Search results for: mechanical skin tissue behavior
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 11416

Search results for: mechanical skin tissue behavior

196 Automated Adaptions of Semantic User- and Service Profile Representations by Learning the User Context

Authors: Nicole Merkle, Stefan Zander

Abstract:

Ambient Assisted Living (AAL) describes a technological and methodological stack of (e.g. formal model-theoretic semantics, rule-based reasoning and machine learning), different aspects regarding the behavior, activities and characteristics of humans. Hence, a semantic representation of the user environment and its relevant elements are required in order to allow assistive agents to recognize situations and deduce appropriate actions. Furthermore, the user and his/her characteristics (e.g. physical, cognitive, preferences) need to be represented with a high degree of expressiveness in order to allow software agents a precise evaluation of the users’ context models. The correct interpretation of these context models highly depends on temporal, spatial circumstances as well as individual user preferences. In most AAL approaches, model representations of real world situations represent the current state of a universe of discourse at a given point in time by neglecting transitions between a set of states. However, the AAL domain currently lacks sufficient approaches that contemplate on the dynamic adaptions of context-related representations. Semantic representations of relevant real-world excerpts (e.g. user activities) help cognitive, rule-based agents to reason and make decisions in order to help users in appropriate tasks and situations. Furthermore, rules and reasoning on semantic models are not sufficient for handling uncertainty and fuzzy situations. A certain situation can require different (re-)actions in order to achieve the best results with respect to the user and his/her needs. But what is the best result? To answer this question, we need to consider that every smart agent requires to achieve an objective, but this objective is mostly defined by domain experts who can also fail in their estimation of what is desired by the user and what not. Hence, a smart agent has to be able to learn from context history data and estimate or predict what is most likely in certain contexts. Furthermore, different agents with contrary objectives can cause collisions as their actions influence the user’s context and constituting conditions in unintended or uncontrolled ways. We present an approach for dynamically updating a semantic model with respect to the current user context that allows flexibility of the software agents and enhances their conformance in order to improve the user experience. The presented approach adapts rules by learning sensor evidence and user actions using probabilistic reasoning approaches, based on given expert knowledge. The semantic domain model consists basically of device-, service- and user profile representations. In this paper, we present how this semantic domain model can be used in order to compute the probability of matching rules and actions. We apply this probability estimation to compare the current domain model representation with the computed one in order to adapt the formal semantic representation. Our approach aims at minimizing the likelihood of unintended interferences in order to eliminate conflicts and unpredictable side-effects by updating pre-defined expert knowledge according to the most probable context representation. This enables agents to adapt to dynamic changes in the environment which enhances the provision of adequate assistance and affects positively the user satisfaction.

Keywords: ambient intelligence, machine learning, semantic web, software agents

Procedia PDF Downloads 267
195 Processing of Flexible Dielectric Nanocomposites Using Nanocellulose and Recycled Alum Sludge for Wearable Technology Applications

Authors: D. Sun, L. Saw, A. Onyianta, D. O’Rourke, Z. Lu, C. See, C. Wilson, C. Popescu, M. Dorris

Abstract:

With the rapid development of wearable technology (e.g., smartwatch, activity trackers and health monitor devices), flexible dielectric materials with environmental-friendly, low-cost and high-energy efficiency characteristics are in increasing demand. In this work, a flexible dielectric nanocomposite was processed by incorporating two components: cellulose nanofibrils and alum sludge in a polymer matrix. The two components were used in the reinforcement phase as well as for enhancing the dielectric properties; they were processed using waste materials that would otherwise be disposed to landfills. Alum sludge is a by-product of the water treatment process in which aluminum sulfate is prevalently used as the primary coagulant. According to the data from a project partner-Scottish Water: there are approximately 10k tons of alum sludge generated as a waste from the water treatment work to be landfilled every year in Scotland. The industry has been facing escalating financial and environmental pressure to develop more sustainable strategies to deal with alum sludge wastes. In the available literature, some work on reusing alum sludge has been reported (e.g., aluminum recovery or agriculture and land reclamation). However, little work can be found in applying it to processing energy materials (e.g., dielectrics) for enhanced energy density and efficiency. The alum sludge was collected directly from a water treatment plant of Scottish Water and heat-treated and refined before being used in preparing composites. Cellulose nanofibrils were derived from water hyacinth, an invasive aquatic weed that causes significant ecological issues in tropical regions. The harvested water hyacinth was dried and processed using a cost-effective method, including a chemical extraction followed by a homogenization process in order to extract cellulose nanofibrils. Biodegradable elastomer polydimethylsiloxane (PDMS) was used as the polymer matrix and the nanocomposites were processed by casting raw materials in Petri dishes. The processed composites were characterized using various methods, including scanning electron microscopy (SEM), rheological analysis, thermogravimetric and X-ray diffraction analysis. The SEM result showed that cellulose nanofibrils of approximately 20nm in diameter and 100nm in length were obtained and the alum sludge particles were of approximately 200um in diameters. The TGA/DSC analysis result showed that a weight loss of up to 48% can be seen in the raw material of alum sludge and its crystallization process has been started at approximately 800°C. This observation coincides with the XRD result. Other experiments also showed that the composites exhibit comprehensive mechanical and dielectric performances. This work depicts that it is a sustainable practice of reusing such waste materials in preparing flexible, lightweight and miniature dielectric materials for wearable technology applications.

Keywords: cellulose, biodegradable, sustainable, alum sludge, nanocomposite, wearable technology, dielectric

Procedia PDF Downloads 75
194 Accessing Motional Quotient for All Round Development

Authors: Zongping Wang, Chengjun Cui, Jiacun Wang

Abstract:

The concept of intelligence has been widely used to access an individual's cognitive abilities to learn, form concepts, understand, apply logic, and reason. According to the multiple intelligence theory, there are eight distinguished types of intelligence. One of them is the bodily-kinaesthetic intelligence that links to the capacity of an individual controlling his body and working with objects. Motor intelligence, on the other hand, reflects the capacity to understand, perceive and solve functional problems by motor behavior. Both bodily-kinaesthetic intelligence and motor intelligence refer directly or indirectly to bodily capacity. Inspired by these two intelligence concepts, this paper introduces motional intelligence (MI). MI is two-fold. (1) Body strength, which is the capacity of various organ functions manifested by muscle activity under the control of the central nervous system during physical exercises. It can be measured by the magnitude of muscle contraction force, the frequency of repeating a movement, the time to finish a movement of body position, the duration to maintain muscles in a working status, etc. Body strength reflects the objective of MI. (2) Level of psychiatric willingness to physical events. It is a subjective thing and determined by an individual’s self-consciousness to physical events and resistance to fatigue. As such, we call it subjective MI. Subjective MI can be improved through education and proper social events. The improvement of subjective MI can lead to that of objective MI. A quantitative score of an individual’s MI is motional quotient (MQ). MQ is affected by several factors, including genetics, physical training, diet and lifestyle, family and social environment, and personal awareness of the importance of physical exercise. Genes determine one’s body strength potential. Physical training, in general, makes people stronger, faster and swifter. Diet and lifestyle have a direct impact on health. Family and social environment largely affect one’s passion for physical activities, so does personal awareness of the importance of physical exercise. The key to the success of the MQ study is developing an acceptable and efficient system that can be used to assess MQ objectively and quantitatively. We should apply different accessing systems to different groups of people according to their ages and genders. Field test, laboratory test and questionnaire are among essential components of MQ assessment. A scientific interpretation of MQ score is part of an MQ assessment system as it will help an individual to improve his MQ. IQ (intelligence quotient) and EQ (emotional quotient) and their test have been studied intensively. We argue that IQ and EQ study alone is not sufficient for an individual’s all round development. The significance of MQ study is that it offsets IQ and EQ study. MQ reflects an individual’s mental level as well as bodily level of intelligence in physical activities. It is well-known that the American Springfield College seal includes the Luther Gulick triangle with the words “spirit,” “mind,” and “body” written within it. MQ, together with IQ and EQ, echoes this education philosophy. Since its inception in 2012, the MQ research has spread rapidly in China. By now, six prestigious universities in China have established research centers on MQ and its assessment.

Keywords: motional Intelligence, motional quotient, multiple intelligence, motor intelligence, all round development

Procedia PDF Downloads 145
193 Hydroxyapatite Nanorods as Novel Fillers for Improving the Properties of PBSu

Authors: M. Nerantzaki, I. Koliakou, D. Bikiaris

Abstract:

