagaries. By embracing cutting-edge technologies and embracing an ethos of integrated water management, Morocco can forge a path toward a more water-secure and resilient urban future.

Keywords: urban hydrology, Morocco, urbanization, climate change, water management, green infrastructure, sustainable development

Procedia PDF Downloads 62
25434 Investigation of Delivery of Triple Play Data in GE-PON Fiber to the Home Network

Authors: Ashima Anurag Sharma

Abstract:

Optical fiber based networks can deliver performance that can support the increasing demands for high speed connections. One of the new technologies that have emerged in recent years is Passive Optical Networks. This research paper is targeted to show the simultaneous delivery of triple play service (data, voice, and video). The comparison between various data rates is presented. It is demonstrated that as we increase the data rate, number of users to be decreases due to increase in bit error rate.

Keywords: BER, PON, TDMPON, GPON, CWDM, OLT, ONT

Procedia PDF Downloads 531
25433 Microarray Gene Expression Data Dimensionality Reduction Using PCA

Authors: Fuad M. Alkoot

Abstract:

Different experimental technologies such as microarray sequencing have been proposed to generate high-resolution genetic data, in order to understand the complex dynamic interactions between complex diseases and the biological system components of genes and gene products. However, the generated samples have a very large dimension reaching thousands. Therefore, hindering all attempts to design a classifier system that can identify diseases based on such data. Additionally, the high overlap in the class distributions makes the task more difficult. The data we experiment with is generated for the identification of autism. It includes 142 samples, which is small compared to the large dimension of the data. The classifier systems trained on this data yield very low classification rates that are almost equivalent to a guess. We aim at reducing the data dimension and improve it for classification. Here, we experiment with applying a multistage PCA on the genetic data to reduce its dimensionality. Results show a significant improvement in the classification rates which increases the possibility of building an automated system for autism detection.

Keywords: PCA, gene expression, dimensionality reduction, classification, autism

Procedia PDF Downloads 563
25432 Resilient Design Solutions for Megathermal Climates of the Global South

Authors: Bobuchi Ken-Opurum

Abstract:

The impacts of climate change on urban settlements is growing. In the global south, communities are even more vulnerable and suffer there is an increased vulnerability from due to climate change disasters such as flooding and high temperatures. This is primarily due to high intensity rainfall, low-lying coasts, inadequate infrastructure, and limited resources. According to the Emergency Events Database, floods were the leading cause of disaster -based deaths in the global south between 2006 and 2015. This includes deaths from heat stress related health outcomes. Adapting to climate vulnerabilities is paramount in reducing the significant redevelopment costs from climate disasters. Governments and urban planners provide top-down approaches such as evacuation, and disaster and emergency communication. While they address infrastructure and public services, they are not always able to address the immediate and critical day to day needs of poor and vulnerable populations. There is growing evidence that some bottom-up strategies and grassroots initiatives of self-build housing such as in urban informal settlements are successful in coping and adapting to hydroclimatic impacts. However, these research findings are not consolidated and the evaluation of the resilience outcomes of the bottom-up strategies are limited. Using self-build housing as a model for sustainable and resilient urban planning, this research aimed to consolidate the flood and heat stress resilient design solutions, analyze the effectiveness of these solutions, and develop guidelines and methods for adopting these design solutions into mainstream housing in megathermal climates. The methodological approach comprised of analyses of over 40 ethnographic based peer reviewed literature, white papers, and reports between the years 2000 and 2019 to identify coping strategies and grassroots initiatives that have been applied by occupants and communities of the global south. The results of the research provide a consolidated source and prioritized list of the best bottom-up strategies for communities in megathermal climates to improve the lives of people in some of the most vulnerable places in the world.

Keywords: resilient, design, megathermal, climate change

Procedia PDF Downloads 131
25431 Data Science-Based Key Factor Analysis and Risk Prediction of Diabetic

Authors: Fei Gao, Rodolfo C. Raga Jr.

Abstract:

This research proposal will ascertain the major risk factors for diabetes and to design a predictive model for risk assessment. The project aims to improve diabetes early detection and management by utilizing data science techniques, which may improve patient outcomes and healthcare efficiency. The phase relation values of each attribute were used to analyze and choose the attributes that might influence the examiner's survival probability using Diabetes Health Indicators Dataset from Kaggle’s data as the research data. We compare and evaluate eight machine learning algorithms. Our investigation begins with comprehensive data preprocessing, including feature engineering and dimensionality reduction, aimed at enhancing data quality. The dataset, comprising health indicators and medical data, serves as a foundation for training and testing these algorithms. A rigorous cross-validation process is applied, and we assess their performance using five key metrics like accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve (AUC-ROC). After analyzing the data characteristics, investigate their impact on the likelihood of diabetes and develop corresponding risk indicators.

