Search results for: Gaussian mixture models
7135 Development of Vertically Integrated 2D Lake Victoria Flow Models in COMSOL Multiphysics
Authors: Seema Paul, Jesper Oppelstrup, Roger Thunvik, Vladimir Cvetkovic
Abstract:
Lake Victoria is the second largest fresh water body in the world, located in East Africa with a catchment area of 250,000 km², of which 68,800 km² is the actual lake surface. The hydrodynamic processes of the shallow (40–80 m deep) water system are unique due to its location at the equator, which makes Coriolis effects weak. The paper describes a St.Venant shallow water model of Lake Victoria developed in COMSOL Multiphysics software, a general purpose finite element tool for solving partial differential equations. Depth soundings taken in smaller parts of the lake were combined with recent more extensive data to resolve the discrepancies of the lake shore coordinates. The topography model must have continuous gradients, and Delaunay triangulation with Gaussian smoothing was used to produce the lake depth model. The model shows large-scale flow patterns, passive tracer concentration and water level variations in response to river and tracer inflow, rain and evaporation, and wind stress. Actual data of precipitation, evaporation, in- and outflows were applied in a fifty-year simulation model. It should be noted that the water balance is dominated by rain and evaporation and model simulations are validated by Matlab and COMSOL. The model conserves water volume, the celerity gradients are very small, and the volume flow is very slow and irrotational except at river mouths. Numerical experiments show that the single outflow can be modelled by a simple linear control law responding only to mean water level, except for a few instances. Experiments with tracer input in rivers show very slow dispersion of the tracer, a result of the slow mean velocities, in turn, caused by the near-balance of rain with evaporation. The numerical and hydrodynamical model can evaluate the effects of wind stress which is exerted by the wind on the lake surface that will impact on lake water level. Also, model can evaluate the effects of the expected climate change, as manifest in changes to rainfall over the catchment area of Lake Victoria in the future.Keywords: bathymetry, lake flow and steady state analysis, water level validation and concentration, wind stress
Procedia PDF Downloads 2257134 Prediction of Formation Pressure Using Artificial Intelligence Techniques
Authors: Abdulmalek Ahmed
Abstract:
Formation pressure is the main function that affects drilling operation economically and efficiently. Knowing the pore pressure and the parameters that affect it will help to reduce the cost of drilling process. Many empirical models reported in the literature were used to calculate the formation pressure based on different parameters. Some of these models used only drilling parameters to estimate pore pressure. Other models predicted the formation pressure based on log data. All of these models required different trends such as normal or abnormal to predict the pore pressure. Few researchers applied artificial intelligence (AI) techniques to predict the formation pressure by only one method or a maximum of two methods of AI. The objective of this research is to predict the pore pressure based on both drilling parameters and log data namely; weight on bit, rotary speed, rate of penetration, mud weight, bulk density, porosity and delta sonic time. A real field data is used to predict the formation pressure using five different artificial intelligence (AI) methods such as; artificial neural networks (ANN), radial basis function (RBF), fuzzy logic (FL), support vector machine (SVM) and functional networks (FN). All AI tools were compared with different empirical models. AI methods estimated the formation pressure by a high accuracy (high correlation coefficient and low average absolute percentage error) and outperformed all previous. The advantage of the new technique is its simplicity, which represented from its estimation of pore pressure without the need of different trends as compared to other models which require a two different trend (normal or abnormal pressure). Moreover, by comparing the AI tools with each other, the results indicate that SVM has the advantage of pore pressure prediction by its fast processing speed and high performance (a high correlation coefficient of 0.997 and a low average absolute percentage error of 0.14%). In the end, a new empirical correlation for formation pressure was developed using ANN method that can estimate pore pressure with a high precision (correlation coefficient of 0.998 and average absolute percentage error of 0.17%).Keywords: Artificial Intelligence (AI), Formation pressure, Artificial Neural Networks (ANN), Fuzzy Logic (FL), Support Vector Machine (SVM), Functional Networks (FN), Radial Basis Function (RBF)
Procedia PDF Downloads 1497133 The Effectiveness of Orthogonal Frequency Division Multiplexing as Modulation Technique
Authors: Mohamed O. Babana
Abstract:
In wireless channel multipath is the propagation phenomena where the transmitted signal arrive at the receiver side with many of paths, the signal at these paths arrive with different time delay the results is random signal fading due to intersymbols interference(ISI). This paper deals with identification of orthogonal frequency division multiplexing (OFDM) technology, and how it is used to overcome intersymbol interference due to multipath. Also investigates the effect of Additive White Gaussian Noise Channel (AWGN) on OFDM using multi-level modulation of Phase Shift Keying (PSK), computer simulation to calculate the bit error rate (BER) under AWGN channel is applied. A comparison study is carried out to obtain the Bit Error Rate performance for OFDM to identify the best multi-level modulation of PSK.Keywords: intersymbol interference(ISI), bit error rate(BER), modulation, multiplexing, simulation
Procedia PDF Downloads 4197132 Relation between Physical and Mechanical Properties of Concrete Paving Stones Using Neuro-Fuzzy Approach
Authors: Erion Luga, Aksel Seitllari, Kemal Pervanqe
Abstract:
This study investigates the relation between physical and mechanical properties of concrete paving stones using neuro-fuzzy approach. For this purpose 200 samples of concrete paving stones were selected randomly from different sources. The first phase included the determination of physical properties of the samples such as water absorption capacity, porosity and unit weight. After that the indirect tensile strength test and compressive strength test of the samples were performed. İn the second phase, adaptive neuro-fuzzy approach was employed to simulate nonlinear mapping between the above mentioned physical properties and mechanical properties of paving stones. The neuro-fuzzy models uses Sugeno type fuzzy inference system. The models parameters were adapted using hybrid learning algorithm and input space was fuzzyfied by considering grid partitioning. It is concluded based on the observed data and the estimated data through ANFIS models that neuro-fuzzy system exhibits a satisfactory performance.Keywords: paving stones, physical properties, mechanical properties, ANFIS
