Search results for: vacuum arc discharge
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1324

Search results for: vacuum arc discharge

244 Polypyrrole Integrated MnCo2O4 Nanorods Hybrid as Electrode Material for High Performance Supercapacitor

Authors: Santimoy Khilari, Debabrata Pradhan

Abstract:

Ever−increasing energy demand and growing energy crisis along with environmental issues emphasize the research on sustainable energy conversion and storage systems. Recently, supercapacitors or electrochemical capacitors emerge as a promising energy storage technology for future generation. The activity of supercapacitors generally depends on the efficiency of its electrode materials. So, the development of cost−effective efficient electrode materials for supercapacitors is one of the challenges to the scientific community. Transition metal oxides with spinel crystal structure receive much attention for different electrochemical applications in energy storage/conversion devices because of their improved performance as compared to simple oxides. In the present study, we have synthesized polypyrrole (PPy) supported manganese cobaltite nanorods (MnCo2O4 NRs) hybrid electrode material for supercapacitor application. The MnCo2O4 NRs were synthesized by a simple hydrothermal and calcination approach. The MnCo2O4 NRs/PPy hybrid was prepared by in situ impregnation of MnCo2O4 NRs during polymerization of pyrrole. The surface morphology and microstructure of as−synthesized samples was characterized by scanning electron microscopy and transmission electron microscopy, respectively. The crystallographic phase of MnCo2O4 NRs, PPy and hybrid was determined by X-ray diffraction. Electrochemical charge storage activity of MnCo2O4 NRs, PPy and MnCo2O4 NRs/PPy hybrid was evaluated from cyclic voltammetry, chronopotentiometry and electrochemical impedance spectroscopy. Significant improvement of specific capacitance was achieved in MnCo2O4 NRs/PPy hybrid as compared to the individual components. Furthermore, the mechanically mixed MnCo2O4 NRs, and PPy shows lower specific capacitance as compared to MnCo2O4 NRs/PPy hybrid suggesting the importance of in situ hybrid preparation. The stability of as prepared electrode materials was tested by cyclic charge-discharge measurement for 1000 cycles. Maximum 94% capacitance was retained with MnCo2O4 NRs/PPy hybrid electrode. This study suggests that MnCo2O4 NRs/PPy hybrid can be used as a low cost electrode material for charge storage in supercapacitors.

Keywords: supercapacitors, nanorods, spinel, MnCo2O4, polypyrrole

Procedia PDF Downloads 340
243 Variation in pH Values and Tenderness of Meat of Cattle Fed Different Levels of Lipids

Authors: Erico Da Silva Lima, Tiago Neves Pereira Valente, Roberto De Oliveira Roça

Abstract:

Introduction: Over the last few years the market has increased its demand for high quality meat. Based on this premise some producers have continuously improved their efficiency in breeding beef cattle with the purpose to support this demand. It is well recognized that final quality of beef is intimately linked to animal’s diet. The key objective of this study is to evaluate the influence of feeding animals with cottonseed and its lipids and the final results in terms of pH and shear forces of the meat. Materials and Methods: The study was carried out in the Chapéu de Couro Farm in Aguaí/SP, Brazil. A group of 39 uncastrated Nellore cattle. Mean age of the animals was 36 months and initial mean live weight was 494.1 ± 10.1. Animals were randomly assigned to one of three treatments, based on dry matter: feed with control diet 2.50% cottonseed, feed with 11.50% cottonseed, and feed with 3.13% cottonseed added of 1.77% protected lipid. Forage:concentrate ratio was 50:50 on a dry matter basis. Sugar cane chopped was used as forage. After slaughter, carcasses were identified and divided into two halves that were kept in a cold chamber for 24 h at 2°C. Using pH meter was determined post-mortem pH in Longissimus thoracis muscle between the 12th and 13th rib of the left half carcass. After, part of each animal was removed, and divided in three samples (steaks). Steaks were 2.5 cm thick and were identified and stored individually in plastic bags under vacuum. Samples were frozen in a freezer at -18°C. The same samples cooked were refrigerated by 12 h the 4°C, and then cut into cylinders 1.10 Øcm with the support of a drill press avoiding fats and nerves. Shear force was calculated in these samples cut into cylinders through the Brookfield texture CT3 Texture Analyzer 25 k equipped with a set of blade Warner-Bratzler. Results and Discussion: No differences (P > 0.05) in pH 24 h after slaughter were observed in the meat of Nellore cattle fed different sources of fat, and mean value for this variable was 5.59. However, for the shear force differences (P < 0.05) were founded. For diet with 2,50% cottonseed the lowest value found 5.10 (kg) while for the treatment with 11.50% cottonseed the great value found was 6.30 (kg). High shear force values mean greater texture of meat that indicates less tenderness. The texture of the meat can be influenced by age, weight to the slaughter of animals. For cattle breed Nellore Bos taurus indicus more high value of shear force. Conclusions: The add the cottonseed or protected lipid in diet is not affected pH values in meat. The whole cottonseed does not contribute to the improvement of tenderness of the meat. Acknowledgments: IFGoiano, FAPEG and CNPq (Brazil).