Keywords: diabetes, risk factors, predictive model, risk assessment, data science techniques, early detection, data analysis, Kaggle

Procedia PDF Downloads 81
25430 A Methodology to Integrate Data in the Company Based on the Semantic Standard in the Context of Industry 4.0

Authors: Chang Qin, Daham Mustafa, Abderrahmane Khiat, Pierre Bienert, Paulo Zanini

Abstract:

Nowadays, companies are facing lots of challenges in the process of digital transformation, which can be a complex and costly undertaking. Digital transformation involves the collection and analysis of large amounts of data, which can create challenges around data management and governance. Furthermore, it is also challenged to integrate data from multiple systems and technologies. Although with these pains, companies are still pursuing digitalization because by embracing advanced technologies, companies can improve efficiency, quality, decision-making, and customer experience while also creating different business models and revenue streams. In this paper, the issue that data is stored in data silos with different schema and structures is focused. The conventional approaches to addressing this issue involve utilizing data warehousing, data integration tools, data standardization, and business intelligence tools. However, these approaches primarily focus on the grammar and structure of the data and neglect the importance of semantic modeling and semantic standardization, which are essential for achieving data interoperability. In this session, the challenge of data silos in Industry 4.0 is addressed by developing a semantic modeling approach compliant with Asset Administration Shell (AAS) models as an efficient standard for communication in Industry 4.0. The paper highlights how our approach can facilitate the data mapping process and semantic lifting according to existing industry standards such as ECLASS and other industrial dictionaries. It also incorporates the Asset Administration Shell technology to model and map the company’s data and utilize a knowledge graph for data storage and exploration.

Keywords: data interoperability in industry 4.0, digital integration, industrial dictionary, semantic modeling

Procedia PDF Downloads 97
25429 The Use of Sustainable Tourism, Decrease Performance Levels, and Change Management for Image Branding as a Contemporary Tool of Foreign Policy

Authors: Mehtab Alam

Abstract:

Sustainable tourism practices require to improve the decreased performance levels in phases of change management for image branding. This paper addresses the innovative approach of using sustainable tourism for image branding as a contemporary tool of foreign policy. The sustainable tourism-based foreign policy promotes cultural values, green tourism, economy, and image management for the avoidance of rising global conflict. The mixed-method approach (quantitative 382 surveys, qualitative 11 interviews at saturation point) implied for the data analysis. The research finding provides the potential of using sustainable tourism by implying skills and knowledge, capacity, and personal factors of change management in improving tourism-based performance levels. It includes the valuable tourism performance role for the success of a foreign policy through sustainable tourism. Change management in tourism-based foreign policy provides the destination readiness for international engagement and curbing of climate issues through green tourism. The research recommends the impact of change management in improving the tourism-based performance levels of image branding for a coercive foreign policy. The paper’s future direction for the immediate implementation of tourism-based foreign policy is to overcome the contemporary issues of travel marketing management, green infrastructure, and cross-border regulation.

Keywords: decrease performance levels, change management, sustainable tourism, image branding, foreign policy

Procedia PDF Downloads 127
25428 Big Data Analytics and Data Security in the Cloud via Fully Homomorphic Encryption

Authors: Waziri Victor Onomza, John K. Alhassan, Idris Ismaila, Noel Dogonyaro Moses

Abstract:

This paper describes the problem of building secure computational services for encrypted information in the Cloud Computing without decrypting the encrypted data; therefore, it meets the yearning of computational encryption algorithmic aspiration model that could enhance the security of big data for privacy, confidentiality, availability of the users. The cryptographic model applied for the computational process of the encrypted data is the Fully Homomorphic Encryption Scheme. We contribute theoretical presentations in high-level computational processes that are based on number theory and algebra that can easily be integrated and leveraged in the Cloud computing with detail theoretic mathematical concepts to the fully homomorphic encryption models. This contribution enhances the full implementation of big data analytics based cryptographic security algorithm.

Keywords: big data analytics, security, privacy, bootstrapping, homomorphic, homomorphic encryption scheme

Procedia PDF Downloads 383
25427 A Gendered Perspective of the Influence of Public Transport Infrastructural Design on Accessibility

Authors: Ajeni Ari, Chiara Maria Leva, Lorraine D’Arcy, Mary Kinahan

Abstract:

In addressing gender and transport, considerations of mobility disparities amongst users are important. Public transport (PT) policy and design do not efficiently account for the varied mobility practices between men and women, with literature only recently showing a movement towards gender inclusion in transport. Arrantly, transport policy and designs remain gender-blind to the variation of mobility needs. The global movement towards sustainability highlights the need for expeditious strategies that could mitigate biases within the existing system. At the forefront of such a plan of action, in part, may be mandated inclusive infrastructural designs that stimulate user engagement with the transport system. Fundamentally access requires a means or an opportunity for the entity, which for PT is an establishment of its physical environment and/or infrastructural design. Its practicality may be utilised with knowledge of shortcomings in tangible or intangible aspects of the service offerings allowing access to opportunities. To inform on existing biases in PT planning and design, this study analyses qualitative data to examine the opinions and lived experiences among transport users in Ireland. Findings show that infrastructural design plays a significant role in users’ engagement with the service. Paramount to accessibility are service provisions that cater to both user interactions and those of their dependents. Apprehension to use the service is more so evident in women in comparison to men, particularly while carrying out household duties and caring responsibilities at peak times or dark hours. Furthermore, limitations are apparent with infrastructural service offerings that do not accommodate the physical (dis)ability of users, especially universal design. There are intersecting factors that impinge on accessibility, e.g., safety and security, yet essentially; the infrastructural design is an important influencing parameter to user perceptual conditioning. Additionally, data discloses the need for user intricacies to be factored in transport planning geared towards gender inclusivity, including mobility practices, travel purpose, transit time or location, and system integration.

Keywords: infrastructure design, public transport, accessibility, women, gender

Procedia PDF Downloads 78
25426 The Potential of ‘Comprehensive Assessment System for Built Environment Efficiency for Cities’ in Developing Country: Evidence of Myanmar

Authors: Theingi Shwe, Riken Homma, Kazuhisa Iki, Juko Ito

Abstract:

The growing cities of the developing country are characterized by rapid growth and poor infrastructure management inviting and accelerating relative environmental problems. Even though the movements of the sustainability had already been developed around the world, it is still increasing in the developing countries to plant sustainable practices. Aligned with the sustainable development actions, many sustainable assessment tools are also developed to rate and evaluate the sustainability performances through the building to community level. Among them, CASBEE is developed by Japanese organizations and is recognized as one of the international well-known assessment tools. The main purpose of the study is to find out the potential of CASBEE tool reflecting sustainability city level performances in developing countries. The research framework was designed with three major phases: Quantitative Approach, Qualitative Approach and Evaluation Reflection. The first two approaches were based on the investigation of tool’s contents and indicators by means of three sustainable dimensions and sustainability categories. To know the reality and reflection on developing country, Pathein City from Myanmar was selected and evaluated by 2012 version of CASBEE for Cities. The evaluation practices went through assigned indicators and the evaluation outcome presents the performances of Pathein city’s environmental efficiency as a very good in current conditions. The results of this study indicate that the indicators of this tool have balance coverage among three dimensions of sustainability but it has not yet counted enough for some indicators like location, infrastructure and institution which are relative to society dimension. In the developing countries’ cities, the most critical issues on development such as affordable housing and heritage preservation which are already planted in Pathein City but the tool does not account for those issues. Moreover, in some of the indicators, the benchmark and the weighting coefficient are strongly linked to the system birth region. By means of this study, it can be stated that CASBEE for Cities would be potential for delivering sustainable city level development in developing country especially in Myanmar along with further inclusion of the indicators.

Keywords: assessment tool, CASBEE, developing country, Myanmar, Pathein city, sustainable development

Procedia PDF Downloads 259
25425 The Impact of Biodiversity and Urban Ecosystem Services in Real Estate

Authors: Carmen Cantuarias-Villessuzanne, Jeffrey Blain, Radmila Pineau

Abstract:

Our research project aims at analyzing the sensitiveness of French households to urban biodiversity and urban ecosystem services (UES). Opinion surveys show that the French population is sensitive to biodiversity and ecosystem services loss, but the value given to these issues within urban fabric and real estate market lacks evidence. Using GIS data and economic evaluation, by hedonic price methods, weassess the isolated contribution of the explanatory variables of biodiversityand UES on the price of residential real estate. We analyze the variation of the valuefor three urban ecosystem services - flood control, proximity to green spaces, and refreshment - on the price of real estate whena property changes ownership. Our modeling and mapping focus on the price at theIRIS scale (statistical information unit) from 2014 to 2019. The main variables are internal characteristics of housing (area, kind of housing, heating), external characteristics(accessibility and infrastructure, economic, social, and physical environmentsuch as air pollution, noise), and biodiversity indicators and urban ecosystemservices for the Ile-de-France region. Moreover, we compare environmental values on the enhancement of greenspaces and their impact on residential choices. These studies are very useful for real estate developers because they enable them to promote green spaces, and municipalities to become more attractive.

Keywords: urban ecosystem services, sustainable real estate, urban biodiversity perception, hedonic price, environmental values

Procedia PDF Downloads 139
25424 Protecting Privacy and Data Security in Online Business

Authors: Bilquis Ferdousi

Abstract:

With the exponential growth of the online business, the threat to consumers’ privacy and data security has become a serious challenge. This literature review-based study focuses on a better understanding of those threats and what legislative measures have been taken to address those challenges. Research shows that people are increasingly involved in online business using different digital devices and platforms, although this practice varies based on age groups. The threat to consumers’ privacy and data security is a serious hindrance in developing trust among consumers in online businesses. There are some legislative measures taken at the federal and state level to protect consumers’ privacy and data security. The study was based on an extensive review of current literature on protecting consumers’ privacy and data security and legislative measures that have been taken.