Procedia PDF Downloads 3407131 Velocity Distribution in Density Currents Flowing over Rough Beds
Authors: Reza Nasrollahpour, Mohamad Hidayat Bin Jamal, Zulhilmi Bin Ismail
Abstract:
Density currents are generated when the fluid of one density is released into another fluid with a different density. These currents occur in a variety of natural and man-made environments, and this emphasises the importance of studying them. In most practical cases, the density currents flow over the surfaces which are not plane; however, there have been limited investigations in this regard. This study uses laboratory experiments to analyse the influence of bottom roughness on the velocity distribution within these dense underflows. The currents are analysed over a plane surface and three different configurations of beam-roughened beds. The velocity profiles are collected using Acoustic Doppler Velocimetry technique, and the distribution of velocity within these currents is formulated for the tested beds. The results indicate that the empirical power and Gaussian relations can describe the velocity distribution in the inner and outer regions of the profiles, respectively. Moreover, it is found that the bottom roughness is the primary controlling parameter in the inner region.Keywords: density currents, velocity profiles, Acoustic Doppler Velocimeter, bed roughness
Procedia PDF Downloads 1847130 Cloud Computing: Major Issues and Solutions
Authors: S. Adhirai Subramaniyam, Paramjit Singh
Abstract:
This paper presents major issues in cloud computing. The paper describes different cloud computing deployment models and cloud service models available in the field of cloud computing. The paper then concentrates on various issues in the field. The issues such as cloud compatibility, compliance of the cloud, standardizing cloud technology, monitoring while on the cloud and cloud security are described. The paper suggests solutions for these issues and concludes that hybrid cloud infrastructure is a real boon for organizations.Keywords: cloud, cloud computing, mobile cloud computing, private cloud, public cloud, hybrid cloud, SAAS, PAAS, IAAS, cloud security
Procedia PDF Downloads 3427129 Partitioning of Non-Metallic Nutrients in Lactating Crossbred Cattle Fed Buffers
Authors: Awadhesh Kishore
Abstract:
The goal of the study was to determine how different non-metallic nutrients are partitioned from feed in various physiological contexts and how buffer addition in ruminant nutrition affects these processes. Six lactating crossbred dairy cows were selected and divided into three groups on the basis of their phenotypic and productive features (374±14 kg LW). Two treatments, T1 and T2, were randomly assigned to one animal from each group. Animals under T1 and T2 were moved to T2 and T1, respectively, after 30 days. T2 was the only group to receive buffers containing magnesium oxide and sodium bicarbonate at 0.0 and 0.01% of LW (the real amounts are equivalent to 75.3±4.0 and 30 7.7±2.0 g/d, respectively). T1 was used as the control. Wheat straw and berseem were part of the base diet, whereas wheat grain and mustard cake were part of the concentrate mixture. Following a 21-day feeding period, metabolic and milk production trials were carried out for seven consecutive days. The Kearl equation used the urine's calorific value to determine its volume. Chemical analyses were performed to determine the levels of nitrogen, carbohydrates, calories, and phosphorus in samples of feed, waste, buffer, mineral mixture, water, feces, urine, and milk that were collected. The information was analyzed statistically. Notable results included decreased nitrogen and carbohydrate partitioning to feces from feed, while increased calorie partitioning to milk and body storage, and increased carbohydrate partitioning to body storage. Phosphorus balance was significantly better in T2. The application of buffers in ruminant diets was found to increase the output of calories in milk, as well as the number of calories and carbohydrates stored in the body, while decreasing the amount of nitrogen in faeces. As a result, it may be advised to introduce buffers to feed crossbred dairy cattle.Keywords: cattle, Magnesium oxide, non-metallic nutrients, partitioning, Sodium bicarbonate
Procedia PDF Downloads 557128 Models Comparison for Solar Radiation
Authors: Djelloul Benatiallah
Abstract:
Due to the current high consumption and recent industry growth, the depletion of fossil and natural energy supplies like oil, gas, and uranium is declining. Due to pollution and climate change, there needs to be a swift switch to renewable energy sources. Research on renewable energy is being done to meet energy needs. Solar energy is one of the renewable resources that can currently meet all of the world's energy needs. In most parts of the world, solar energy is a free and unlimited resource that can be used in a variety of ways, including photovoltaic systems for the generation of electricity and thermal systems for the generation of heatfor the residential sector's production of hot water. In this article, we'll conduct a comparison. The first step entails identifying the two empirical models that will enable us to estimate the daily irradiations on a horizontal plane. On the other hand, we compare it using the data obtained from measurements made at the Adrar site over the four distinct seasons. The model 2 provides a better estimate of the global solar components, with an absolute mean error of less than 7% and a correlation coefficient of more than 0.95, as well as a relative coefficient of the bias error that is less than 6% in absolute value and a relative RMSE that is less than 10%, according to a comparison of the results obtained by simulating the two models.Keywords: solar radiation, renewable energy, fossil, photovoltaic systems
Procedia PDF Downloads 777127 An Improved Prediction Model of Ozone Concentration Time Series Based on Chaotic Approach
Authors: Nor Zila Abd Hamid, Mohd Salmi M. Noorani
Abstract:
This study is focused on the development of prediction models of the Ozone concentration time series. Prediction model is built based on chaotic approach. Firstly, the chaotic nature of the time series is detected by means of phase space plot and the Cao method. Then, the prediction model is built and the local linear approximation method is used for the forecasting purposes. Traditional prediction of autoregressive linear model is also built. Moreover, an improvement in local linear approximation method is also performed. Prediction models are applied to the hourly ozone time series observed at the benchmark station in Malaysia. Comparison of all models through the calculation of mean absolute error, root mean squared error and correlation coefficient shows that the one with improved prediction method is the best. Thus, chaotic approach is a good approach to be used to develop a prediction model for the Ozone concentration time series.Keywords: chaotic approach, phase space, Cao method, local linear approximation method
Procedia PDF Downloads 3297126 Data Collection with Bounded-Sized Messages in Wireless Sensor Networks
Authors: Min Kyung An
Abstract:
In this paper, we study the data collection problem in Wireless Sensor Networks (WSNs) adopting the two interference models: The graph model and the more realistic physical interference model known as Signal-to-Interference-Noise-Ratio (SINR). The main issue of the problem is to compute schedules with the minimum number of timeslots, that is, to compute the minimum latency schedules, such that data from every node can be collected without any collision or interference to a sink node. While existing works studied the problem with unit-sized and unbounded-sized message models, we investigate the problem with the bounded-sized message model, and introduce a constant factor approximation algorithm. To the best known of our knowledge, our result is the first result of the data collection problem with bounded-sized model in both interference models.Keywords: data collection, collision-free, interference-free, physical interference model, SINR, approximation, bounded-sized message model, wireless sensor networks
Procedia PDF Downloads 2217125 Switched System Diagnosis Based on Intelligent State Filtering with Unknown Models
Authors: Nada Slimane, Foued Theljani, Faouzi Bouani
Abstract:
The paper addresses the problem of fault diagnosis for systems operating in several modes (normal or faulty) based on states assessment. We use, for this purpose, a methodology consisting of three main processes: 1) sequential data clustering, 2) linear model regression and 3) state filtering. Typically, Kalman Filter (KF) is an algorithm that provides estimation of unknown states using a sequence of I/O measurements. Inevitably, although it is an efficient technique for state estimation, it presents two main weaknesses. First, it merely predicts states without being able to isolate/classify them according to their different operating modes, whether normal or faulty modes. To deal with this dilemma, the KF is endowed with an extra clustering step based fully on sequential version of the k-means algorithm. Second, to provide state estimation, KF requires state space models, which can be unknown. A linear regularized regression is used to identify the required models. To prove its effectiveness, the proposed approach is assessed on a simulated benchmark.Keywords: clustering, diagnosis, Kalman Filtering, k-means, regularized regression
Procedia PDF Downloads 1817124 Application Methodology for the Generation of 3D Thermal Models Using UAV Photogrammety and Dual Sensors for Mining/Industrial Facilities Inspection
Authors: Javier Sedano-Cibrián, Julio Manuel de Luis-Ruiz, Rubén Pérez-Álvarez, Raúl Pereda-García, Beatriz Malagón-Picón
Abstract:
Structural inspection activities are necessary to ensure the correct functioning of infrastructures. Unmanned Aerial Vehicle (UAV) techniques have become more popular than traditional techniques. Specifically, UAV Photogrammetry allows time and cost savings. The development of this technology has permitted the use of low-cost thermal sensors in UAVs. The representation of 3D thermal models with this type of equipment is in continuous evolution. The direct processing of thermal images usually leads to errors and inaccurate results. A methodology is proposed for the generation of 3D thermal models using dual sensors, which involves the application of visible Red-Blue-Green (RGB) and thermal images in parallel. Hence, the RGB images are used as the basis for the generation of the model geometry, and the thermal images are the source of the surface temperature information that is projected onto the model. Mining/industrial facilities representations that are obtained can be used for inspection activities.Keywords: aerial thermography, data processing, drone, low-cost, point cloud
Procedia PDF Downloads 1427123 Classifying and Predicting Efficiencies Using Interval DEA Grid Setting
Authors: Yiannis G. Smirlis
Abstract:
The classification and the prediction of efficiencies in Data Envelopment Analysis (DEA) is an important issue, especially in large scale problems or when new units frequently enter the under-assessment set. In this paper, we contribute to the subject by proposing a grid structure based on interval segmentations of the range of values for the inputs and outputs. Such intervals combined, define hyper-rectangles that partition the space of the problem. This structure, exploited by Interval DEA models and a dominance relation, acts as a DEA pre-processor, enabling the classification and prediction of efficiency scores, without applying any DEA models.Keywords: data envelopment analysis, interval DEA, efficiency classification, efficiency prediction
Procedia PDF Downloads 1637122 Optimizing Machine Learning Through Python Based Image Processing Techniques
Authors: Srinidhi. A, Naveed Ahmed, Twinkle Hareendran, Vriksha Prakash
Abstract:
This work reviews some of the advanced image processing techniques for deep learning applications. Object detection by template matching, image denoising, edge detection, and super-resolution modelling are but a few of the tasks. The paper looks in into great detail, given that such tasks are crucial preprocessing steps that increase the quality and usability of image datasets in subsequent deep learning tasks. We review some of the methods for the assessment of image quality, more specifically sharpness, which is crucial to ensure a robust performance of models. Further, we will discuss the development of deep learning models specific to facial emotion detection, age classification, and gender classification, which essentially includes the preprocessing techniques interrelated with model performance. Conclusions from this study pinpoint the best practices in the preparation of image datasets, targeting the best trade-off between computational efficiency and retaining important image features critical for effective training of deep learning models.Keywords: image processing, machine learning applications, template matching, emotion detection