This study evaluates the hypothesis that the incorporation of fibrous hydroxyapatite nanoparticles (nHA) with high crystallinity and high aspect ratio, synthesized by hydrothermal method, into Poly(butylene succinate) (PBSu), improves the bioactivity of the aliphatic polyester and affects new bone growth inhibiting resorption and enhancing bone formation. Hydroxyapatite nanorods were synthesized using a simple hydrothermal procedure. First, the HPO42- -containing solution was added drop-wise into the Ca2+-containing solution, while the molar ratio of Ca/P was adjusted at 1.67. The HA precursor was then treated hydrothermally at 200°C for 72 h. The resulting powder was characterized using XRD, FT-IR, TEM, and EDXA. Afterwards, PBSu nanocomposites containing 2.5wt% (nHA) were prepared by in situ polymerization technique for the first time and were examined as potential scaffolds for bone engineering applications. For comparison purposes composites containing either 2.5wt% micro-Bioglass (mBG) or 2.5wt% mBG-nHA were prepared and studied, too. The composite scaffolds were characterized using SEM, FTIR, and XRD. Mechanical testing (Instron 3344) and Contact Angle measurements were also carried out. Enzymatic degradation was studied in an aqueous solution containing a mixture of R. Oryzae and P. Cepacia lipases at 37°C and pH=7.2. In vitro biomineralization test was performed by immersing all samples in simulated body fluid (SBF) for 21 days. Biocompatibility was assessed using rat Adipose Stem Cells (rASCs), genetically modified by nucleofection with DNA encoding SB100x transposase and pT2-Venus-neo transposon expression plasmids in order to attain fluorescence images. Cell proliferation and viability of cells on the scaffolds were evaluated using fluoresce microscopy and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5 diphenyltetrazolium bromide) assay. Finally, osteogenic differentiation was assessed by staining rASCs with alizarine red using cetylpyridinium chloride (CPC) method. TEM image of the fibrous HAp nanoparticles, synthesized in the present study clearly showed the fibrous morphology of the synthesized powder. The addition of nHA decreased significantly the contact angle of the samples, indicating that the materials become more hydrophilic and hence they absorb more water and subsequently degrade more rapidly. In vitro biomineralization test confirmed that all samples were bioactive as mineral deposits were detected by X-ray diffractometry after incubation in SBF. Metabolic activity of rASCs on all PBSu composites was high and increased from day 1 of culture to day 14. On day 28 metabolic activity of rASCs cultured on samples enriched with bioceramics was significantly decreased due to possible differentiation of rASCs to osteoblasts. Staining rASCs with alizarin red after 28 days in culture confirmed our initial hypothesis as the presence of calcium was detected, suggesting osteogenic differentiation of rACS on PBSu/nHAp/mBG 2.5% and PBSu/mBG 2.5% composite scaffolds.

Keywords: biomaterials, hydroxyapatite nanorods, poly(butylene succinate), scaffolds

Procedia PDF Downloads 296
192 Strength Performance and Microstructure Characteristics of Natural Bonded Fiber Composites from Malaysian Bamboo

Authors: Shahril Anuar Bahari, Mohd Azrie Mohd Kepli, Mohd Ariff Jamaludin, Kamarulzaman Nordin, Mohamad Jani Saad

Abstract:

Formaldehyde release from wood-based panel composites can be very toxicity and may increase the risk of human health as well as environmental problems. A new bio-composites product without synthetic adhesive or resin is possible to be developed in order to reduce these problems. Apart from formaldehyde release, adhesive is also considered to be expensive, especially in the manufacturing of composite products. Natural bonded composites can be termed as a panel product composed with any type of cellulosic materials without the addition of synthetic resins. It is composed with chemical content activation in the cellulosic materials. Pulp and paper making method (chemical pulping) was used as a general guide in the composites manufacturing. This method will also generally reduce the manufacturing cost and the risk of formaldehyde emission and has potential to be used as an alternative technology in fiber composites industries. In this study, the natural bonded bamboo fiber composite was produced from virgin Malaysian bamboo fiber (Bambusa vulgaris). The bamboo culms were chipped and digested into fiber using this pulping method. The black liquor collected from the pulping process was used as a natural binding agent in the composition. Then the fibers were mixed and blended with black liquor without any resin addition. The amount of black liquor used per composite board was 20%, with approximately 37% solid content. The composites were fabricated using a hot press machine at two different board densities, 850 and 950 kg/m³, with two sets of hot pressing time, 25 and 35 minutes. Samples of the composites from different densities and hot pressing times were tested in flexural strength and internal bonding (IB) for strength performance according to British Standard. Modulus of elasticity (MOE) and modulus of rupture (MOR) was determined in flexural test, while tensile force perpendicular to the surface was recorded in IB test. Results show that the strength performance of the composites with 850 kg/m³ density were significantly higher than 950 kg/m³ density, especially for samples from 25 minutes hot pressing time. Strength performance of composites from 25 minutes hot pressing time were generally greater than 35 minutes. Results show that the maximum mean values of strength performance were recorded from composites with 850 kg/m³ density and 25 minutes pressing time. The maximum mean values for MOE, MOR and IB were 3251.84, 16.88 and 0.27 MPa, respectively. Only MOE result has conformed to high density fiberboard (HDF) standard (2700 MPa) in British Standard for Fiberboard Specification, BS EN 622-5: 2006. Microstructure characteristics of composites can also be related to the strength performance of the composites, in which, the observed fiber damage in composites from 950 kg/m³ density and overheat of black liquor led to the low strength properties, especially in IB test.

Keywords: bamboo fiber, natural bonded, black liquor, mechanical tests, microstructure observations

Procedia PDF Downloads 245
191 Regeneration of Cesium-Exhausted Activated Carbons by Microwave Irradiation

Authors: Pietro P. Falciglia, Erica Gagliano, Vincenza Brancato, Alfio Catalfo, Guglielmo Finocchiaro, Guido De Guidi, Stefano Romano, Paolo Roccaro, Federico G. A. Vagliasindi

Abstract:

Cesium-137 (¹³⁷Cs) is a major radionuclide in spent nuclear fuel processing, and it represents the most important cause of contamination related to nuclear accidents. Cesium-137 has long-term radiological effects representing a major concern for the human health. Several physico-chemical methods have been proposed for ¹³⁷Cs removal from impacted water: ion-exchange, adsorption, chemical precipitation, membrane process, coagulation, and electrochemical. However, these methods can be limited by ionic selectivity and efficiency, or they present very restricted full-scale application due to equipment and chemical high costs. On the other hand, adsorption is considered a more cost-effective solution, and activated carbons (ACs) are known as a low-cost and effective adsorbent for a wide range of pollutants among which radionuclides. However, adsorption of Cs onto ACs has been investigated in very few and not exhaustive studies. In addition, exhausted activated carbons are generally discarded in landfill, that is not an eco-friendly and economic solution. Consequently, the regeneration of exhausted ACs must be considered a preferable choice. Several alternatives, including conventional thermal-, solvent-, biological- and electrochemical-regeneration, are available but are affected by several economic or environmental concerns. Microwave (MW) irradiation has been widely used in industrial and environmental applications and it has attracted many attentions to regenerating activated carbons. The growing interest in MW irradiation is based on the passive ability of the irradiated medium to convert a low power irradiation energy into a rapid and large temperature increase if the media presents good dielectric features. ACs are excellent MW-absorbers, with a high mechanical strength and a good resistance towards heating process. This work investigates the feasibility of MW irradiation for the regeneration of Cs-exhausted ACs. Adsorption batch experiments were carried out using commercially available granular activated carbon (GAC), then Cs-saturated AC samples were treated using a controllable bench-scale 2.45-GHz MW oven and investigating different adsorption-regeneration cycles. The regeneration efficiency (RE), weight loss percentage, and textural properties of the AC samples during the adsorption-regeneration cycles were also assessed. Main results demonstrated a relatively low adsorption capacity for Cs, although the feasibility of ACs was strictly linked to their dielectric nature, which allows a very efficient thermal regeneration by MW irradiation. The weight loss percentage was found less than 2%, and an increase in RE after three cycles was also observed. Furthermore, MW regeneration preserved the pore structure of the regenerated ACs. For a deeper exploration of the full-scale applicability of MW regeneration, further investigations on more adsorption-regeneration cycles or using fixed-bed columns are required.

Keywords: adsorption mechanisms, cesium, granular activated carbons, microwave regeneration

Procedia PDF Downloads 131
190 Scenario-Based Learning Using Virtual Optometrist Applications

Authors: J. S. M. Yang, G. E. T. Chua

Abstract:

Diploma in Optometry (OPT) course is a three-year program offered by Ngee Ann Polytechnic (NP) to train students to provide primary eye care. Students are equipped with foundational conceptual knowledge and practical skills in the first three semesters before clinical modules in fourth to six semesters. In the clinical modules, students typically have difficulties in integrating the acquired knowledge and skills from the past semesters to perform general eye examinations on public patients at NP Optometry Centre (NPOC). To help the students overcome the challenge, a web-based game Virtual Optometrist (VO) was developed to help students apply their skills and knowledge through scenario-based learning. It consisted of two interfaces, Optical Practice Counter (OPC) and Optometric Consultation Room (OCR), to provide two simulated settings for authentic learning experiences. In OPC, students would recommend and provide appropriate frame and lens selection based on virtual patient’s case history. In OCR, students would diagnose and manage virtual patients with common ocular conditions. Simulated scenarios provided real-world clinical situations that required contextual application of integrated knowledge from relevant modules. The stages in OPC and OCR are of increasing complexity to align to expected students’ clinical competency as they progress to more senior semesters. This prevented gameplay fatigue as VO was used over the semesters to achieve different learning outcomes. Numerous feedback opportunities were provided to students based on their decisions to allow individualized learning to take place. The game-based learning element in VO was achieved through the scoreboard and leader board to enhance students' motivation to perform. Scores were based on the speed and accuracy of students’ responses to the questions posed in the simulated scenarios, preparing the students to perform accurately and effectively under time pressure in a realistic optometric environment. Learning analytics was generated in VO’s backend office based on students’ responses, offering real-time data on distinctive and observable learners’ behavior to monitor students’ engagement and learning progress. The backend office allowed versatility to add, edit, and delete scenarios for different intended learning outcomes. Likert Scale was used to measure students’ learning experience with VO for OPT Year 2 and 3 students. The survey results highlighted the learning benefits of implementing VO in the different modules, such as enhancing recall and reinforcement of clinical knowledge for contextual application to develop higher-order thinking skills, increasing efficiency in clinical decision-making, facilitating learning through immediate feedback and second attempts, providing exposure to common and significant ocular conditions, and training effective communication skills. The results showed that VO has been useful in reinforcing optometry students’ learning and supporting the development of higher-order thinking, increasing efficiency in clinical decision-making, and allowing students to learn from their mistakes with immediate feedback and second attempts. VO also exposed the students to diverse ocular conditions through simulated real-world clinical scenarios, which may otherwise not be encountered in NPOC, and promoted effective communication skills.