Keywords: privacy, data security, legislation, online business

Procedia PDF Downloads 110
25423 Flowing Online Vehicle GPS Data Clustering Using a New Parallel K-Means Algorithm

Authors: Orhun Vural, Oguz Bayat, Rustu Akay, Osman N. Ucan

Abstract:

This study presents a new parallel approach clustering of GPS data. Evaluation has been made by comparing execution time of various clustering algorithms on GPS data. This paper aims to propose a parallel based on neighborhood K-means algorithm to make it faster. The proposed parallelization approach assumes that each GPS data represents a vehicle and to communicate between vehicles close to each other after vehicles are clustered. This parallelization approach has been examined on different sized continuously changing GPS data and compared with serial K-means algorithm and other serial clustering algorithms. The results demonstrated that proposed parallel K-means algorithm has been shown to work much faster than other clustering algorithms.

Keywords: parallel k-means algorithm, parallel clustering, clustering algorithms, clustering on flowing data

Procedia PDF Downloads 227
25422 An Analysis of Privacy and Security for Internet of Things Applications

Authors: Dhananjay Singh, M. Abdullah-Al-Wadud

Abstract:

The Internet of Things is a concept of a large scale ecosystem of wireless actuators. The actuators are defined as things in the IoT, those which contribute or produces some data to the ecosystem. However, ubiquitous data collection, data security, privacy preserving, large volume data processing, and intelligent analytics are some of the key challenges into the IoT technologies. In order to solve the security requirements, challenges and threats in the IoT, we have discussed a message authentication mechanism for IoT applications. Finally, we have discussed data encryption mechanism for messages authentication before propagating into IoT networks.

Keywords: Internet of Things (IoT), message authentication, privacy, security

Procedia PDF Downloads 387
25421 Analysis of Financial Performance Measurement and Financial Distress Assessment of Highway Companies Listed on Indonesia Stock Exchange before and during COVID-19 Pandemic

Authors: Ari Prasetyo, Taufik Faturohman

Abstract:

The COVID-19 pandemic in Indonesia is part of the ongoing worldwide pandemic of coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was confirmed to have spread to Indonesia on 2 March 2020. Moreover, the government of Indonesia has been conducting a local lockdown to limit people's movement from one city to another city. Therefore, this situation has impact on business operation, especially on highway companies listed on the Indonesia stock exchange. This study evaluates and measures three companies’ financial performance and health conditions before and during the COVID-19 pandemic from 2016 – 2020. The measurement is conducted by using financial ratio analysis and the Altman Z-score method. The ratio used to measure the financial ratio analysis is taken from the decree of the Ministry of SOE’s KEP-100/MBU/2002 about the company’s health level condition. From the decree, there are eight financial ratios used such as return on equity (ROE), return on investment (ROI), current ratio, cash ratio, collection period, inventory turnover, total asset turnover, and total equity to total asset. Altman Z-score is used to calculate the financial distress condition. The result shows that the highway companies for the period 2016 – 2020 are as follows: PT Jasa Marga (Persero) Tbk (AA, BB, BB, BB, C), PT Citra Marga Nusaphala Persada Tbk (BB, AA, BB, BBB, C), and PT Nusantara Infrastructure Tbk (BB, BB, AA, BBB, C). In addition, the Altman Z-score assessment performed in 2016-2020 shows that PT Jasa Marga (Persero) Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020. PT Citra Marga Nusaphala Persada Tbk was in the grey zone area for 2015-2019 and in the distress zone for 2020. PT Nusantara Infrastructure Tbk was in the grey zone area for 2015-2018 and in the distress zone for 2019-2020.

Keywords: financial performance, financial ratio, Altman Z-score, financial distress, highway company

Procedia PDF Downloads 196
25420 Technology Transfer and FDI: Some Lessons for Tunisia

Authors: Assaad Ghazouani, Hedia Teraoui

Abstract:

The purpose of this article is to try to see if the FDI actually contributes to technology transfer in Tunisia or are there other sources that can guarantee this transfer? The answer to this problem was gradual as we followed an approach using economic theory, the reality of Tunisia and econometric and statistical tools. We examined the relationship between technology transfer and FDI in Tunisia over a period of 40 years from 1970 to 2010. We estimated in two stages: first, a growth equation, then we have learned from this regression residue (proxy technology), secondly, we regressed on European FDI, exports of manufactures, imports of goods from the European Union in addition to other variables to test the robustness of the results and describing the level of infrastructure in the country. It follows from our study that technology transfer does not originate primarily and exclusively in the FDI and the latter is econometrically weakly with technology transfer and spill over effect of FDI does not seem to occur according to our results. However, the relationship between technology transfer and imports is negative and significant. Although this result is cons-intuitive, is recurrent in the literature of panel data. It has also given rise to intense debate on the microeconomic modelling as well as on the empirical applications. Technology transfer through trade or foreign investment has become a catalyst for growth recognized by numerous empirical studies in particular. However, the relationship technology transfer FDI is more complex than it appears. This complexity is due, primarily, but not exclusively to the close link between FDI and the characteristics of the host country. This is essentially the host's responsibility to establish general conditions, transparent and conducive to investment, and to strengthen human and institutional capacity necessary for foreign capital flows that can have real effects on growth.

Keywords: technology transfer, foreign direct investment, economics, finance

Procedia PDF Downloads 326
25419 Assessing the Severity of Traffic Related Air Pollution in South-East London to School Pupils

Authors: Ho Yin Wickson Cheung, Liora Malki-Epshtein

Abstract:

Outdoor air pollution presents a significant challenge for public health globally, especially in urban areas, with road traffic acting as the primary contributor to air pollution. Several studies have documented the antagonistic relation between traffic-related air pollution (TRAP) and the impact on health, especially to the vulnerable group of population, particularly young pupils. Generally, TRAP could cause damage to their brain, restricting the ability of children to learn and, more importantly, causing detrimental respiratory issues in later life. Butlittle is known about the specific exposure of children at school during the school day and the impact this may have on their overall exposure to pollution at a crucial time in their development. This project has set out to examine the air quality across primary schools in South-East London and assesses the variability of data found based on their geographic location and surroundings. Nitrogen dioxide, PM contaminants, and carbon dioxide were collected with diffusion tubes and portable monitoring equipment for eight schools across three local areas, that are Greenwich, Lewisham, and Tower Hamlets. This study first examines the geographical features of the schools surrounding (E.g., coverage of urban road structure and green infrastructure), then utilize three different methods to capture pollutants data. Moreover, comparing the obtained results with existing data from monitoring stations to understand the differences in air quality before and during the pandemic. Furthermore, most studies in this field have unfortunately neglected human exposure to pollutants and calculated based on values from fixed monitoring stations. Therefore, this paper introduces an alternative approach by calculating human exposure to air pollution from real-time data obtained when commuting within related areas (Driving routes and field walking). It is found that schools located highly close to motorways are generally not suffering from the most air pollution contaminants. Instead, one with the worst traffic congested routes nearby might also result in poor air quality. Monitored results also indicate that the annual air pollution values have slightly decreased during the pandemic. However, the majority of the data is currently still exceeding the WHO guidelines. Finally, the total human exposures for NO2 during commuting in the two selected routes were calculated. Results illustrated the total exposure for route 1 were 21,730 μm/m3 and 28,378.32 μm/m3, and for route 2 were 30,672 μm/m3 and 16,473 μm/m3. The variance that occurred might be due to the difference in traffic volume that requires further research. Exposure for NO2 during commuting was plotted with detailed timesteps that have shown their peak usually occurred while commuting. These have consolidated the initial assumption to the extremeness of TRAP. To conclude, this paper has yielded significant benefits to understanding air quality across schools in London with the new approach of capturing human exposure (Driving routes). Confirming the severity of air pollution and promoting the necessity of considering environmental sustainability for policymakers during decision making to protect society's future pillars.

Keywords: air pollution, schools, pupils, congestion

Procedia PDF Downloads 123
25418 Heritage and Tourism in the Era of Big Data: Analysis of Chinese Cultural Tourism in Catalonia

Authors: Xinge Liao, Francesc Xavier Roige Ventura, Dolores Sanchez Aguilera

Abstract:

With the development of the Internet, the study of tourism behavior has rapidly expanded from the traditional physical market to the online market. Data on the Internet is characterized by dynamic changes, and new data appear all the time. In recent years the generation of a large volume of data was characterized, such as forums, blogs, and other sources, which have expanded over time and space, together they constitute large-scale Internet data, known as Big Data. This data of technological origin that derives from the use of devices and the activity of multiple users is becoming a source of great importance for the study of geography and the behavior of tourists. The study will focus on cultural heritage tourist practices in the context of Big Data. The research will focus on exploring the characteristics and behavior of Chinese tourists in relation to the cultural heritage of Catalonia. Geographical information, target image, perceptions in user-generated content will be studied through data analysis from Weibo -the largest social networks of blogs in China. Through the analysis of the behavior of heritage tourists in the Big Data environment, this study will understand the practices (activities, motivations, perceptions) of cultural tourists and then understand the needs and preferences of tourists in order to better guide the sustainable development of tourism in heritage sites.