Procedia PDF Downloads 127121 The Use of Non-Parametric Bootstrap in Computing of Microbial Risk Assessment from Lettuce Consumption Irrigated with Contaminated Water by Sanitary Sewage in Infulene Valley
Authors: Mario Tauzene Afonso Matangue, Ivan Andres Sanchez Ortiz
Abstract:
The Metropolitan area of Maputo (Mozambique Capital City) is located in semi-arid zone (800 mm annual rainfall) with 1101170 million inhabitants. On the west side, there are the flatlands of Infulene where the Mulauze River flows towards to the Indian Ocean, receiving at this site, the storm water contaminated with sanitary sewage from Maputo, transported through a concrete open channel. In Infulene, local communities grow salads crops such as tomato, onion, garlic, lettuce, and cabbage, which are then commercialized and consumed in several markets in Maputo City. Lettuce is the most daily consumed salad crop in different meals, generally in fast-foods, breakfasts, lunches, and dinners. However, the risk of infection by several pathogens due to the consumption of lettuce, using the Quantitative Microbial Risk Assessment (QMRA) tools, is still unknown since there are few studies or publications concerning to this matter in Mozambique. This work is aimed at determining the annual risk arising from the consumption of lettuce grown in Infulene valley, in Maputo, using QMRA tools. The exposure model was constructed upon the volume of contaminated water remaining in the lettuce leaves, the empirical relations between the number of pathogens and the indicator of microorganisms (E. coli), the consumption of lettuce (g) and reduction of pathogens (days). The reference pathogens were Vibrio cholerae, Cryptosporidium, norovirus, and Ascaris. The water quality samples (E. coli) were collected in the storm water channel from January 2016 to December 2018, comprising 65 samples, and the urban lettuce consumption data were collected through inquiry in Maputo Metropolis covering 350 persons. A non-parametric bootstrap was performed involving 10,000 iterations over the collected dataset, namely, water quality (E. coli) and lettuce consumption. The dose-response models were: Exponential for Cryptosporidium, Kummer Confluent hypergeomtric function (1F1) for Vibrio and Ascaris Gaussian hypergeometric function (2F1-(a,b;c;z) for norovirus. The annual infection risk estimates were performed using R 3.6.0 (CoreTeam) software by Monte Carlo (Latin hypercubes), a sampling technique involving 10,000 iterations. The annual infection risks values expressed by Median and the 95th percentile, per person per year (pppy) arising from the consumption of lettuce are as follows: Vibrio cholerae (1.00, 1.00), Cryptosporidium (3.91x10⁻³, 9.72x 10⁻³), nororvirus (5.22x10⁻¹, 9.99x10⁻¹) and Ascaris (2.59x10⁻¹, 9.65x10⁻¹). Thus, the consumption of the lettuce would result in greater risks than the tolerable levels ( < 10⁻³ pppy or 10⁻⁶ DALY) for all pathogens, and the Vibrio cholerae is the most virulent pathogens, according to the hit-single models followed by the Ascaris lumbricoides and norovirus. The sensitivity analysis carried out in this work pointed out that in the whole QMRA, the most important input variable was the reduction of pathogens (Spearman rank value was 0.69) between harvest and consumption followed by water quality (Spearman rank value was 0.69). The decision-makers (Mozambique Government) must strengthen the prevention measures related to pathogens reduction in lettuce (i.e., washing) and engage in wastewater treatment engineering.Keywords: annual infections risk, lettuce, non-parametric bootstrapping, quantitative microbial risk assessment tools
Procedia PDF Downloads 1207120 Radar Signal Detection Using Neural Networks in Log-Normal Clutter for Multiple Targets Situations
Authors: Boudemagh Naime
Abstract:
Automatic radar detection requires some methods of adapting to variations in the background clutter in order to control their false alarm rate. The problem becomes more complicated in non-Gaussian environment. In fact, the conventional approach in real time applications requires a complex statistical modeling and much computational operations. To overcome these constraints, we propose another approach based on artificial neural network (ANN-CMLD-CFAR) using a Back Propagation (BP) training algorithm. The considered environment follows a log-normal distribution in the presence of multiple Rayleigh-targets. To evaluate the performances of the considered detector, several situations, such as scale parameter and the number of interferes targets, have been investigated. The simulation results show that the ANN-CMLD-CFAR processor outperforms the conventional statistical one.Keywords: radat detection, ANN-CMLD-CFAR, log-normal clutter, statistical modelling
Procedia PDF Downloads 3637119 Time and Cost Prediction Models for Language Classification Over a Large Corpus on Spark
Authors: Jairson Barbosa Rodrigues, Paulo Romero Martins Maciel, Germano Crispim Vasconcelos
Abstract:
This paper presents an investigation of the performance impacts regarding the variation of five factors (input data size, node number, cores, memory, and disks) when applying a distributed implementation of Naïve Bayes for text classification of a large Corpus on the Spark big data processing framework. Problem: The algorithm's performance depends on multiple factors, and knowing before-hand the effects of each factor becomes especially critical as hardware is priced by time slice in cloud environments. Objectives: To explain the functional relationship between factors and performance and to develop linear predictor models for time and cost. Methods: the solid statistical principles of Design of Experiments (DoE), particularly the randomized two-level fractional factorial design with replications. This research involved 48 real clusters with different hardware arrangements. The metrics were analyzed using linear models for screening, ranking, and measurement of each factor's impact. Results: Our findings include prediction models and show some non-intuitive results about the small influence of cores and the neutrality of memory and disks on total execution time, and the non-significant impact of data input scale on costs, although notably impacts the execution time.Keywords: big data, design of experiments, distributed machine learning, natural language processing, spark
Procedia PDF Downloads 1187118 Cement Bond Characteristics of Artificially Fabricated Sandstones
Authors: Ashirgul Kozhagulova, Ainash Shabdirova, Galym Tokazhanov, Minh Nguyen
Abstract:
The synthetic rocks have been advantageous over the natural rocks in terms of availability and the consistent studying the impact of a particular parameter. The artificial rocks can be fabricated using variety of techniques such as mixing sand and Portland cement or gypsum, firing the mixture of sand and fine powder of borosilicate glass or by in-situ precipitation of calcite solution. In this study, sodium silicate solution has been used as the cementing agent for the quartz sand. The molded soft cylindrical sandstone samples are placed in the gas-tight pressure vessel, where the hardening of the material takes place as the chemical reaction between carbon dioxide and the silicate solution progresses. The vessel allows uniform disperse of carbon dioxide and control over the ambient gas pressure. Current paper shows how the bonding material is initially distributed in the intergranular space and the surface of the sand particles by the usage of Electron Microscopy and the Energy Dispersive Spectroscopy. During the study, the strength of the cement bond as a function of temperature is observed. The impact of cementing agent dosage on the micro and macro characteristics of the sandstone is investigated. The analysis of the cement bond at micro level helps to trace the changes to particles bonding damage after a potential yielding. Shearing behavior and compressional response have been examined resulting in the estimation of the shearing resistance and cohesion force of the sandstone. These are considered to be main input values to the mathematical prediction models of sand production from weak clastic oil reservoir formations.Keywords: artificial sanstone, cement bond, microstructure, SEM, triaxial shearing
Procedia PDF Downloads 1667117 Quality by Design in the Optimization of a Fast HPLC Method for Quantification of Hydroxychloroquine Sulfate
Authors: Pedro J. Rolim-Neto, Leslie R. M. Ferraz, Fabiana L. A. Santos, Pablo A. Ferreira, Ricardo T. L. Maia-Jr., Magaly A. M. Lyra, Danilo A F. Fonte, Salvana P. M. Costa, Amanda C. Q. M. Vieira, Larissa A. Rolim
Abstract:
Initially developed as an antimalarial agent, hydroxychloroquine (HCQ) sulfate is often used as a slow-acting antirheumatic drug in the treatment of disorders of connective tissue. The United States Pharmacopeia (USP) 37 provides a reversed-phase HPLC method for quantification of HCQ. However, this method was not reproducible, producing asymmetric peaks in a long analysis time. The asymmetry of the peak may cause an incorrect calculation of the concentration of the sample. Furthermore, the analysis time is unacceptable, especially regarding the routine of a pharmaceutical industry. The aiming of this study was to develop a fast, easy and efficient method for quantification of HCQ sulfate by High Performance Liquid Chromatography (HPLC) based on the Quality by Design (QbD) methodology. This method was optimized in terms of peak symmetry using the surface area graphic as the Design of Experiments (DoE) and the tailing factor (TF) as an indicator to the Design Space (DS). The reference method used was that described at USP 37 to the quantification of the drug. For the optimized method, was proposed a 33 factorial design, based on the QbD concepts. The DS was created with the TF (in a range between 0.98 and 1.2) in order to demonstrate the ideal analytical conditions. Changes were made in the composition of the USP mobile-phase (USP-MP): USP-MP: Methanol (90:10 v/v, 80:20 v/v and 70:30 v/v), in the flow (0.8, 1.0 and 1.2 mL) and in the oven temperature (30, 35, and 40ºC). The USP method allowed the quantification of drug in a long time (40-50 minutes). In addition, the method uses a high flow rate (1,5 mL.min-1) which increases the consumption of expensive solvents HPLC grade. The main problem observed was the TF value (1,8) that would be accepted if the drug was not a racemic mixture, since the co-elution of the isomers can become an unreliable peak integration. Therefore, the optimization was suggested in order to reduce the analysis time, aiming a better peak resolution and TF. For the optimization method, by the analysis of the surface-response plot it was possible to confirm the ideal setting analytical condition: 45 °C, 0,8 mL.min-1 and 80:20 USP-MP: Methanol. The optimized HPLC method enabled the quantification of HCQ sulfate, with a peak of high resolution, showing a TF value of 1,17. This promotes good co-elution of isomers of the HCQ, ensuring an accurate quantification of the raw material as racemic mixture. This method also proved to be 18 times faster, approximately, compared to the reference method, using a lower flow rate, reducing even more the consumption of the solvents and, consequently, the analysis cost. Thus, an analytical method for the quantification of HCQ sulfate was optimized using QbD methodology. This method proved to be faster and more efficient than the USP method, regarding the retention time and, especially, the peak resolution. The higher resolution in the chromatogram peaks supports the implementation of the method for quantification of the drug as racemic mixture, not requiring the separation of isomers.Keywords: analytical method, hydroxychloroquine sulfate, quality by design, surface area graphic
Procedia PDF Downloads 6377116 Bayesian Flexibility Modelling of the Conditional Autoregressive Prior in a Disease Mapping Model
Authors: Davies Obaromi, Qin Yongsong, James Ndege, Azeez Adeboye, Akinwumi Odeyemi
Abstract:
The basic model usually used in disease mapping, is the Besag, York and Mollie (BYM) model and which combines the spatially structured and spatially unstructured priors as random effects. Bayesian Conditional Autoregressive (CAR) model is a disease mapping method that is commonly used for smoothening the relative risk of any disease as used in the Besag, York and Mollie (BYM) model. This model (CAR), which is also usually assigned as a prior to one of the spatial random effects in the BYM model, successfully uses information from adjacent sites to improve estimates for individual sites. To our knowledge, there are some unrealistic or counter-intuitive consequences on the posterior covariance matrix of the CAR prior for the spatial random effects. In the conventional BYM (Besag, York and Mollie) model, the spatially structured and the unstructured random components cannot be seen independently, and which challenges the prior definitions for the hyperparameters of the two random effects. Therefore, the main objective of this study is to construct and utilize an extended Bayesian spatial CAR model for studying tuberculosis patterns in the Eastern Cape Province of South Africa, and then compare for flexibility with some existing CAR models. The results of the study revealed the flexibility and robustness of this alternative extended CAR to the commonly used CAR models by comparison, using the deviance information criteria. The extended Bayesian spatial CAR model is proved to be a useful and robust tool for disease modeling and as a prior for the structured spatial random effects because of the inclusion of an extra hyperparameter.Keywords: Besag2, CAR models, disease mapping, INLA, spatial models