Keywords: beef quality, cottonseed, protected fat, shear force

Procedia PDF Downloads 231
242 Effect of Pulsed Electrical Field on the Mechanical Properties of Raw, Blanched and Fried Potato Strips

Authors: Maria Botero-Uribe, Melissa Fitzgerald, Robert Gilbert, Kim Bryceson, Jocelyn Midgley

Abstract:

French fry manufacturing involves a series of processes in which structural properties of potatoes are modified to produce crispy french fries which consumers enjoy. In addition to the traditional french fry manufacturing process, the industry is applying a relatively new process called pulsed electrical field (PEF) to the whole potatoes. There is a wealth of information on the technical treatment conditions of PEF, however, there is a lack of information about its effect on the structural properties that affect texture and its synergistic interactions with the other manufacturing steps of french fry production. The effect of PEF on starch gelatinisation properties of Russet Burbank potato was measured using a Differential Scanning Calorimeter. Cation content (K+, Ca2+ and Mg2+) was determined by inductively coupled plasma optical emission spectrophotometry. Firmness, and toughness of raw and blanched potatoes were determined in an uniaxial compression test. Moisture content was determined in a vacuum oven and oil content was measured using the soxhlet system with hexane. The final texture of the french fries – crispness - was determined using a three bend point test. Triangle tests were conducted to determine if consumers were able to perceive sensory differences between French fries that were PEF treated and those without treatment. The concentration of K+, Ca2+ and Mg2+ decreased significantly in the raw potatoes after the PEF treatment. The PEF treatment significantly increased modulus of elasticity, compression strain, compression force and toughness in the raw potato. The PEF-treated raw potato were firmer and stiffer, and its structure integrity held together longer, resisted higher force before fracture and stretched further than the untreated ones. The strain stress relationship exhibited by the PEF-treated raw potato could be due to an increase in the permeability of the plasmalema and tonoplasm allowing Ca2+ and Mg2+ cations to reach the cell wall and middle lamella, and be available for cross linking with the pectin molecule. The PEF-treated raw potato exhibited a slightly higher onset gelatinisation temperatures, similar peak temperatures and lower gelatinisation ranges than the untreated raw potatoes. The final moisture content of the french fries was not significantly affected by the PEF treatment. Oil content in the PEF- treated potatoes was lower than the untreated french fries, however, not statistically significant at 5 %. The PEF treatment did not have an overall significant effect on french fry crispness (modulus of elasticity), flexure stress or strain. The triangle tests show that most consumers could not detect a difference between French fries that received a PEF treatment from those that did not.