Keywords: authentic learning, game-based learning, scenario-based learning, simulated clinical scenarios

Procedia PDF Downloads 103
189 A Practical Construction Technique to Enhance the Performance of Rock Bolts in Tunnels

Authors: Ojas Chaudhari, Ali Nejad Ghafar, Giedrius Zirgulis, Marjan Mousavi, Tommy Ellison, Sandra Pousette, Patrick Fontana

Abstract:

In Swedish tunnel construction, a critical issue that has been repeatedly acknowledged is corrosion and, consequently, failure of the rock bolts in rock support systems. The defective installation of rock bolts results in the formation of cavities in the cement mortar that is regularly used to fill the area under the dome plates. These voids allow for water-ingress to the rock bolt assembly, which results in corrosion of rock bolt components and eventually failure. In addition, the current installation technique consists of several manual steps with intense labor works that are usually done in uncomfortable and exhausting conditions, e.g., under the roof of the tunnels. Such intense tasks also lead to a considerable waste of materials and execution errors. Moreover, adequate quality control of the execution is hardly possible with the current technique. To overcome these issues, a non-shrinking/expansive cement-based mortar filled in the paper packaging has been developed in this study which properly fills the area under the dome plates without or with the least remaining cavities, ultimately that diminishes the potential of corrosion. This article summarizes the development process and the experimental evaluation of this technique for the installation of rock bolts. In the development process, the cementitious mortar was first developed using specific cement and shrinkage reducing/expansive additives. The mechanical and flow properties of the mortar were then evaluated using compressive strength, density, and slump flow measurement methods. In addition, isothermal calorimetry and shrinkage/expansion measurements were used to elucidate the hydration and durability attributes of the mortar. After obtaining the desired properties in both fresh and hardened conditions, the developed dry mortar was filled in specific permeable paper packaging and then submerged in water bath for specific intervals before the installation. The tests were enhanced progressively by optimizing different parameters such as shape and size of the packaging, characteristics of the paper used, immersion time in water and even some minor characteristics of the mortar. Finally, the developed prototype was tested in a lab-scale rock bolt assembly with various angles to analyze the efficiency of the method in real life scenario. The results showed that the new technique improves the performance of the rock bolts by reducing the material wastage, improving environmental performance, facilitating and accelerating the labor works, and finally enhancing the durability of the whole system. Accordingly, this approach provides an efficient alternative for the traditional way of tunnel bolt installation with considerable advantages for the Swedish tunneling industry.

Keywords: corrosion, durability, mortar, rock bolt

Procedia PDF Downloads 97
188 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 58
187 An Investigation into the Social Determinants of Crowdfunding Effectiveness in developing, non-Western contexts: Some Evidence from Thailand

Authors: Khin Thi Htun, James Jain, Tim Andrews

Abstract:

This study examines the under-researched phenomenon of crowdfunding use and effectiveness in developing non-western markets. More precisely, using an institutional theoretical lens, the research explores the attitudes, motivations, and practice surrounding the initiation, development, and receipt of crowdfunding campaignsin a business context symptomatic of widely dissimilar regulatory, normative cognitive institutional ‘pillars’ to those studied – and utilized in practice - to date. As, in essence, a form of alternative finance, crowdfunding is used primarily to fund a wide range of projects through the securement of small amounts of money from a large pool of investors/participants. Being tied almost inextricably to e-commerce channels, the practice of crowdfunding typically sources its means and communicates the purpose of each venture mainly, though not exclusively, online. The wide range of projects supported to date span social entrepreneurship, community benefits initiatives, creative and artistic endeavors, assistance to disadvantaged social cohorts, and small business start-ups. Adopting a longitudinal, comparative approach, the study reported here embodies an investigation centered on six case start-up campaigns within the Thai societal context, covering a range of fundings calls and cause choices. Data was sourced from a variety of respondents using semi-structured interviews, observation (direct and participant), and company information. Results suggest that the motives and effectiveness of crowdfunding campaigns differ significantly in non-western consumer contexts from the norms that have evolved to date in mature Western contexts(particularly the US and UK). Specifically, whereas data on the different regulatory pressures showed relatively insignificant variation, the results regarding cognitive and, especially, normative dissimilarities between the Thai and US/UK institutional profiles surfaced potentially important differences with far-reaching implications. Particular issuesto emerge from our data concerned consumer motivation in terms of support and engagement with different types of campaigns. This was found to stem from social norms symptomatic of ‘collectivist’ and ‘relations based/particularist’ cultural assistance behavior, in turn, linked to deeply-held societal values regarding interpersonal network (‘in group’) reciprocity. This research serves to refine and extend the limited body of knowledge to date on crowdfunding by exploring the phenomenon in a non-western, non-developed country contextswhere social norms and values differ. This was achieved through uncovering and explicating the effects of cultural dissimilarity on motivation, decision-making, construed ethics, and general engagement with crowdfunding ideas. Implications for theory into e-marketing and cross-cultural marketing, as well as for practitioners seeking to develop effective crowdfunding campaigns in a Southeast Asian cultural environment, are discussed to conclude the paper.

Keywords: crowdfunding, national culture, e-marketing, cross-cultural business

Procedia PDF Downloads 143
186 Production of Nanocomposite Electrical Contact Materials Ag-SnO2, W-Cu and Cu-C in Thermal Plasma

Authors: A. V. Samokhin, A. A. Fadeev, M. A. Sinaiskii, N. V. Alekseev, A. V. Kolesnikov

Abstract:

Composite materials where metal matrix is reinforced by ceramic or metal particles are of great interest for use in the manufacturing of electrical contacts. Significant improvement of the composite physical and mechanical properties as well as increase of the performance parameters of composite-based products can be achieved if the nanoscale structure in the composite materials is obtained by using nanosized powders as starting components. The results of nanosized composite powders synthesis (Ag-SnO2, W-Cu and Cu-C) in the DC thermal plasma flows are presented in this paper. The investigations included the following processes: - Recondensation of micron powder mixture Ag + SnO2 in a nitrogen plasma; - The reduction of the oxide powders mixture (WO3 + CuO) in a hydrogen-nitrogen plasma; - Decomposition of the copper formate and copper acetate powders in nitrogen plasma. The calculations of equilibrium compositions of multicomponent systems Ag-Sn-O-N, W-Cu-O-H-N and Cu-O-C-H-N in the temperature range of 400-5000 K were carried to estimate basic process characteristics. Experimental studies of the processes were performed using a plasma reactor with a confined jet flow. The plasma jet net power was in the range of 2 - 13 kW, and the feedstock flow rate was up to 0.35 kg/h. The obtained powders were characterized by TEM, HR-TEM, SEM, EDS, ED-XRF, XRD, BET and QEA methods. Nanocomposite Ag-SnO2 (12 wt. %). Processing of the initial powder mixture (Ag-SnO2) in nitrogen thermal plasma stream allowed to produce nanopowders with a specific surface area up to 24 m2/g, consisting predominantly of particles with size less than 100 nm. According to XRD results, tin was present in the obtained products as SnO2 phase, and also as intermetallic phases AgxSn. Nanocomposite W-Cu (20 wt .%). Reduction of (WO3+CuO) mixture in the hydrogen-nitrogen plasma provides W-Cu nanopowder with particle sizes in the range of 10-150 nm. The particles have mainly spherical shape and structure tungsten core - copper shell. The thickness of the shell is about several nanometers, the shell is composed of copper and its oxides (Cu2O, CuO). The nanopowders had 1.5 wt. % oxygen impurity. Heat treatment in a hydrogen atmosphere allows to reduce the oxygen content to less than 0.1 wt. %. Nanocomposite Cu-C. Copper nanopowders were found as products of the starting copper compounds decomposition. The nanopowders primarily had a spherical shape with a particle size of less than 100 nm. The main phase was copper, with small amount of Cu2O and CuO oxides. Copper formate decomposition products had a specific surface area 2.5-7 m2/g and contained 0.15 - 4 wt. % carbon; and copper acetate decomposition products had the specific surface area 5-35 m2/g, and carbon content of 0.3 - 5 wt. %. Compacting of nanocomposites (sintering in hydrogen for Ag-SnO2 and electric spark sintering (SPS) for W-Cu) showed that the samples having a relative density of 97-98 % can be obtained with a submicron structure. The studies indicate the possibility of using high-intensity plasma processes to create new technologies to produce nanocomposite materials for electric contacts.