Keywords: Barcelona, Big Data, Catalonia, cultural heritage, Chinese tourism market, tourists’ behavior

Procedia PDF Downloads 142
25417 Towards A Framework for Using Open Data for Accountability: A Case Study of A Program to Reduce Corruption

Authors: Darusalam, Jorish Hulstijn, Marijn Janssen

Abstract:

Media has revealed a variety of corruption cases in the regional and local governments all over the world. Many governments pursued many anti-corruption reforms and have created a system of checks and balances. Three types of corruption are faced by citizens; administrative corruption, collusion and extortion. Accountability is one of the benchmarks for building transparent government. The public sector is required to report the results of the programs that have been implemented so that the citizen can judge whether the institution has been working such as economical, efficient and effective. Open Data is offering solutions for the implementation of good governance in organizations who want to be more transparent. In addition, Open Data can create transparency and accountability to the community. The objective of this paper is to build a framework of open data for accountability to combating corruption. This paper will investigate the relationship between open data, and accountability as part of anti-corruption initiatives. This research will investigate the impact of open data implementation on public organization.

Keywords: open data, accountability, anti-corruption, framework

Procedia PDF Downloads 341
25416 Harnessing Artificial Intelligence for Early Detection and Management of Infectious Disease Outbreaks

Authors: Amarachukwu B. Isiaka, Vivian N. Anakwenze, Chinyere C. Ezemba, Chiamaka R. Ilodinso, Chikodili G. Anaukwu, Chukwuebuka M. Ezeokoli, Ugonna H. Uzoka

Abstract:

Infectious diseases continue to pose significant threats to global public health, necessitating advanced and timely detection methods for effective outbreak management. This study explores the integration of artificial intelligence (AI) in the early detection and management of infectious disease outbreaks. Leveraging vast datasets from diverse sources, including electronic health records, social media, and environmental monitoring, AI-driven algorithms are employed to analyze patterns and anomalies indicative of potential outbreaks. Machine learning models, trained on historical data and continuously updated with real-time information, contribute to the identification of emerging threats. The implementation of AI extends beyond detection, encompassing predictive analytics for disease spread and severity assessment. Furthermore, the paper discusses the role of AI in predictive modeling, enabling public health officials to anticipate the spread of infectious diseases and allocate resources proactively. Machine learning algorithms can analyze historical data, climatic conditions, and human mobility patterns to predict potential hotspots and optimize intervention strategies. The study evaluates the current landscape of AI applications in infectious disease surveillance and proposes a comprehensive framework for their integration into existing public health infrastructures. The implementation of an AI-driven early detection system requires collaboration between public health agencies, healthcare providers, and technology experts. Ethical considerations, privacy protection, and data security are paramount in developing a framework that balances the benefits of AI with the protection of individual rights. The synergistic collaboration between AI technologies and traditional epidemiological methods is emphasized, highlighting the potential to enhance a nation's ability to detect, respond to, and manage infectious disease outbreaks in a proactive and data-driven manner. The findings of this research underscore the transformative impact of harnessing AI for early detection and management, offering a promising avenue for strengthening the resilience of public health systems in the face of evolving infectious disease challenges. This paper advocates for the integration of artificial intelligence into the existing public health infrastructure for early detection and management of infectious disease outbreaks. The proposed AI-driven system has the potential to revolutionize the way we approach infectious disease surveillance, providing a more proactive and effective response to safeguard public health.

Keywords: artificial intelligence, early detection, disease surveillance, infectious diseases, outbreak management

Procedia PDF Downloads 71
25415 Modeling of Maximum Rainfall Using Poisson-Generalized Pareto Distribution in Kigali, Rwanda

Authors: Emmanuel Iyamuremye

Abstract:

Extreme rainfall events have caused significant damage to agriculture, ecology, and infrastructure, disruption of human activities, injury, and loss of life. They also have significant social, economic, and environmental consequences because they considerably damage urban as well as rural areas. Early detection of extreme maximum rainfall helps to implement strategies and measures, before they occur, hence mitigating the consequences. Extreme value theory has been used widely in modeling extreme rainfall and in various disciplines, such as financial markets, the insurance industry, failure cases. Climatic extremes have been analyzed by using either generalized extreme value (GEV) or generalized Pareto (GP) distributions, which provides evidence of the importance of modeling extreme rainfall from different regions of the world. In this paper, we focused on Peak Over Thresholds approach, where the Poisson-generalized Pareto distribution is considered as the proper distribution for the study of the exceedances. This research also considers the use of the generalized Pareto (GP) distribution with a Poisson model for arrivals to describe peaks over a threshold. The research used statistical techniques to fit models that used to predict extreme rainfall in Kigali. The results indicate that the proposed Poisson-GP distribution provides a better fit to maximum monthly rainfall data. Further, the Poisson-GP models are able to estimate various return levels. The research also found a slow increase in return levels for maximum monthly rainfall for higher return periods, and further, the intervals are increasingly wider as the return period is increasing.