Keywords: french fries, mechanical properties, PEF, potatoes

Procedia PDF Downloads 236
241 Enhanced Poly Fluoroalkyl Substances Degradation in Complex Wastewater Using Modified Continuous Flow Nonthermal Plasma Reactor

Authors: Narasamma Nippatlapallia

Abstract:

Communities across the world are desperate to get their environment free of toxic per-poly fluoroalkyl substances (PFAS) especially when these chemicals are in aqueous media. In the present study, two different chain length PFAS (PFHxA (C6), PFDA (C10)) are selected for degradation using a modified continuous flow nonthermal plasma. The results showed 82.3% PFHxA and 94.1 PFDA degradation efficiencies, respectively. The defluorination efficiency is also evaluated which is 28% and 34% for PFHxA and PFDA, respectively. The results clearly indicates that the structure of PFAS has a great impact on degradation efficiency. The effect of flow rate is studied. increase in flow rate beyond 2 mL/min, decrease in degradation efficiency of the targeted PFAS was noticed. PFDA degradation was decreased from 85% to 42%, and PFHxA was decreased to 32% from 64% with increase in flow rate from 2 to 5 mL/min. Similarly, with increase in flow rate the percentage defluorination was decreased for both C10, and C6 compounds. This observation can be attributed to mainly because of change in residence time (contact time). Real water/wastewater is a composition of various organic, and inorganic ions that may affect the activity of oxidative species such as 𝑂𝐻. radicals on the target pollutants. Therefore, it is important to consider radicals quenching chemicals to understand the efficiency of the reactor. In gas-liquid NTP discharge reactors 𝑂𝐻. , 𝑒𝑎𝑞 − , 𝑂 . , 𝑂3, 𝐻2𝑂2, 𝐻. are often considered as reactive species for oxidation and reduction of pollutants. In this work, the role played by two distinct 𝑂 .𝐻 Scavengers, ethanol and glycerol, on PFAS percentage degradation, and defluorination efficiency (i,e., fluorine removal) are measured was studied. The addition of scavenging agents to the PFAS solution diminished the PFAS degradation to different extents depending on the target compound molecular structure. In comparison with the degradation of only PFAS solution, the addition of 1.25 M ethanol inhibited C10, and C6 degradation by 8%, and 12%, respectively. This research was supported with energy efficiency, production rate, and specific yield, fluoride, and PFAS concentration analysis with respect to optimum hydraulic retention time (HRT) of the continuous flow reactor.

Keywords: wastewater, PFAS, nonthermal plasma, mineralization, defluorination

Procedia PDF Downloads 31
240 The Characteristics of Withhold Resuscitation in Out-Of-Hospital Cardiac Arrest

Authors: An-Yi Wang, Wei-Fong Kao, Shin-Han Tsai

Abstract:

Introduction: Information as patient characteristics, resuscitation scene, resuscitation provider perspectives and families wish affects on resuscitation decision-making for out-of-hospital cardiac arrest (OHCA). There is no consistency consensus on how families and emergency physicians approach this decision. The main purpose of our study is to evaluate the characteristics of withholding resuscitation efforts arrival at the hospital. Methods: We retrospectively analyzed patients with OHCA without pre-hospital return-of-spontaneous circulation (ROSC) who was sent to our emergency department (ED) between January 2014 and December 2015. Baseline characteristics, pre-hospital course, and causes of the cardiopulmonary arrest among patients were compared. Results: In 2 years, total 155 arrest patients without pre-hospital ROSC was included. 33(21.3%) patients withhold the resuscitation efforts in ED with mean resuscitation duration 4.45 ± 7.04 minutes after ED arrival. In withholding group, the initial rhythm of arrests was all non-shockable. 9 of them received endotracheal intubation before decision-making. None of the patients in withhold resuscitation group survived to discharge. There was no significant difference among gender, underlying cardiovascular disease, malignancy, chronic renal disease, nor witness collapse between withhold and continue resuscitation groups. Univariate analysis showed there was lower percentage of bystander resuscitation (32.3% vs. 50.4%, p=0.071), and the lower percentage of transport via emergency medical service (EMS) (78.8% vs. 91.8%, p=0.054) in withholding group. Multivariate analysis showed old age (adjusted odds ratio=1.06, 95% C.I.=[1.02-1.11], p<0.05), with underlying respiratory insufficiency (adjusted odds ratio=12.16, 95% C.I.=[3.34-44.29], p<0.05), living at home compared with nursing home (adjusted odds ratio=37.75, 95% C.I.=[1.09-1110.70], p<0.05) were more likely to withhold resuscitation. Transport via EMS was more likely to continue resuscitation (adjusted odds ratio=0.11, 95% C.I.=[0.02-0.71], p<0.05). Conclusion: The decision-making for families and emergency physicians to withhold or continue resuscitation for out-of-hospital cardiac arrest is complex and multi-factorial. Continue resuscitation efforts in nursing home residents is high, and further study among this population is warranted.