Keywords: electrical contact, material, nanocomposite, plasma, synthesis

Procedia PDF Downloads 226
185 Delivering User Context-Sensitive Service in M-Commerce: An Empirical Assessment of the Impact of Urgency on Mobile Service Design for Transactional Apps

Authors: Daniela Stephanie Kuenstle

Abstract:

Complex industries such as banking or insurance experience slow growth in mobile sales. While today’s mobile applications are sophisticated and enable location based and personalized services, consumers prefer online or even face-to-face services to complete complex transactions. A possible reason for this reluctance is that the provided service within transactional mobile applications (apps) does not adequately correspond to users’ needs. Therefore, this paper examines the impact of the user context on mobile service (m-service) in m-commerce. Motivated by the potential which context-sensitive m-services hold for the future, the impact of temporal variations as a dimension of user context, on m-service design is examined. In particular, the research question asks: Does consumer urgency function as a determinant of m-service composition in transactional apps by moderating the relation between m-service type and m-service success? Thus, the aim is to explore the moderating influence of urgency on m-service types, which includes Technology Mediated Service and Technology Generated Service. While mobile applications generally comprise features of both service types, this thesis discusses whether unexpected urgency changes customer preferences for m-service types and how this consequently impacts the overall m-service success, represented by purchase intention, loyalty intention and service quality. An online experiment with a random sample of N=1311 participants was conducted. Participants were divided into four treatment groups varying in m-service types and urgency level. They were exposed to two different urgency scenarios (high/ low) and two different app versions conveying either technology mediated or technology generated service. Subsequently, participants completed a questionnaire to measure the effectiveness of the manipulation as well as the dependent variables. The research model was tested for direct and moderating effects of m-service type and urgency on m-service success. Three two-way analyses of variance confirmed the significance of main effects, but demonstrated no significant moderation of urgency on m-service types. The analysis of the gathered data did not confirm a moderating effect of urgency between m-service type and service success. Yet, the findings propose an additive effects model with the highest purchase and loyalty intention for Technology Generated Service and high urgency, while Technology Mediated Service and low urgency demonstrate the strongest effect for service quality. The results also indicate an antagonistic relation between service quality and purchase intention depending on the level of urgency. Although a confirmation of the significance of this finding is required, it suggests that only service convenience, as one dimension of mobile service quality, delivers conditional value under high urgency. This suggests a curvilinear pattern of service quality in e-commerce. Overall, the paper illustrates the complex interplay of technology, user variables, and service design. With this, it contributes to a finer-grained understanding of the relation between m-service design and situation dependency. Moreover, the importance of delivering situational value with apps depending on user context is emphasized. Finally, the present study raises the demand to continue researching the impact of situational variables on m-service design in order to develop more sophisticated m-services.

Keywords: mobile consumer behavior, mobile service design, mobile service success, self-service technology, situation dependency, user-context sensitivity

Procedia PDF Downloads 259
184 A Clustering-Based Approach for Weblog Data Cleaning

Authors: Amine Ganibardi, Cherif Arab Ali

Abstract:

This paper addresses the data cleaning issue as a part of web usage data preprocessing within the scope of Web Usage Mining. Weblog data recorded by web servers within log files reflect usage activity, i.e., End-users’ clicks and underlying user-agents’ hits. As Web Usage Mining is interested in End-users’ behavior, user-agents’ hits are referred to as noise to be cleaned-off before mining. Filtering hits from clicks is not trivial for two reasons, i.e., a server records requests interlaced in sequential order regardless of their source or type, website resources may be set up as requestable interchangeably by end-users and user-agents. The current methods are content-centric based on filtering heuristics of relevant/irrelevant items in terms of some cleaning attributes, i.e., website’s resources filetype extensions, website’s resources pointed by hyperlinks/URIs, http methods, user-agents, etc. These methods need exhaustive extra-weblog data and prior knowledge on the relevant and/or irrelevant items to be assumed as clicks or hits within the filtering heuristics. Such methods are not appropriate for dynamic/responsive Web for three reasons, i.e., resources may be set up to as clickable by end-users regardless of their type, website’s resources are indexed by frame names without filetype extensions, web contents are generated and cancelled differently from an end-user to another. In order to overcome these constraints, a clustering-based cleaning method centered on the logging structure is proposed. This method focuses on the statistical properties of the logging structure at the requested and referring resources attributes levels. It is insensitive to logging content and does not need extra-weblog data. The used statistical property takes on the structure of the generated logging feature by webpage requests in terms of clicks and hits. Since a webpage consists of its single URI and several components, these feature results in a single click to multiple hits ratio in terms of the requested and referring resources. Thus, the clustering-based method is meant to identify two clusters based on the application of the appropriate distance to the frequency matrix of the requested and referring resources levels. As the ratio clicks to hits is single to multiple, the clicks’ cluster is the smallest one in requests number. Hierarchical Agglomerative Clustering based on a pairwise distance (Gower) and average linkage has been applied to four logfiles of dynamic/responsive websites whose click to hits ratio range from 1/2 to 1/15. The optimal clustering set on the basis of average linkage and maximum inter-cluster inertia results always in two clusters. The evaluation of the smallest cluster referred to as clicks cluster under the terms of confusion matrix indicators results in 97% of true positive rate. The content-centric cleaning methods, i.e., conventional and advanced cleaning, resulted in a lower rate 91%. Thus, the proposed clustering-based cleaning outperforms the content-centric methods within dynamic and responsive web design without the need of any extra-weblog. Such an improvement in cleaning quality is likely to refine dependent analysis.

Keywords: clustering approach, data cleaning, data preprocessing, weblog data, web usage data

Procedia PDF Downloads 164
183 Flourishing in Marriage among Arab Couples in Israel: The Impact of Capitalization Support and Accommodation on Positive and Negative Affect

Authors: Niveen Hassan-Abbas, Tammie Ronen-Rosenbaum

Abstract:

Background and purpose: 'Flourishing in marriage' is a concept refers to married individuals’ high positivity ratio regarding their marriage, namely greater reported positive than negative emotions. The study proposes a different approach to marriage which emphasizes the place of the individual himself as largely responsible for his personal flourishing within marriage. Accordingly, the individual's desire to preserve and strengthen his marriage largely determines the marital behavior in a way that will contribute to his marriage success (Actor Effect), regardless the contribution of his or her partner to his marriage success (Partner Effect). Another assumption was that flourishing in marriage could be achieved by two separate processes, where capitalization support increases the positive marriage's evaluations and accommodation decreases the negative one. A theoretical model was constructed, whereby individuals who were committed to their marriage were hypothesized as employing self-control skills by way of two dynamic processes. First, individual’s higher degree of 'capitalization supportive responses' - supportive responses to the partner's sharing of positive personal experiences - was hypothesized as increasing one’s positive evaluations of marriage and thereby one’s positivity ratio. Second, individual’s higher degree of 'accommodation' responses - the ability during conflict situations to control the impulse to respond destructively and instead to respond constructively - was hypothesized as decreasing one’s negative evaluations of marriage and thereby increasing one’s positivity ratio. Methods: Participants were 156 heterosexual Arab couples from different regions of Israel. The mean period of marriage was 10.19 (SD=7.83), ages were 31.53 years for women (SD=8.12) and 36.80 years for men (SD=8.07). Years of education were 13.87 for women (SD=2.84) and 13.23 years for men (SD=3.45). Each participant completed seven questionnaires: socio-demographic, self-control skills, commitment, capitalization support, accommodation, marital quality, positive and negative affect. Using statistical analyses adapted to dyadic research design, firstly descriptive statistics were calculated and preliminary tests were performed. Next, dyadic model based on the Actor-Partner Interdependence Model (APIM) were tested using structural equation modeling (SEM). Results: The assumption according to which flourishing in marriage can be achieved by two processes was confirmed. All of the Actor Effect hypotheses were confirmed. Participants with higher self-control used more capitalization support and accommodation responses. Among husbands, unlike wives, these correlations were stronger when the individual's commitment level was higher. More capitalization supportive responses were found to increase positive evaluations of marriage, and greater spousal accommodation was found to decrease negative evaluations of marriage. High positive evaluations and low negative evaluations were found to increase positivity ratio. Not according to expectation, four partner effect paths were found significant. Conclusions and Implications: The present findings coincide with the positive psychology approach that emphasizes human strengths. The uniqueness of this study is its proposal that individuals are largely responsible for their personal flourishing in marriage. This study demonstrated that marital flourishing can be achieved by two processes, where capitalization increases the positive and accommodation decreases the negative. Practical implications include the need to construct interventions that enhance self-control skills for employment of capitalizing responsiveness and accommodation processes.

Keywords: accommodation, capitalization support, commitment, flourishing in marriage, positivity ratio, self-control skills

Procedia PDF Downloads 149
182 Magnetic Solid-Phase Separation of Uranium from Aqueous Solution Using High Capacity Diethylenetriamine Tethered Magnetic Adsorbents

Authors: Amesh P, Suneesh A S, Venkatesan K A

Abstract:

The magnetic solid-phase extraction is a relatively new method among the other solid-phase extraction techniques for the separating of metal ions from aqueous solutions, such as mine water and groundwater, contaminated wastes, etc. However, the bare magnetic particles (Fe3O4) exhibit poor selectivity due to the absence of target-specific functional groups for sequestering the metal ions. The selectivity of these magnetic particles can be remarkably improved by covalently tethering the task-specific ligands on magnetic surfaces. The magnetic particles offer a number of advantages such as quick phase separation aided by the external magnetic field. As a result, the solid adsorbent can be prepared with the particle size ranging from a few micrometers to the nanometer, which again offers the advantages such as enhanced kinetics of extraction, higher extraction capacity, etc. Conventionally, the magnetite (Fe3O4) particles were prepared by the hydrolysis and co-precipitation of ferrous and ferric salts in aqueous ammonia solution. Since the covalent linking of task-specific functionalities on Fe3O4 was difficult, and it is also susceptible to redox reaction in the presence of acid or alkali, it is necessary to modify the surface of Fe3O4 by silica coating. This silica coating is usually carried out by hydrolysis and condensation of tetraethyl orthosilicate over the surface of magnetite to yield a thin layer of silica-coated magnetite particles. Since the silica-coated magnetite particles amenable for further surface modification, it can be reacted with task-specific functional groups to obtain the functionalized magnetic particles. The surface area exhibited by such magnetic particles usually falls in the range of 50 to 150 m2.g-1, which offer advantage such as quick phase separation, as compared to the other solid-phase extraction systems. In addition, the magnetic (Fe3O4) particles covalently linked on mesoporous silica matrix (MCM-41) and task-specific ligands offer further advantages in terms of extraction kinetics, high stability, longer reusable cycles, and metal extraction capacity, due to the large surface area, ample porosity and enhanced number of functional groups per unit area on these adsorbents. In view of this, the present paper deals with the synthesis of uranium specific diethylenetriamine ligand (DETA) ligand anchored on silica-coated magnetite (Fe-DETA) as well as on magnetic mesoporous silica (MCM-Fe-DETA) and studies on the extraction of uranium from aqueous solution spiked with uranium to mimic the mine water or groundwater contaminated with uranium. The synthesized solid-phase adsorbents were characterized by FT-IR, Raman, TG-DTA, XRD, and SEM. The extraction behavior of uranium on the solid-phase was studied under several conditions like the effect of pH, initial concentration of uranium, rate of extraction and its variation with pH and initial concentration of uranium, effect of interference ions like CO32-, Na+, Fe+2, Ni+2, and Cr+3, etc. The maximum extraction capacity of 233 mg.g-1 was obtained for Fe-DETA, and a huge capacity of 1047 mg.g-1 was obtained for MCM-Fe-DETA. The mechanism of extraction, speciation of uranium, extraction studies, reusability, and the other results obtained in the present study suggests Fe-DETA and MCM-Fe-DETA are the potential candidates for the extraction of uranium from mine water, and groundwater.