Keywords: exceedances, extreme value theory, generalized Pareto distribution, Poisson generalized Pareto distribution

Procedia PDF Downloads 139
25414 Wealth Creation and Agricultural Development in Nigeria: A Path to Sustainable Prosperity

Authors: Oladimeji Israel Ajayi

Abstract:

Agricultural development has long been identified as a cornerstone for wealth creation and economic growth, particularly in emerging economies like Nigeria. This study examines the relationship between agricultural development and wealth creation in Nigeria, emphasizing the sector's potential in reducing poverty, creating employment, and boosting economic stability. Nigeria, endowed with fertile land and a favorable climate, has a significant agricultural base that, if fully leveraged, can transition the economy from oil dependency to a diversified and sustainable growth model. However, challenges such as limited access to credit, poor infrastructure, outdated farming techniques, and climate variability hinder optimal productivity. This research employs a mixed-methods approach, analyzing data from the Nigerian National Bureau of Statistics and the Food and Agriculture Organization to understand how investments in agriculture influence wealth indicators such as GDP growth, employment rates, and rural income levels. The findings reveal a strong positive correlation between agricultural investment and wealth creation, suggesting that strategic policies focusing on mechanization, credit accessibility, and sustainable practices could significantly boost agricultural productivity and contribute to wealth distribution in Nigeria. This study contributes to policy discourse by highlighting agriculture’s role as a transformative tool for economic resilience and sustainable wealth creation in Nigeria.

Keywords: agricultural development, poverty reduction, wealth creation, prosperity

Procedia PDF Downloads 22
25413 Ontology Expansion via Synthetic Dataset Generation and Transformer-Based Concept Extraction

Authors: Andrey Khalov

Abstract:

The rapid proliferation of unstructured data in IT infrastructure management demands innovative approaches for extracting actionable knowledge. This paper presents a framework for ontology-based knowledge extraction that combines relational graph neural networks (R-GNN) with large language models (LLMs). The proposed method leverages the DOLCE framework as the foundational ontology, extending it with concepts from ITSMO for domain-specific applications in IT service management and outsourcing. A key component of this research is the use of transformer-based models, such as DeBERTa-v3-large, for automatic entity and relationship extraction from unstructured texts. Furthermore, the paper explores how transfer learning techniques can be applied to fine-tune large language models (LLaMA) for using to generate synthetic datasets to improve precision in BERT-based entity recognition and ontology alignment. The resulting IT Ontology (ITO) serves as a comprehensive knowledge base that integrates domain-specific insights from ITIL processes, enabling more efficient decision-making. Experimental results demonstrate significant improvements in knowledge extraction and relationship mapping, offering a cutting-edge solution for enhancing cognitive computing in IT service environments.

Keywords: ontology expansion, synthetic dataset, transformer fine-tuning, concept extraction, DOLCE, BERT, taxonomy, LLM, NER

Procedia PDF Downloads 22
25412 Indirect Environmental Benefits from Cloud Computing Information and Communications Technology Integration in Rural Agricultural Communities

Authors: Jeana Cadby, Kae Miyazawa

Abstract:

With rapidly expanding worldwide adoption of mobile technologies, Information and Communication Technology (ITC) is a major energy user and a contributor to global carbon emissions, due to infrastructure and operational energy consumption. The agricultural sector is also significantly responsible for contributing to global carbon emissions. However, ICT cloud computing using mobile technology can directly reduce environmental impacts in the agricultural sector through applications and mobile connectivity, such as precision fertilizer and pesticide applications, or access to weather data, for example. While direct impacts are easily calculated, indirect environmental impacts from ICT cloud computing usage have not been thoroughly investigated. For example, while women may be more poorly equipped for adaptation to environmentally sustainable agricultural practices due to resource constraints, this research concludes that indirect environmental benefits can be achieved by improving rural access to mobile technology for women. Women in advanced roles and secure land tenure are more likely to invest in long-term agricultural conservation strategies, which protect against environmental degradation. This study examines how ICT using mobile technology advances the role of women in rural agricultural systems and indirectly reduces environmental impacts from agricultural production, through literature examination from secondary sources. Increasing access for women to ICT mobile technology provides indirect environmental and social benefits in the rural agricultural sector.

Keywords: cloud computing, environmental benefits, mobile technology, women

Procedia PDF Downloads 175
25411 Syndromic Surveillance Framework Using Tweets Data Analytics

Authors: David Ming Liu, Benjamin Hirsch, Bashir Aden

Abstract:

Syndromic surveillance is to detect or predict disease outbreaks through the analysis of medical sources of data. Using social media data like tweets to do syndromic surveillance becomes more and more popular with the aid of open platform to collect data and the advantage of microblogging text and mobile geographic location features. In this paper, a Syndromic Surveillance Framework is presented with machine learning kernel using tweets data analytics. Influenza and the three cities Abu Dhabi, Al Ain and Dubai of United Arabic Emirates are used as the test disease and trial areas. Hospital cases data provided by the Health Authority of Abu Dhabi (HAAD) are used for the correlation purpose. In our model, Latent Dirichlet allocation (LDA) engine is adapted to do supervised learning classification and N-Fold cross validation confusion matrix are given as the simulation results with overall system recall 85.595% performance achieved.