Procedia PDF Downloads 2777115 Stochastic Control of Decentralized Singularly Perturbed Systems
Authors: Walid S. Alfuhaid, Saud A. Alghamdi, John M. Watkins, M. Edwin Sawan
Abstract:
Designing a controller for stochastic decentralized interconnected large scale systems usually involves a high degree of complexity and computation ability. Noise, observability, and controllability of all system states, connectivity, and channel bandwidth are other constraints to design procedures for distributed large scale systems. The quasi-steady state model investigated in this paper is a reduced order model of the original system using singular perturbation techniques. This paper results in an optimal control synthesis to design an observer based feedback controller by standard stochastic control theory techniques using Linear Quadratic Gaussian (LQG) approach and Kalman filter design with less complexity and computation requirements. Numerical example is given at the end to demonstrate the efficiency of the proposed method.Keywords: decentralized, optimal control, output, singular perturb
Procedia PDF Downloads 3677114 3D Simulation of Orthodontic Tooth Movement in the Presence of Horizontal Bone Loss
Authors: Azin Zargham, Gholamreza Rouhi, Allahyar Geramy
Abstract:
One of the most prevalent types of alveolar bone loss is horizontal bone loss (HBL) in which the bone height around teeth is reduced homogenously. In the presence of HBL the magnitudes of forces during orthodontic treatment should be altered according to the degree of HBL, in a way that without further bone loss, desired tooth movement can be obtained. In order to investigate the appropriate orthodontic force system in the presence of HBL, a three-dimensional numerical model capable of the simulation of orthodontic tooth movement was developed. The main goal of this research was to evaluate the effect of different degrees of HBL on a long-term orthodontic tooth movement. Moreover, the effect of different force magnitudes on orthodontic tooth movement in the presence of HBL was studied. Five three-dimensional finite element models of a maxillary lateral incisor with 0 mm, 1.5 mm, 3 mm, 4.5 mm and 6 mm of HBL were constructed. The long-term orthodontic tooth tipping movements were attained during a 4-weeks period in an iterative process through the external remodeling of the alveolar bone based on strains in periodontal ligament as the bone remodeling mechanical stimulus. To obtain long-term orthodontic tooth movement in each iteration, first the strains in periodontal ligament under a 1-N tipping force were calculated using finite element analysis. Then, bone remodeling and the subsequent tooth movement were computed in a post-processing software using a custom written program. Incisal edge, cervical, and apical area displacement in the models with different alveolar bone heights (0, 1.5, 3, 4.5, 6 mm bone loss) in response to a 1-N tipping force were calculated. Maximum tooth displacement was found to be 2.65 mm at the top of the crown of the model with a 6 mm bone loss. Minimum tooth displacement was 0.45 mm at the cervical level of the model with a normal bone support. Tooth tipping degrees of models in response to different tipping force magnitudes were also calculated for models with different degrees of HBL. Degrees of tipping tooth movement increased as force level was increased. This increase was more prominent in the models with smaller degrees of HBL. By using finite element method and bone remodeling theories, this study indicated that in the presence of HBL, under the same load, long-term orthodontic tooth movement will increase. The simulation also revealed that even though tooth movement increases with increasing the force, this increase was only prominent in the models with smaller degrees of HBL, and tooth models with greater degrees of HBL will be less affected by the magnitude of an orthodontic force. Based on our results, the applied force magnitude must be reduced in proportion of degree of HBL.Keywords: bone remodeling, finite element method, horizontal bone loss, orthodontic tooth movement.
Procedia PDF Downloads 3417113 Testing for Endogeneity of Foreign Direct Investment: Implications for Economic Policy
Authors: Liwiusz Wojciechowski
Abstract:
Research background: The current knowledge does not give a clear answer to the question of the impact of FDI on productivity. Results of the empirical studies are still inconclusive, no matter how extensive and diverse in terms of research approaches or groups of countries analyzed they are. It should also take into account the possibility that FDI and productivity are linked and that there is a bidirectional relationship between them. This issue is particularly important because on one hand FDI can contribute to changes in productivity in the host country, but on the other hand its level and dynamics may imply that FDI should be undertaken in a given country. As already mentioned, a two-way relationship between the presence of foreign capital and productivity in the host country should be assumed, taking into consideration the endogenous nature of FDI. Purpose of the article: The overall objective of this study is to determine the causality between foreign direct investment and total factor productivity in host county in terms of different relative absorptive capacity across countries. In the classic sense causality among variables is not always obvious and requires for testing, which would facilitate proper specification of FDI models. The aim of this article is to study endogeneity of selected macroeconomic variables commonly being used in FDI models in case of Visegrad countries: main recipients of FDI in CEE. The findings may be helpful in determining the structure of the actual relationship between variables, in appropriate models estimation and in forecasting as well as economic policymaking. Methodology/methods: Panel and time-series data techniques including GMM estimator, VEC models and causality tests were utilized in this study. Findings & Value added: The obtained results allow to confirm the hypothesis states the bi-directional causality between FDI and total factor productivity. Although results differ from among countries and data level of aggregation implications may be useful for policymakers in case of providing foreign capital attracting policy.Keywords: endogeneity, foreign direct investment, multi-equation models, total factor productivity
Procedia PDF Downloads 1967112 Estimating the Probability of Winning the Best Actor/Actress Award Conditional on the Best Picture Nomination with Bayesian Hierarchical Models
Authors: Svetlana K. Eden
Abstract:
Movies and TV shows have long become part of modern culture. We all have our preferred genre, story, actors, and actresses. However, can we objectively discern good acting from the bad? As laymen, we are probably not objective, but what about the Oscar academy members? Are their votes based on objective measures? Oscar academy members are probably also biased due to many factors, including their professional affiliations or advertisement exposure. Heavily advertised films bring more publicity to their cast and are likely to have bigger budgets. Because a bigger budget may also help earn a Best Picture (BP) nomination, we hypothesize that best actor/actress (BA) nominees from BP-nominated movies would have higher chances of winning the award than those BA nominees from non-BP-nominated films. To test this hypothesis, three Bayesian hierarchical models are proposed, and their performance is evaluated. The results from all three models largely support our hypothesis. Depending on the proportion of BP nominations among BA nominees, the odds ratios (estimated over expected) of winning the BA award conditional on BP nomination vary from 2.8 [0.8-7.0] to 4.3 [2.0, 15.8] for actors and from 1.5 [0.0, 12.2] to 5.4 [2.7, 14.2] for actresses.Keywords: Oscar, best picture, best actor/actress, bias
Procedia PDF Downloads 2217111 The Confounding Role of Graft-versus-Host Disease in Animal Models of Cancer Immunotherapy: A Systematic Review
Authors: Hami Ashraf, Mohammad Heydarnejad
Abstract:
Introduction: The landscape of cancer treatment has been revolutionized by immunotherapy, offering novel therapeutic avenues for diverse cancer types. Animal models play a pivotal role in the development and elucidation of these therapeutic modalities. Nevertheless, the manifestation of Graft-versus-Host Disease (GVHD) in such models poses significant challenges, muddling the interpretation of experimental data within the ambit of cancer immunotherapy. This study is dedicated to scrutinizing the role of GVHD as a confounding factor in animal models used for cancer immunotherapy, alongside proposing viable strategies to mitigate this complication. Method: Employing a systematic review framework, this study undertakes a comprehensive literature survey including academic journals in PubMed, Embase, and Web of Science databases and conference proceedings to collate pertinent research that delves into the impact of GVHD on animal models in cancer immunotherapy. The acquired studies undergo rigorous analysis and synthesis, aiming to assess the influence of GVHD on experimental results while identifying strategies to alleviate its confounding effects. Results: Findings indicate that GVHD incidence significantly skews the reliability and applicability of experimental outcomes, occasionally leading to erroneous interpretations. The literature surveyed also sheds light on various methodologies under exploration to counteract the GVHD dilemma, thereby bolstering the experimental integrity in this domain. Conclusion: GVHD's presence critically affects both the interpretation and validity of experimental findings, underscoring the imperative for strategies to curtail its confounding impacts. Current research endeavors are oriented towards devising solutions to this issue, aiming to augment the dependability and pertinence of experimental results. It is incumbent upon researchers to diligently consider and adjust for GVHD's effects, thereby enhancing the translational potential of animal model findings to clinical applications and propelling progress in the arena of cancer immunotherapy.Keywords: graft-versus-host disease, cancer immunotherapy, animal models, preclinical model
Procedia PDF Downloads 507110 A Study on Sentiment Analysis Using Various ML/NLP Models on Historical Data of Indian Leaders
Authors: Sarthak Deshpande, Akshay Patil, Pradip Pandhare, Nikhil Wankhede, Rushali Deshmukh
Abstract:
Among the highly significant duties for any language most effective is the sentiment analysis, which is also a key area of NLP, that recently made impressive strides. There are several models and datasets available for those tasks in popular and commonly used languages like English, Russian, and Spanish. While sentiment analysis research is performed extensively, however it is lagging behind for the regional languages having few resources such as Hindi, Marathi. Marathi is one of the languages that included in the Indian Constitution’s 8th schedule and is the third most widely spoken language in the country and primarily spoken in the Deccan region, which encompasses Maharashtra and Goa. There isn’t sufficient study on sentiment analysis methods based on Marathi text due to lack of available resources, information. Therefore, this project proposes the use of different ML/NLP models for the analysis of Marathi data from the comments below YouTube content, tweets or Instagram posts. We aim to achieve a short and precise analysis and summary of the related data using our dataset (Dates, names, root words) and lexicons to locate exact information.Keywords: multilingual sentiment analysis, Marathi, natural language processing, text summarization, lexicon-based approaches
Procedia PDF Downloads 717109 Effect of Temperature on the Binary Mixture of Imidazolium Ionic Liquid with Pyrrolidin-2-One: Volumetric and Ultrasonic Study
Authors: T. Srinivasa Krishna, K. Narendra, K. Thomas, S. S. Raju, B. Munibhadrayya
Abstract:
The densities, speeds of sound and refractive index of the binary mixture of ionic liquid (IL) 1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Imide]) and Pyrrolidin-2-one(PY) was measured at atmospheric pressure, and over the range of temperatures T= (298.15 -323.15)K. The excess molar volume, excess isentropic compressibility, excess speed of sound, partial molar volumes, and isentropic partial molar compressibility were calculated from the values of the experimental density and speed of sound. From the experimental data excess thermal expansion coefficients and isothermal pressure coefficient of excess molar enthalpy at 298.15K were calculated. The results were analyzed and were discussed from the point of view of structural changes. Excess properties were calculated and correlated by the Redlich–Kister and the Legendre polynomial equation and binary coefficients were obtained. Values of excess partial volumes at infinite dilution for the binary system at different temperatures were calculated from the adjustable parameters obtained from Legendre polynomial and Redlich–Kister smoothing equation. Deviation in refractive indices ΔnD and deviation in molar refraction, ΔRm were calculated from the measured refractive index values. Equations of state and several mixing rules were used to predict refractive indices of the binary mixtures and compared with the experimental values by means of the standard deviation and found to be in excellent agreement. By using Prigogine–Flory–Patterson (PFP) theory, the above thermodynamic mixing functions have been calculated and the results obtained from this theory were compared with experimental results.Keywords: density, refractive index, speeds of sound, Prigogine-Flory-Patterson theory