Keywords: diethylenetriamine, magnetic mesoporous silica, magnetic solid-phase extraction, uranium extraction, wastewater treatment

Procedia PDF Downloads 150
181 Seismic History and Liquefaction Resistance: A Comparative Study of Sites in California

Authors: Tarek Abdoun, Waleed Elsekelly

Abstract:

Introduction: Liquefaction of soils during earthquakes can have significant consequences on the stability of structures and infrastructure. This study focuses on comparing two liquefaction case histories in California, namely the response of the Wildlife site in the Imperial Valley to the 2010 El-Mayor Cucapah earthquake (Mw = 7.2, amax = 0.15g) and the response of the Treasure Island Fire Station (F.S.) site in the San Francisco Bay area to the 1989 Loma Prieta Earthquake (Mw = 6.9, amax = 0.16g). Both case histories involve liquefiable layers of silty sand with non-plastic fines, similar shear wave velocities, low CPT cone penetration resistances, and groundwater tables at similar depths. The liquefaction charts based on shear wave velocity field predict liquefaction at both sites. However, a significant difference arises in their pore pressure responses during the earthquakes. The Wildlife site did not experience liquefaction, as evidenced by piezometer data, while the Treasure Island F.S. site did liquefy during the shaking. Objective: The primary objective of this study is to investigate and understand the reason for the contrasting pore pressure responses observed at the Wildlife site and the Treasure Island F.S. site despite their similar geological characteristics and predicted liquefaction potential. By conducting a detailed analysis of similarities and differences between the two case histories, the objective is to identify the factors that contributed to the higher liquefaction resistance exhibited by the Wildlife site. Methodology: To achieve this objective, the geological and seismic data available for both sites were gathered and analyzed. Then their soil profiles, seismic characteristics, and liquefaction potential as predicted by shear wave velocity-based liquefaction charts were analyzed. Furthermore, the seismic histories of both regions were examined. The number of previous earthquakes capable of generating significant excess pore pressures for each critical layer was assessed. This analysis involved estimating the total seismic activity that the Wildlife and Treasure Island F.S. critical layers experienced over time. In addition to historical data, centrifuge and large-scale experiments were conducted to explore the impact of prior seismic activity on liquefaction resistance. These findings served as supporting evidence for the investigation. Conclusions: The higher liquefaction resistance observed at the Wildlife site and other sites in the Imperial Valley can be attributed to preshaking by previous earthquakes. The Wildlife critical layer was subjected to a substantially greater number of seismic events capable of generating significant excess pore pressures over time compared to the Treasure Island F.S. layer. This crucial disparity arises from the difference in seismic activity between the two regions in the past century. In conclusion, this research sheds light on the complex interplay between geological characteristics, seismic history, and liquefaction behavior. It emphasizes the significant impact of past seismic activity on liquefaction resistance and can provide valuable insights for evaluating the stability of sandy sites in other seismic regions.

Keywords: liquefaction, case histories, centrifuge, preshaking

Procedia PDF Downloads 65
180 Operational Characteristics of the Road Surface Improvement

Authors: Iuri Salukvadze

Abstract:

Construction takes importance role in the history of mankind, there is not a single thing-product in our lives in which the builder’s work was not to be materialized, because to create all of it requires setting up factories, roads, and bridges, etc. The function of the Republic of Georgia, as part of the connecting Europe-Asia transport corridor, is significantly increased. In the context of transit function a large part of the cargo traffic belongs to motor transport, hence the improvement of motor roads transport infrastructure is rather important and rise the new, increased operational demands for existing as well as new motor roads. Construction of the durable road surface is related to rather large values, but because of high transport-operational properties, such as high-speed, less fuel consumption, less depreciation of tires, etc. If the traffic intensity is high, therefore the reimbursement of expenses occurs rapidly and accordingly is increasing income. If the traffic intensity is relatively small, it is recommended to use lightened structures of road carpet in order to pay for capital investments amounted to no more than normative one. The road carpet is divided into the following basic types: asphaltic concrete and cement concrete. Asphaltic concrete is the most perfect type of road carpet. It is arranged in two or three layers on rigid foundation and will be compacted. Asphaltic concrete is artificial building material, which due stratum will be selected and measured from stone skeleton and sand, interconnected by bitumen and a mixture of mineral powder. Less strictly selected similar material is called as bitumen-mineral mixture. Asphaltic concrete is non-rigid building material and well durable on vertical loadings; it is less resistant to the impact of horizontal forces. The cement concrete is monolithic and durable material, it is well durable the horizontal loads and is less resistant related to vertical loads. The cement concrete consists from strictly selected, measured stone material and sand, the binder is cement. The cement concrete road carpet represents separate slabs of sizes from 3 ÷ 5 op to 6 ÷ 8 meters. The slabs are reinforced by a rather complex system. Between the slabs are arranged seams that are designed for avoiding of additional stresses due temperature fluctuations on the length of slabs. For the joint behavior of separate slabs, they are connected by metal rods. Rods provide the changes in the length of slabs and distribute to the slab vertical forces and bending moments. The foundation layers will be extremely durable, for that is required high-quality stone material, cement, and metal. The qualification work aims to: in order for improvement of traffic conditions on motor roads to prolong operational conditions and improving their characteristics. The work consists from three chapters, 80 pages, 5 tables and 5 figures. In the work are stated general concepts as well as carried out by various companies using modern methods tests and their results. In the chapter III are stated carried by us tests related to this issue and specific examples to improving the operational characteristics.

Keywords: asphalt, cement, cylindrikal sample of asphalt, building

Procedia PDF Downloads 210
179 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning

Authors: Rajkumar Ghosh

Abstract:

Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.

Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery

Procedia PDF Downloads 74
178 The Influence of Microsilica on the Cluster Cracks' Geometry of Cement Paste

Authors: Maciej Szeląg

Abstract:

The changing nature of environmental impacts, in which cement composites are operating, are causing in the structure of the material a number of phenomena, which result in volume deformation of the composite. These strains can cause composite cracking. Cracks are merging by propagation or intersect to form a characteristic structure of cracks known as the cluster cracks. This characteristic mesh of cracks is crucial to almost all building materials, which are working in service loads conditions. Particularly dangerous for a cement matrix is a sudden load of elevated temperature – the thermal shock. Resulting in a relatively short period of time a large value of a temperature gradient between the outer surface and the material’s interior can result in cracks formation on the surface and in the volume of the material. In the paper, in order to analyze the geometry of the cluster cracks of the cement pastes, the image analysis tools were used. Tested were 4 series of specimens made of two different Portland cement. In addition, two series include microsilica as a substitute for the 10% of the cement. Within each series, specimens were performed in three w/b indicators (water/binder): 0.4; 0.5; 0.6. The cluster cracks were created by sudden loading the samples by elevated temperature of 250°C. Images of the cracked surfaces were obtained via scanning at 2400 DPI. Digital processing and measurements were performed using ImageJ v. 1.46r software. To describe the structure of the cluster cracks three stereological parameters were proposed: the average cluster area - A ̅, the average length of cluster perimeter - L ̅, and the average opening width of a crack between clusters - I ̅. The aim of the study was to identify and evaluate the relationships between measured stereological parameters, and the compressive strength and the bulk density of the modified cement pastes. The tests of the mechanical and physical feature have been carried out in accordance with EN standards. The curves describing the relationships have been developed using the least squares method, and the quality of the curve fitting to the empirical data was evaluated using three diagnostic statistics: the coefficient of determination – R2, the standard error of estimation - Se, and the coefficient of random variation – W. The use of image analysis allowed for a quantitative description of the cluster cracks’ geometry. Based on the obtained results, it was found a strong correlation between the A ̅ and L ̅ – reflecting the fractal nature of the cluster cracks formation process. It was noted that the compressive strength and the bulk density of cement pastes decrease with an increase in the values of the stereological parameters. It was also found that the main factors, which impact on the cluster cracks’ geometry are the cement particles’ size and the general content of the binder in a volume of the material. The microsilica caused the reduction in the A ̅, L ̅ and I ̅ values compared to the values obtained by the classical cement paste’s samples, which is caused by the pozzolanic properties of the microsilica.