Keywords: cardiopulmonary resuscitation, out-of-hospital cardiac arrest, termination resuscitation, withhold resuscitation

Procedia PDF Downloads 255
239 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration

Procedia PDF Downloads 166
238 Offline Parameter Identification and State-of-Charge Estimation for Healthy and Aged Electric Vehicle Batteries Based on the Combined Model

Authors: Xiaowei Zhang, Min Xu, Saeid Habibi, Fengjun Yan, Ryan Ahmed

Abstract:

Recently, Electric Vehicles (EVs) have received extensive consideration since they offer a more sustainable and greener transportation alternative compared to fossil-fuel propelled vehicles. Lithium-Ion (Li-ion) batteries are increasingly being deployed in EVs because of their high energy density, high cell-level voltage, and low rate of self-discharge. Since Li-ion batteries represent the most expensive component in the EV powertrain, accurate monitoring and control strategies must be executed to ensure their prolonged lifespan. The Battery Management System (BMS) has to accurately estimate parameters such as the battery State-of-Charge (SOC), State-of-Health (SOH), and Remaining Useful Life (RUL). In order for the BMS to estimate these parameters, an accurate and control-oriented battery model has to work collaboratively with a robust state and parameter estimation strategy. Since battery physical parameters, such as the internal resistance and diffusion coefficient change depending on the battery state-of-life (SOL), the BMS has to be adaptive to accommodate for this change. In this paper, an extensive battery aging study has been conducted over 12-months period on 5.4 Ah, 3.7 V Lithium polymer cells. Instead of using fixed charging/discharging aging cycles at fixed C-rate, a set of real-world driving scenarios have been used to age the cells. The test has been interrupted every 5% capacity degradation by a set of reference performance tests to assess the battery degradation and track model parameters. As battery ages, the combined model parameters are optimized and tracked in an offline mode over the entire batteries lifespan. Based on the optimized model, a state and parameter estimation strategy based on the Extended Kalman Filter (EKF) and the relatively new Smooth Variable Structure Filter (SVSF) have been applied to estimate the SOC at various states of life.

Keywords: lithium-ion batteries, genetic algorithm optimization, battery aging test, parameter identification

Procedia PDF Downloads 268
237 Producing Sustained Renewable Energy and Removing Organic Pollutants from Distillery Wastewater using Consortium of Sludge Microbes

Authors: Anubha Kaushik, Raman Preet

Abstract:

Distillery wastewater in the form of spent wash is a complex and strong industrial effluent, with high load of organic pollutants that may deplete dissolved oxygen on being discharged into aquatic systems and contaminate groundwater by leaching of pollutants, while untreated spent wash disposed on land acidifies the soil. Stringent legislative measures have therefore been framed in different countries for discharge standards of distillery effluent. Utilising the organic pollutants present in various types of wastes as food by mixed microbial populations is emerging as an eco-friendly approach in the recent years, in which complex organic matter is converted into simpler forms, and simultaneously useful gases are produced as renewable and clean energy sources. In the present study, wastewater from a rice bran based distillery has been used as the substrate in a dark fermenter, and native microbial consortium from the digester sludge has been used as the inoculum to treat the wastewater and produce hydrogen. After optimising the operational conditions in batch reactors, sequential batch mode and continuous flow stirred tank reactors were used to study the best operational conditions for enhanced and sustained hydrogen production and removal of pollutants. Since the rate of hydrogen production by the microbial consortium during dark fermentation is influenced by concentration of organic matter, pH and temperature, these operational conditions were optimised in batch mode studies. Maximum hydrogen production rate (347.87ml/L/d) was attained in 32h dark fermentation while a good proportion of COD also got removed from the wastewater. Slightly acidic initial pH seemed to favor biohydrogen production. In continuous stirred tank reactor, high H2 production from distillery wastewater was obtained from a relatively shorter substrate retention time (SRT) of 48h and a moderate organic loading rate (OLR) of 172 g/l/d COD.