Procedia PDF Downloads 4067108 Cessna Citation X Business Aircraft Stability Analysis Using Linear Fractional Representation LFRs Model
Authors: Yamina Boughari, Ruxandra Mihaela Botez, Florian Theel, Georges Ghazi
Abstract:
Clearance of flight control laws of a civil aircraft is a long and expensive process in the Aerospace industry. Thousands of flight combinations in terms of speeds, altitudes, gross weights, centers of gravity and angles of attack have to be investigated, and proved to be safe. Nonetheless, in this method, a worst flight condition can be easily missed, and its missing would lead to a critical situation. Definitively, it would be impossible to analyze a model because of the infinite number of cases contained within its flight envelope, that might require more time, and therefore more design cost. Therefore, in industry, the technique of the flight envelope mesh is commonly used. For each point of the flight envelope, the simulation of the associated model ensures the satisfaction or not of specifications. In order to perform fast, comprehensive and effective analysis, other varying parameters models were developed by incorporating variations, or uncertainties in the nominal models, known as Linear Fractional Representation LFR models; these LFR models were able to describe the aircraft dynamics by taking into account uncertainties over the flight envelope. In this paper, the LFRs models are developed using the speeds and altitudes as varying parameters; The LFR models were built using several flying conditions expressed in terms of speeds and altitudes. The use of such a method has gained a great interest by the aeronautical companies that have seen a promising future in the modeling, and particularly in the design and certification of control laws. In this research paper, we will focus on the Cessna Citation X open loop stability analysis. The data are provided by a Research Aircraft Flight Simulator of Level D, that corresponds to the highest level flight dynamics certification; this simulator was developed by CAE Inc. and its development was based on the requirements of research at the LARCASE laboratory. The acquisition of these data was used to develop a linear model of the airplane in its longitudinal and lateral motions, and was further used to create the LFR’s models for 12 XCG /weights conditions, and thus the whole flight envelope using a friendly Graphical User Interface developed during this study. Then, the LFR’s models are analyzed using Interval Analysis method based upon Lyapunov function, and also the ‘stability and robustness analysis’ toolbox. The results were presented under the form of graphs, thus they have offered good readability, and were easily exploitable. The weakness of this method stays in a relatively long calculation, equal to about four hours for the entire flight envelope.Keywords: flight control clearance, LFR, stability analysis, robustness analysis
Procedia PDF Downloads 3517107 In and Out-Of-Sample Performance of Non Simmetric Models in International Price Differential Forecasting in a Commodity Country Framework
Authors: Nicola Rubino
Abstract:
This paper presents an analysis of a group of commodity exporting countries' nominal exchange rate movements in relationship to the US dollar. Using a series of Unrestricted Self-exciting Threshold Autoregressive models (SETAR), we model and evaluate sixteen national CPI price differentials relative to the US dollar CPI. Out-of-sample forecast accuracy is evaluated through calculation of mean absolute error measures on the basis of two-hundred and fifty-three months rolling window forecasts and extended to three additional models, namely a logistic smooth transition regression (LSTAR), an additive non linear autoregressive model (AAR) and a simple linear Neural Network model (NNET). Our preliminary results confirm presence of some form of TAR non linearity in the majority of the countries analyzed, with a relatively higher goodness of fit, with respect to the linear AR(1) benchmark, in five countries out of sixteen considered. Although no model appears to statistically prevail over the other, our final out-of-sample forecast exercise shows that SETAR models tend to have quite poor relative forecasting performance, especially when compared to alternative non-linear specifications. Finally, by analyzing the implied half-lives of the > coefficients, our results confirms the presence, in the spirit of arbitrage band adjustment, of band convergence with an inner unit root behaviour in five of the sixteen countries analyzed.Keywords: transition regression model, real exchange rate, nonlinearities, price differentials, PPP, commodity points
Procedia PDF Downloads 2767106 Hybrid Equity Warrants Pricing Formulation under Stochastic Dynamics
Authors: Teh Raihana Nazirah Roslan, Siti Zulaiha Ibrahim, Sharmila Karim
Abstract:
A warrant is a financial contract that confers the right but not the obligation, to buy or sell a security at a certain price before expiration. The standard procedure to value equity warrants using call option pricing models such as the Black–Scholes model had been proven to contain many flaws, such as the assumption of constant interest rate and constant volatility. In fact, existing alternative models were found focusing more on demonstrating techniques for pricing, rather than empirical testing. Therefore, a mathematical model for pricing and analyzing equity warrants which comprises stochastic interest rate and stochastic volatility is essential to incorporate the dynamic relationships between the identified variables and illustrate the real market. Here, the aim is to develop dynamic pricing formulations for hybrid equity warrants by incorporating stochastic interest rates from the Cox-Ingersoll-Ross (CIR) model, along with stochastic volatility from the Heston model. The development of the model involves the derivations of stochastic differential equations that govern the model dynamics. The resulting equations which involve Cauchy problem and heat equations are then solved using partial differential equation approaches. The analytical pricing formulas obtained in this study comply with the form of analytical expressions embedded in the Black-Scholes model and other existing pricing models for equity warrants. This facilitates the practicality of this proposed formula for comparison purposes and further empirical study.Keywords: Cox-Ingersoll-Ross model, equity warrants, Heston model, hybrid models, stochastic
Procedia PDF Downloads 128