Keywords: cement paste, cluster cracks, elevated temperature, image analysis, microsilica, stereological parameters

Procedia PDF Downloads 238
177 Cultural Cognition and Voting: Understanding Values and Perceived Risks in the Colombian Population

Authors: Andrea N. Alarcon, Julian D. Castro, Gloria C. Rojas, Paola A. Vaca, Santiago Ortiz, Gustavo Martinez, Pablo D. Lemoine

Abstract:

Recently, electoral results across many countries have shown to be inconsistent with rational decision theory, which states that individuals make decisions based on maximizing benefits and reducing risks. An alternative explanation has emerged: Fear and rage-driven vote have been proved to be highly effective for political persuasion and mobilization. This phenomenon has been evident in the 2016 elections in the United States, 2006 elections in Mexico, 1998 elections in Venezuela, and 2004 elections in Bolivia. In Colombia, it has occurred recently in the 2016 plebiscite for peace and 2018 presidential elections. The aim of this study is to explain this phenomenon using cultural cognition theory, referring to the psychological predisposition individuals have to believe that its own and its peer´s behavior is correct and, therefore, beneficial to the entire society. Cultural cognition refers to the tendency of individuals to fit perceived risks, and factual beliefs into group shared values; the Cultural Cognition Worldview Scales (CCWS) measures cultural perceptions through two different dimensions: Individualism-communitarianism and hierarchy-egalitarianism. The former refers to attitudes towards social dominance based on conspicuous and static characteristics (sex, ethnicity or social class), while the latter refers to attitudes towards a social ordering in which it is expected from individuals to guarantee their own wellbeing without society´s or government´s intervention. A probabilistic national sample was obtained from different polls from the consulting and public opinion company Centro Nacional de Consultoría. Sociodemographic data was obtained along with CCWS scores, a subjective measure of left-right ideological placement and vote intention for 2019 Mayor´s elections were also included in the questionnaires. Finally, the question “In your opinion, what is the greatest risk Colombia is facing right now?” was included to identify perceived risk in the population. Preliminary results show that Colombians are highly distributed among hierarchical communitarians and egalitarian individualists (30.9% and 31.7%, respectively), and to a less extent among hierarchical individualists and egalitarian communitarians (19% and 18.4%, respectively). Males tended to be more hierarchical (p < .000) and communitarian (p=.009) than females. ANOVA´s revealed statistically significant differences between groups (quadrants) for the level of schooling, left-right ideological orientation, and stratum (p < .000 for all), and proportion differences revealed statistically significant differences for groups of age (p < .001). Differences and distributions for vote intention and perceived risks are still being processed and results are yet to be analyzed. Results show that Colombians are differentially distributed among quadrants in regard to sociodemographic data and left-right ideological orientation. These preliminary results indicate that this study may shed some light on why Colombians vote the way they do, and future qualitative data will show the fears emerging from the identified values in the CCWS and the relation this has with vote intention.

Keywords: communitarianism, cultural cognition, egalitarianism, hierarchy, individualism, perceived risks

Procedia PDF Downloads 133
176 Analysis of Overall Thermo-Elastic Properties of Random Particulate Nanocomposites with Various Interphase Models

Authors: Lidiia Nazarenko, Henryk Stolarski, Holm Altenbach

Abstract:

In the paper, a (hierarchical) approach to analysis of thermo-elastic properties of random composites with interphases is outlined and illustrated. It is based on the statistical homogenization method – the method of conditional moments – combined with recently introduced notion of the energy-equivalent inhomogeneity which, in this paper, is extended to include thermal effects. After exposition of the general principles, the approach is applied in the investigation of the effective thermo-elastic properties of a material with randomly distributed nanoparticles. The basic idea of equivalent inhomogeneity is to replace the inhomogeneity and the surrounding it interphase by a single equivalent inhomogeneity of constant stiffness tensor and coefficient of thermal expansion, combining thermal and elastic properties of both. The equivalent inhomogeneity is then perfectly bonded to the matrix which allows to analyze composites with interphases using techniques devised for problems without interphases. From the mechanical viewpoint, definition of the equivalent inhomogeneity is based on Hill’s energy equivalence principle, applied to the problem consisting only of the original inhomogeneity and its interphase. It is more general than the definitions proposed in the past in that, conceptually and practically, it allows to consider inhomogeneities of various shapes and various models of interphases. This is illustrated considering spherical particles with two models of interphases, Gurtin-Murdoch material surface model and spring layer model. The resulting equivalent inhomogeneities are subsequently used to determine effective thermo-elastic properties of randomly distributed particulate composites. The effective stiffness tensor and coefficient of thermal extension of the material with so defined equivalent inhomogeneities are determined by the method of conditional moments. Closed-form expressions for the effective thermo-elastic parameters of a composite consisting of a matrix and randomly distributed spherical inhomogeneities are derived for the bulk and the shear moduli as well as for the coefficient of thermal expansion. Dependence of the effective parameters on the interphase properties is included in the resulting expressions, exhibiting analytically the nature of the size-effects in nanomaterials. As a numerical example, the epoxy matrix with randomly distributed spherical glass particles is investigated. The dependence of the effective bulk and shear moduli, as well as of the effective thermal expansion coefficient on the particle volume fraction (for different radii of nanoparticles) and on the radius of nanoparticle (for fixed volume fraction of nanoparticles) for different interphase models are compared to and discussed in the context of other theoretical predictions. Possible applications of the proposed approach to short-fiber composites with various types of interphases are discussed.

Keywords: effective properties, energy equivalence, Gurtin-Murdoch surface model, interphase, random composites, spherical equivalent inhomogeneity, spring layer model

Procedia PDF Downloads 176
175 Coordinative Remote Sensing Observation Technology for a High Altitude Barrier Lake

Authors: Zhang Xin

Abstract:

Barrier lakes are lakes formed by storing water in valleys, river valleys or riverbeds after being blocked by landslide, earthquake, debris flow, and other factors. They have great potential safety hazards. When the water is stored to a certain extent, it may burst in case of strong earthquake or rainstorm, and the lake water overflows, resulting in large-scale flood disasters. In order to ensure the safety of people's lives and property in the downstream, it is very necessary to monitor the barrier lake. However, it is very difficult and time-consuming to manually monitor the barrier lake in high altitude areas due to the harsh climate and steep terrain. With the development of earth observation technology, remote sensing monitoring has become one of the main ways to obtain observation data. Compared with a single satellite, multi-satellite remote sensing cooperative observation has more advantages; its spatial coverage is extensive, observation time is continuous, imaging types and bands are abundant, it can monitor and respond quickly to emergencies, and complete complex monitoring tasks. Monitoring with multi-temporal and multi-platform remote sensing satellites can obtain a variety of observation data in time, acquire key information such as water level and water storage capacity of the barrier lake, scientifically judge the situation of the barrier lake and reasonably predict its future development trend. In this study, The Sarez Lake, which formed on February 18, 1911, in the central part of the Pamir as a result of blockage of the Murgab River valley by a landslide triggered by a strong earthquake with magnitude of 7.4 and intensity of 9, is selected as the research area. Since the formation of Lake Sarez, it has aroused widespread international concern about its safety. At present, the use of mechanical methods in the international analysis of the safety of Lake Sarez is more common, and remote sensing methods are seldom used. This study combines remote sensing data with field observation data, and uses the 'space-air-ground' joint observation technology to study the changes in water level and water storage capacity of Lake Sarez in recent decades, and evaluate its safety. The situation of the collapse is simulated, and the future development trend of Lake Sarez is predicted. The results show that: 1) in recent decades, the water level of Lake Sarez has not changed much and remained at a stable level; 2) unless there is a strong earthquake or heavy rain, it is less likely that the Lake Sarez will be broken under normal conditions, 3) lake Sarez will remain stable in the future, but it is necessary to establish an early warning system in the Lake Sarez area for remote sensing of the area, 4) the coordinative remote sensing observation technology is feasible for the high altitude barrier lake of Sarez.

Keywords: coordinative observation, disaster, remote sensing, geographic information system, GIS

Procedia PDF Downloads 112
174 Assessment of Taiwan Railway Occurrences Investigations Using Causal Factor Analysis System and Bayesian Network Modeling Method

Authors: Lee Yan Nian

Abstract:

Safety investigation is different from an administrative investigation in that the former is conducted by an independent agency and the purpose of such investigation is to prevent accidents in the future and not to apportion blame or determine liability. Before October 2018, Taiwan railway occurrences were investigated by local supervisory authority. Characteristics of this kind of investigation are that enforcement actions, such as administrative penalty, are usually imposed on those persons or units involved in occurrence. On October 21, 2018, due to a Taiwan Railway accident, which caused 18 fatalities and injured another 267, establishing an agency to independently investigate this catastrophic railway accident was quickly decided. The Taiwan Transportation Safety Board (TTSB) was then established on August 1, 2019 to take charge of investigating major aviation, marine, railway and highway occurrences. The objective of this study is to assess the effectiveness of safety investigations conducted by the TTSB. In this study, the major railway occurrence investigation reports published by the TTSB are used for modeling and analysis. According to the classification of railway occurrences investigated by the TTSB, accident types of Taiwan railway occurrences can be categorized into: derailment, fire, Signal Passed at Danger and others. A Causal Factor Analysis System (CFAS) developed by the TTSB is used to identify the influencing causal factors and their causal relationships in the investigation reports. All terminologies used in the CFAS are equivalent to the Human Factors Analysis and Classification System (HFACS) terminologies, except for “Technical Events” which was added to classify causal factors resulting from mechanical failure. Accordingly, the Bayesian network structure of each occurrence category is established based on the identified causal factors in the CFAS. In the Bayesian networks, the prior probabilities of identified causal factors are obtained from the number of times in the investigation reports. Conditional Probability Table of each parent node is determined from domain experts’ experience and judgement. The resulting networks are quantitatively assessed under different scenarios to evaluate their forward predictions and backward diagnostic capabilities. Finally, the established Bayesian network of derailment is assessed using investigation reports of the same accident which was investigated by the TTSB and the local supervisory authority respectively. Based on the assessment results, findings of the administrative investigation is more closely tied to errors of front line personnel than to organizational related factors. Safety investigation can identify not only unsafe acts of individual but also in-depth causal factors of organizational influences. The results show that the proposed methodology can identify differences between safety investigation and administrative investigation. Therefore, effective intervention strategies in associated areas can be better addressed for safety improvement and future accident prevention through safety investigation.