Keywords: distillery wastewater, hydrogen, microbial consortium, organic pollution, sludge

Procedia PDF Downloads 278
236 Development of Solid Electrolytes Based on Networked Cellulose

Authors: Boor Singh Lalia, Yarjan Abdul Samad, Raed Hashaikeh

Abstract:

Three different kinds of solid polymer electrolytes were prepared using polyethylene oxide (PEO) as a base polymer, networked cellulose (NC) as a physical support and LiClO4 as a conductive salt for the electrolytes. Networked cellulose, a modified form of cellulose, is a biodegradable and environmentally friendly additive which provides a strong fibrous networked support for structural stability of the electrolytes. Although the PEO/NC/LiClO4 electrolyte retains its structural integrity and mechanical properties at 100oC as compared to pristine PEO-based polymer electrolytes, it suffers from poor ionic conductivity. To improve the room temperature conductivity of the electrolyte, PEO is replaced by the polyethylene glycol (PEG) which is a liquid phase that provides high mobility for Li+ ions transport in the electrolyte. PEG/NC/LiClO4 shows improvement in ionic conductivity compared to PEO/NC/LiClO4 at room temperature, but it is brittle and tends to form cracks during processing. An advanced solid polymer electrolyte with optimum ionic conductivity and mechanical properties is developed by using a ternary system: TEGDME/PEO/NC+LiClO4. At room temperature, this electrolyte exhibits an ionic conductivity to the order of 10-5 S/cm, which is very high compared to that of the PEO/LiClO4 electrolyte. Pristine PEO electrolytes start melting at 65 °C and completely lose its mechanical strength. Dynamic mechanical analysis of TEGDME: PEO: NC (70:20:10 wt%) showed an improvement of storage modulus as compared to the pristine PEO in the 60–120 °C temperature range. Also, with an addition of NC, the electrolyte retains its mechanical integrity at 100 oC which is beneficial for Li-ion battery operation at high temperatures. Differential scanning calorimetry (DSC) and thermal gravimetry analysis (TGA) studies revealed that the ternary polymer electrolyte is thermally stable in the lithium ion battery operational temperature range. As-prepared polymer electrolyte was used to assemble LiFePO4/ TEGDME/PEO/NC+LiClO4/Li half cells and their electrochemical performance was studied via cyclic voltammetry and charge-discharge cycling.

Keywords: solid polymer electrolyte, ionic conductivity, mechanical properties, lithium ion batteries, cyclic voltammetry

Procedia PDF Downloads 430
235 Risk Analysis of Flood Physical Vulnerability in Residential Areas of Mathare Nairobi, Kenya

Authors: James Kinyua Gitonga, Toshio Fujimi

Abstract:

Vulnerability assessment and analysis is essential to solving the degree of damage and loss as a result of natural disasters. Urban flooding causes a major economic loss and casualties, at Mathare residential area in Nairobi, Kenya. High population caused by rural-urban migration, Unemployment, and unplanned urban development are among factors that increase flood vulnerability in Mathare area. This study aims to analyse flood risk physical vulnerabilities in Mathare based on scientific data, research data that includes the Rainfall data, River Mathare discharge rate data, Water runoff data, field survey data and questionnaire survey through sampling of the study area have been used to develop the risk curves. Three structural types of building were identified in the study area, vulnerability and risk curves were made for these three structural types by plotting the relationship between flood depth and damage for each structural type. The results indicate that the structural type with mud wall and mud floor is the most vulnerable building to flooding while the structural type with stone walls and concrete floor is least vulnerable. The vulnerability of building contents is mainly determined by the number of floors, where households with two floors are least vulnerable, and households with a one floor are most vulnerable. Therefore more than 80% of the residential buildings including the property in the building are highly vulnerable to floods consequently exposed to high risk. When estimating the potential casualties/injuries we discovered that the structural types of houses were major determinants where the mud/adobe structural type had casualties of 83.7% while the Masonry structural type had casualties of 10.71% of the people living in these houses. This research concludes that flood awareness, warnings and observing the building codes will enable reduce damage to the structural types of building, deaths and reduce damage to the building contents.

Keywords: flood loss, Mathare Nairobi, risk curve analysis, vulnerability

Procedia PDF Downloads 239
234 Narrative Identity Predicts Borderline Personality Disorder Features in Inpatient Adolescents up to Six Months after Admission

Authors: Majse Lind, Carla Sharp, Salome Vanwoerden

Abstract:

Narrative identity is the dynamic and evolving story individuals create about their personal pasts, presents, and presumed futures. This storied sense of self develops in adolescence and is crucial for fostering a sense of self-unity and purpose in life. A growing body of work has shown that several characteristics of narrative identity are disturbed in adults suffering from borderline personality disorder (BPD). Very little research, however, has explored the stories told by adolescents with BPD features. Investigating narrative identity early in the lifespan and in relation to personality pathology is crucial; BPD is a developmental disorder with early signs appearing already in adolescence. In the current study, we examine narrative identity (focusing on themes of agency and communion) coded from self-defining memories derived from the child attachment interview in 174 inpatient adolescents (M = 15.12, SD = 1.52) at the time of admission. The adolescents’ social cognition was further assessed on the basis of their reactions to movie scenes (i.e., the MASC movie task). They also completed a trauma checklist and self-reported BPD features at three different time points (i.e., at admission, at discharge, and 6 months after admission). Preliminary results show that adolescents who told stories containing themes of agency and communion evinced better social cognition, and lower emotional abuse on the trauma checklist. In addition, adolescents who disclosed stories containing lower levels of agency and communion demonstrated more BPD symptoms at all three time points, even when controlling for the occurrence of traumatic life events. Surprisingly, social cognitive abilities were not significantly associated with BPD features. These preliminary results underscore the importance of narrative identity as an indicator, and potential cause, of incipient personality pathology. Thus, focusing on diminished themes of narrative-based agency and communion in early adolescence could be crucial in preventing the development of personality pathology over time.

Keywords: borderline personality disorder, inpatient adolescents, narrative identity, follow-ups

Procedia PDF Downloads 157
233 The Effects of Climate Change and Upstream Dam Development on Sediment Distribution in the Vietnamese Mekong Delta

Authors: Trieu Anh Ngoc, Nguyen Quang Kim

Abstract:

Located at the downstream of the Mekong Delta, the Vietnamese Mekong Delta is well-known as 'rice bowl' of Vietnam. The Vietnamese Mekong Delta experiences widespread flooding annually where is habitat for about 17 million people. The economy of this region mainly depends on the agricultural productivities. The suspended sediment load in the Mekong River plays an important role in carrying contaminants and nutrients to the delta and changing the geomorphology of the delta river system. In many past decades, flooding and suspended sediment were considered as indispensable factors in agricultural cultivations. Although flooding in the wet season caused serious inundation in paddy field and affected livelihoods, it is an effective facility for flushing acid and saline to this area - alluvial soil heavily contaminated with acid and salt intrusion. In addition, sediment delivery to this delta contained rich-nutrients distributed and deposited on the fields through flooding process. In recent decades, the changing of flow and sediment transport have been strongly and clearly occurring due to upstream dam development and climate change. However, effects of sediment delivery on agricultural cultivations were less attention. This study investigated the impacts of upstream flow on sediment distribution in the Vietnamese Mekong Delta. Flow fluctuation and sediment distribution were simulated by the Mike 11 model, including hydrodynamics model and advection-dispersion model. Various scenarios were simulated based on anticipated upstream discharges. Our findings indicated that sediment delivery into the Vietnamese Mekong Delta come from not only Tien River but also border of Cambodia floodplains. Sediment distribution in the Vietnamese Mekong Delta is dramatically changed by the distance from the main rivers and the secondary channels. The dam development in the upstream is one of the major factors leading a decrease in sediment discharge as well as sediment deposition. Moreover, sea level rise partially contributed to decrease in sediment transport and change of sediment distribution between upstream and downstream of the Vietnamese Mekong Delta.