Keywords: Syndromic surveillance, Tweets, Machine Learning, data mining, Latent Dirichlet allocation (LDA), Influenza

Procedia PDF Downloads 121
25410 Analysis of Urban Population Using Twitter Distribution Data: Case Study of Makassar City, Indonesia

Authors: Yuyun Wabula, B. J. Dewancker

Abstract:

In the past decade, the social networking app has been growing very rapidly. Geolocation data is one of the important features of social media that can attach the user's location coordinate in the real world. This paper proposes the use of geolocation data from the Twitter social media application to gain knowledge about urban dynamics, especially on human mobility behavior. This paper aims to explore the relation between geolocation Twitter with the existence of people in the urban area. Firstly, the study will analyze the spread of people in the particular area, within the city using Twitter social media data. Secondly, we then match and categorize the existing place based on the same individuals visiting. Then, we combine the Twitter data from the tracking result and the questionnaire data to catch the Twitter user profile. To do that, we used the distribution frequency analysis to learn the visitors’ percentage. To validate the hypothesis, we compare it with the local population statistic data and land use mapping released by the city planning department of Makassar local government. The results show that there is the correlation between Twitter geolocation and questionnaire data. Thus, integration the Twitter data and survey data can reveal the profile of the social media users.

Keywords: geolocation, Twitter, distribution analysis, human mobility

Procedia PDF Downloads 317
25409 Case Study: Throughput Analysis over PLC Infrastructure as Last Mile Residential Solution in Colombia

Authors: Edward P. Guillen, A. Karina Martinez Barliza

Abstract:

Powerline Communications (PLC) as last mile solution to provide communication services, has the advantage of transmitting over channels already used for electrical distribution. However these channels have been not designed with this purpose, for that reason telecommunication companies in Colombia want to know how good would be using PLC in costs and network performance in comparison to cable modem or DSL. This paper analyzes PLC throughput for residential complex scenarios using a PLC network scenarios and some statistical results are shown.

Keywords: home network, power line communication, throughput analysis, power factor, cost, last mile solution

Procedia PDF Downloads 271
25408 Online Guidance and Counselling Needs and Preferences of University Undergraduates in a Nigerian University

Authors: Olusegun F. Adebowale

Abstract:

Research has confirmed that the emergence of information technology is significantly reflected in the field of psychology and its related disciplines due to its widespread use at reasonable price and its user-friendliness. It is consequently affecting ordinary life in many areas like shopping, advertising, corresponding and educating. Specifically the innovations of computer technology led to several new forms of communication, all with implications and applicability for counselling and psychotherapy practices. This is premise on which online counselling is based. Most institutions of higher learning in Nigeria have established their presence on the Internet and have deployed a variety of applications through ICT. Some are currently attempting to include counselling services in such applications with the belief that many counselling needs of students are likely to be met. This study therefore explored different challenges and preferences students present in online counselling interaction in a given Nigerian university with the view to guide new universities that may want to invest into these areas as to necessary preparations and referral requirements. The study is a mixed method research incorporating qualitative and quantitative methodologies to sample the preferences and concerns students express in online interaction. The sample comprised all the 876 students who visited the university online counselling platform either voluntarily, by invitation or by referral. The instrument for data collection was the online counselling platform of the university 'OAU Online counsellors'. The period of data collection spanned between January 2011 and October 2012. Data were analysed quantitatively (using percentages and Mann-Whitney U test) and qualitatively (using Interpretative Phenomenological Analysis (IPA)). The results showed that the students seem to prefer real-time chatting as their online medium of communicating with the online counsellor. The majority of students resorted to e-mail when their effort to use real-time chatting were becoming thwarted. Also, students preferred to enter into online counselling relationships voluntarily to other modes of entry. The results further showed that the prevalent counselling needs presented by students during online counselling sessions were mainly in the areas of social interaction and academic/educational concerns. Academic concerns were found to be prevalent, in form of course offerings, studentship matters and academic finance matters. The personal/social concerns were in form of students’ welfare, career related concerns and relationship matters. The study concludes students’ preferences include voluntary entry into online counselling, communication by real-time chatting and a specific focus on their academic concerns. It also recommends that all efforts should be made to encourage students’ voluntary entry into online counselling through reliable and stable internet infrastructure that will be able to support real-time chatting.

Keywords: online, counselling, needs, preferences

Procedia PDF Downloads 293