Keywords: administrative investigation, bayesian network, causal factor analysis system, safety investigation

Procedia PDF Downloads 103
173 Hydrogen Storage Systems for Enhanced Grid Balancing Services in Wind Energy Conversion Systems

Authors: Nezmin Kayedpour, Arash E. Samani, Siavash Asiaban, Jeroen M. De Kooning, Lieven Vandevelde, Guillaume Crevecoeur

Abstract:

The growing adoption of renewable energy sources, such as wind power, in electricity generation is a significant step towards a sustainable and decarbonized future. However, the inherent intermittency and uncertainty of wind resources pose challenges to the reliable and stable operation of power grids. To address this, hydrogen storage systems have emerged as a promising and versatile technology to support grid balancing services in wind energy conversion systems. In this study, we propose a supplementary control design that enhances the performance of the hydrogen storage system by integrating wind turbine (WT) pitch and torque control systems. These control strategies aim to optimize the hydrogen production process, ensuring efficient utilization of wind energy while complying with grid requirements. The wind turbine pitch control system plays a crucial role in managing the turbine's aerodynamic performance. By adjusting the blade pitch angle, the turbine's rotational speed and power output can be regulated. Our proposed control design dynamically coordinates the pitch angle to match the wind turbine's power output with the optimal hydrogen production rate. This ensures that the electrolyzer receives a steady and optimal power supply, avoiding unnecessary strain on the system during high wind speeds and maximizing hydrogen production during low wind speeds. Moreover, the wind turbine torque control system is incorporated to facilitate efficient operation at varying wind speeds. The torque control system optimizes the energy capture from the wind while limiting mechanical stress on the turbine components. By harmonizing the torque control with hydrogen production requirements, the system maintains stable wind turbine operation, thereby enhancing the overall energy-to-hydrogen conversion efficiency. To enable grid-friendly operation, we introduce a cascaded controller that regulates the electrolyzer's electrical power-current in accordance with grid requirements. This controller ensures that the hydrogen production rate can be dynamically adjusted based on real-time grid demands, supporting grid balancing services effectively. By maintaining a close relationship between the wind turbine's power output and the electrolyzer's current, the hydrogen storage system can respond rapidly to grid fluctuations and contribute to enhanced grid stability. In this paper, we present a comprehensive analysis of the proposed supplementary control design's impact on the overall performance of the hydrogen storage system in wind energy conversion systems. Through detailed simulations and case studies, we assess the system's ability to provide grid balancing services, maximize wind energy utilization, and reduce greenhouse gas emissions.

Keywords: active power control, electrolyzer, grid balancing services, wind energy conversion systems

Procedia PDF Downloads 72
172 Identification of Failures Occurring on a System on Chip Exposed to a Neutron Beam for Safety Applications

Authors: S. Thomet, S. De-Paoli, F. Ghaffari, J. M. Daveau, P. Roche, O. Romain

Abstract:

In this paper, we present a hardware module dedicated to understanding the fail reason of a System on Chip (SoC) exposed to a particle beam. Impact of Single-Event Effects (SEE) on processor-based SoCs is a concern that has increased in the past decade, particularly for terrestrial applications with automotive safety increasing requirements, as well as consumer and industrial domains. The SEE created by the impact of a particle on an SoC may have consequences that can end to instability or crashes. Specific hardening techniques for hardware and software have been developed to make such systems more reliable. SoC is then qualified using cosmic ray Accelerated Soft-Error Rate (ASER) to ensure the Soft-Error Rate (SER) remains in mission profiles. Understanding where errors are occurring is another challenge because of the complexity of operations performed in an SoC. Common techniques to monitor an SoC running under a beam are based on non-intrusive debug, consisting of recording the program counter and doing some consistency checking on the fly. To detect and understand SEE, we have developed a module embedded within the SoC that provide support for recording probes, hardware watchpoints, and a memory mapped register bank dedicated to software usage. To identify CPU failure modes and the most important resources to probe, we have carried out a fault injection campaign on the RTL model of the SoC. Probes are placed on generic CPU registers and bus accesses. They highlight the propagation of errors and allow identifying the failure modes. Typical resulting errors are bit-flips in resources creating bad addresses, illegal instructions, longer than expected loops, or incorrect bus accesses. Although our module is processor agnostic, it has been interfaced to a RISC-V by probing some of the processor registers. Probes are then recorded in a ring buffer. Associated hardware watchpoints are allowing to do some control, such as start or stop event recording or halt the processor. Finally, the module is also providing a bank of registers where the firmware running on the SoC can log information. Typical usage is for operating system context switch recording. The module is connected to a dedicated debug bus and is interfaced to a remote controller via a debugger link. Thus, a remote controller can interact with the monitoring module without any intrusiveness on the SoC. Moreover, in case of CPU unresponsiveness, or system-bus stall, the recorded information can still be recovered, providing the fail reason. A preliminary version of the module has been integrated into a test chip currently being manufactured at ST in 28-nm FDSOI technology. The module has been triplicated to provide reliable information on the SoC behavior. As the primary application domain is automotive and safety, the efficiency of the module will be evaluated by exposing the test chip under a fast-neutron beam by the end of the year. In the meantime, it will be tested with alpha particles and electromagnetic fault injection (EMFI). We will report in the paper on fault-injection results as well as irradiation results.

Keywords: fault injection, SoC fail reason, SoC soft error rate, terrestrial application

Procedia PDF Downloads 219
171 New Territories: Materiality and Craft from Natural Systems to Digital Experiments

Authors: Carla Aramouny

Abstract:

Digital fabrication, between advancements in software and machinery, is pushing practice today towards more complexity in design, allowing for unparalleled explorations. It is giving designers the immediate capacity to apply their imagined objects into physical results. Yet at no time have questions of material knowledge become more relevant and crucial, as technological advancements approach a radical re-invention of the design process. As more and more designers look towards tactile crafts for material know-how, an interest in natural behaviors has also emerged trying to embed intelligence from nature into the designed objects. Concerned with enhancing their immediate environment, designers today are pushing the boundaries of design by bringing in natural systems, materiality, and advanced fabrication as essential processes to produce active designs. New Territories, a yearly architecture and design course on digital design and materiality, allows students to explore processes of digital fabrication in intersection with natural systems and hands-on experiments. This paper will highlight the importance of learning from nature and from physical materiality in a digital design process, and how the simultaneous move between the digital and physical realms has become an essential design method. It will detail the work done over the course of three years, on themes of natural systems, crafts, concrete plasticity, and active composite materials. The aim throughout the course is to explore the design of products and active systems, be it modular facades, intelligent cladding, or adaptable seating, by embedding current digital technologies with an understanding of natural systems and a physical know-how of material behavior. From this aim, three main themes of inquiry have emerged through the varied explorations across the three years, each one approaching materiality and digital technologies through a different lens. The first theme involves crossing the study of naturals systems as precedents for intelligent formal assemblies with traditional crafts methods. The students worked on designing performative facade systems, starting from the study of relevant natural systems and a specific craft, and then using parametric modeling to develop their modular facades. The second theme looks at the cross of craft and digital technologies through form-finding techniques and elastic material properties, bringing in flexible formwork into the digital fabrication process. Students explored concrete plasticity and behaviors with natural references, as they worked on the design of an exterior seating installation using lightweight concrete composites and complex casting methods. The third theme brings in bio-composite material properties with additive fabrication and environmental concerns to create performative cladding systems. Students experimented in concrete composites materials, biomaterials and clay 3D printing to produce different cladding and tiling prototypes that actively enhance their immediate environment. This paper thus will detail the work process done by the students under these three themes of inquiry, describing their material experimentation, digital and analog design methodologies, and their final results. It aims to shed light on the persisting importance of material knowledge as it intersects with advanced digital fabrication and the significance of learning from natural systems and biological properties to embed an active performance in today’s design process.

Keywords: digital fabrication, design and craft, materiality, natural systems

Procedia PDF Downloads 114
170 Screens Design and Application for Sustainable Buildings

Authors: Fida Isam Abdulhafiz

Abstract:

Traditional vernacular architecture in the United Arab Emirates constituted namely of adobe houses with a limited number of openings in their facades. The thick mud and rubble walls and wooden window screens protected its inhabitants from the harsh desert climate and provided them with privacy and fulfilled their comfort zone needs to an extent. However, with the rise of the immediate post petroleum era reinforced concrete villas with glass and steel technology has replaced traditional vernacular dwellings. And more load was put on the mechanical cooling systems to ensure the satisfaction of today’s more demanding doweling inhabitants. However, In the early 21at century professionals started to pay more attention to the carbon footprint caused by the built constructions. In addition, many studies and innovative approaches are now dedicated to lower the impact of the existing operating buildings on their surrounding environments. The UAE government agencies started to regulate that aim to revive sustainable and environmental design through Local and international building codes and urban design policies such as Estidama and LEED. The focus in this paper is on the reduction of the emissions resulting from the use of energy sources in the cooling and heating systems, and that would be through using innovative screen designs and façade solutions to provide a green footprint and aesthetic architectural icons. Screens are one of the popular innovative techniques that can be added in the design process or used in existing building as a renovation techniques to develop a passive green buildings. Preparing future architects to understand the importance of environmental design was attempted through physical modelling of window screens as an educational means to combine theory with a hands on teaching approach. Designing screens proved to be a popular technique that helped them understand the importance of sustainable design and passive cooling. After creating models of prototype screens, several tests were conducted to calculate the amount of Sun, light and wind that goes through the screens affecting the heat load and light entering the building. Theory further explored concepts of green buildings and material that produce low carbon emissions. This paper highlights the importance of hands on experience for student architects and how physical modelling helped rise eco awareness in Design studio. The paper will study different types of façade screens and shading devices developed by Architecture students and explains the production of diverse patterns for traditional screens by student architects based on sustainable design concept that works properly with the climate requirements in the Middle East region.

Keywords: building’s screens modeling, façade design, sustainable architecture, sustainable dwellings, sustainable education

Procedia PDF Downloads 281
169 Optimization of Structures with Mixed Integer Non-linear Programming (MINLP)

Authors: Stojan Kravanja, Andrej Ivanič, Tomaž Žula

Abstract:

This contribution focuses on structural optimization in civil engineering using mixed integer non-linear programming (MINLP). MINLP is characterized as a versatile method that can handle both continuous and discrete optimization variables simultaneously. Continuous variables are used to optimize parameters such as dimensions, stresses, masses, or costs, while discrete variables represent binary decisions to determine the presence or absence of structural elements within a structure while also calculating discrete materials and standard sections. The optimization process is divided into three main steps. First, a mechanical superstructure with a variety of different topology-, material- and dimensional alternatives. Next, a MINLP model is formulated to encapsulate the optimization problem. Finally, an optimal solution is searched in the direction of the defined objective function while respecting the structural constraints. The economic or mass objective function of the material and labor costs of a structure is subjected to the constraints known from structural analysis. These constraints include equations for the calculation of internal forces and deflections, as well as equations for the dimensioning of structural components (in accordance with the Eurocode standards). Given the complex, non-convex and highly non-linear nature of optimization problems in civil engineering, the Modified Outer-Approximation/Equality-Relaxation (OA/ER) algorithm is applied. This algorithm alternately solves subproblems of non-linear programming (NLP) and main problems of mixed-integer linear programming (MILP), in this way gradually refines the solution space up to the optimal solution. The NLP corresponds to the continuous optimization of parameters (with fixed topology, discrete materials and standard dimensions, all determined in the previous MILP), while the MILP involves a global approximation to the superstructure of alternatives, where a new topology, materials, standard dimensions are determined. The optimization of a convex problem is stopped when the MILP solution becomes better than the best NLP solution. Otherwise, it is terminated when the NLP solution can no longer be improved. While the OA/ER algorithm, like all other algorithms, does not guarantee global optimality due to the presence of non-convex functions, various modifications, including convexity tests, are implemented in OA/ER to mitigate these difficulties. The effectiveness of the proposed MINLP approach is demonstrated by its application to various structural optimization tasks, such as mass optimization of steel buildings, cost optimization of timber halls, composite floor systems, etc. Special optimization models have been developed for the optimization of these structures. The MINLP optimizations, facilitated by the user-friendly software package MIPSYN, provide insights into a mass or cost-optimal solutions, optimal structural topologies, optimal material and standard cross-section choices, confirming MINLP as a valuable method for the optimization of structures in civil engineering.

Keywords: MINLP, mixed-integer non-linear programming, optimization, structures

Procedia PDF Downloads 31
168 Application of Alumina-Aerogel in Post-Combustion CO₂ Capture: Optimization by Response Surface Methodology

Authors: S. Toufigh Bararpour, Davood Karami, Nader Mahinpey

Abstract:

Dependence of global economics on fossil fuels has led to a large growth in the emission of greenhouse gases (GHGs). Among the various GHGs, carbon dioxide is the main contributor to the greenhouse effect due to its huge emission amount. To mitigate the threatening effect of CO₂, carbon capture and sequestration (CCS) technologies have been studied widely in recent years. For the combustion processes, three main CO₂ capture techniques have been proposed such as post-combustion, pre-combustion and oxyfuel combustion. Post-combustion is the most commonly used CO₂ capture process as it can be readily retrofit into the existing power plants. Multiple advantages have been reported for the post-combustion by solid sorbents such as high CO₂ selectivity, high adsorption capacity, and low required regeneration energy. Chemical adsorption of CO₂ over alkali-metal-based solid sorbents such as K₂CO₃ is a promising method for the selective capture of diluted CO₂ from the huge amount of nitrogen existing in the flue gas. To improve the CO₂ capture performance, K₂CO₃ is supported by a stable and porous material. Al₂O₃ has been employed commonly as the support and enhanced the cyclic CO₂ capture efficiency of K₂CO₃. Different phases of alumina can be obtained by setting the calcination temperature of boehmite at 300, 600 (γ-alumina), 950 (δ-alumina) and 1200 °C (α-alumina). By increasing the calcination temperature, the regeneration capacity of alumina increases, while the surface area reduces. However, sorbents with lower surface areas have lower CO₂ capture capacity as well (except for the sorbents prepared by hydrophilic support materials). To resolve this issue, a highly efficient alumina-aerogel support was synthesized with a BET surface area of over 2000 m²/g and then calcined at a high temperature. The synthesized alumina-aerogel was impregnated on K₂CO₃ based on 50 wt% support/K₂CO₃, which resulted in the preparation of a sorbent with remarkable CO₂ capture performance. The effect of synthesis conditions such as types of alcohols, solvent-to-co-solvent ratios, and aging times was investigated on the performance of the support. The best support was synthesized using methanol as the solvent, after five days of aging time, and at a solvent-to-co-solvent (methanol-to-toluene) ratio (v/v) of 1/5. Response surface methodology was used to investigate the effect of operating parameters such as carbonation temperature and H₂O-to-CO₂ flowrate ratio on the CO₂ capture capacity. The maximum CO₂ capture capacity, at the optimum amounts of operating parameters, was 7.2 mmol CO₂ per gram K₂CO₃. Cyclic behavior of the sorbent was examined over 20 carbonation and regenerations cycles. The alumina-aerogel-supported K₂CO₃ showed a great performance compared to unsupported K₂CO₃ and γ-alumina-supported K₂CO₃. Fundamental performance analyses and long-term thermal and chemical stability test will be performed on the sorbent in the future. The applicability of the sorbent for a bench-scale process will be evaluated, and a corresponding process model will be established. The fundamental material knowledge and respective process development will be delivered to industrial partners for the design of a pilot-scale testing unit, thereby facilitating the industrial application of alumina-aerogel.

Keywords: alumina-aerogel, CO₂ capture, K₂CO₃, optimization

Procedia PDF Downloads 106
167 Nondestructive Monitoring of Atomic Reactions to Detect Precursors of Structural Failure

Authors: Volodymyr Rombakh

Abstract:

This article was written to substantiate the possibility of detecting the precursors of catastrophic destruction of a structure or device and stopping operation before it. Damage to solids results from breaking the bond between atoms, which requires energy. Modern theories of strength and fracture assume that such energy is due to stress. However, in a letter to W. Thomson (Lord Kelvin) dated December 18, 1856, J.C. Maxwell provided evidence that elastic energy cannot destroy solids. He proposed an equation for estimating a deformable body's energy, equal to the sum of two energies. Due to symmetrical compression, the first term does not change, but the second term is distortion without compression. Both types of energy are represented in the equation as a quadratic function of strain, but Maxwell repeatedly wrote that it is not stress but strain. Furthermore, he notes that the nature of the energy causing the distortion is unknown to him. An article devoted to theories of elasticity was published in 1850. Maxwell tried to express mechanical properties with the help of optics, which became possible only after the creation of quantum mechanics. However, Maxwell's work on elasticity is not cited in the theories of strength and fracture. The authors of these theories and their associates are still trying to describe the phenomena they observe based on classical mechanics. The study of Faraday's experiments, Maxwell's and Rutherford's ideas, made it possible to discover a previously unknown area of electromagnetic radiation. The properties of photons emitted in this reaction are fundamentally different from those of photons emitted in nuclear reactions and are caused by the transition of electrons in an atom. The photons released during all processes in the universe, including from plants and organs in natural conditions; their penetrating power in metal is millions of times greater than that of one of the gamma rays. However, they are not non-invasive. This apparent contradiction is because the chaotic motion of protons is accompanied by the chaotic radiation of photons in time and space. Such photons are not coherent. The energy of a solitary photon is insufficient to break the bond between atoms, one of the stages of which is ionization. The photographs registered the rail deformation by 113 cars, while the Gaiger Counter did not. The author's studies show that the cause of damage to a solid is the breakage of bonds between a finite number of atoms due to the stimulated emission of metastable atoms. The guarantee of the reliability of the structure is the ratio of the energy dissipation rate to the energy accumulation rate, but not the strength, which is not a physical parameter since it cannot be measured or calculated. The possibility of continuous control of this ratio is due to the spontaneous emission of photons by metastable atoms. The article presents calculation examples of the destruction of energy and photographs due to the action of photons emitted during the atomic-proton reaction.

Keywords: atomic-proton reaction, precursors of man-made disasters, strain, stress

Procedia PDF Downloads 79