Keywords: sediment transport, sea level rise, climate change, Mike Model

Procedia PDF Downloads 276
232 Impure Water, a Future Disaster: A Case Study of Lahore Ground Water Quality with GIS Techniques

Authors: Rana Waqar Aslam, Urooj Saeed, Hammad Mehmood, Hameed Ullah, Imtiaz Younas

Abstract:

This research has been conducted to assess the water quality in and around Lahore Metropolitan area on the basis of three different land uses, i.e. residential, commercial, and industrial land uses. For this, 29 sample sites have been selected on the basis of simple random sampling technique. Samples were collected at the source (WASA tube wells). The criteria for selecting sample sites are to have a maximum concentration of population in the selected land uses. The results showed that in the residential land use the proportion of nitrate and turbidity is at their highest level in the areas of Allama Iqbal Town and Samanabad Town. Commercial land use of Gulberg and Data Gunj Bakhsh Town have highest level of proportion of chlorides, calcium, TDS, pH, Mg, total hardness, arsenic and alkalinity. Whereas in industrial type of land use in Ravi and Wahga Town have the proportion of arsenic, Mg, nitrate, pH, and turbidity are at their highest level. The high rate of concentration of these parameters in these areas is basically due to the old and fractured pipelines that allow bacterial as well as physiochemical contaminants to contaminate the portable water at the sources. Furthermore, it is seen in most areas that waste water from domestic, industrial, as well as municipal sources may get easy discharge into open spaces and water bodies, like, cannels, rivers, lakes that seeps and become a part of ground water. In addition, huge dumps located in Lahore are becoming the cause of ground water contamination as when the rain falls, the water gets seep into the ground and impures the ground water quality. On the basis of the derived results with the help of Geo-spatial technology ACRGIS 9.3 Interpolation (IDW), it is recommended that water filtration plants must be installed with specific parameter control. A separate team for proper inspection has to be made for water quality check at the source. Old water pipelines must be replaced with the new pipelines, and safe water depth must be ensured at the source end.

Keywords: GIS, remote sensing, pH, nitrate, disaster, IDW

Procedia PDF Downloads 225
231 Mauriac Syndrome: A Rare Complicacation With an Easy Solution

Authors: Pablo Cid Galache, Laura Zamorano Bonilla

Abstract:

Mauriac syndrome (MS) is a rare complication of type 1 diabetes mellitus (DM1). It is rela-ted to low insulin concentrations. Therefore is a complication mainly found in developing countries. The main clinical features are hepatomegaly, edema, growth and puberty delay, and the presence of elevated transaminases and serum lipids. The MS incidence is de-creasing due to the new types of insulin and intensive glycemic control. Therefore is a rare diagnosis in Europe nowadays, being described mainly in developing countries or with so-cioeconomic limitations to guarantee an adequate management of diabetes. Edema secondary to fluid retention is a rare complication of insulin treatment, especially in young patients. Its severity is variable and is mainly related to the start of a proper treatment and the improvement in glycemic control after diagnosis or after periods of poor metabolic control. Edema resolves spontaneously without requiring treatment in most cases. The Pediatric Endocrinology Unit of Hospital Motril could diagnose a 14-year-old girl who presented very poor metabolic control during the last 3 years as a consequence of the socioeconomic conditions of the country of origin during the last years. Presents up to 4 admissions for ketoacidosis during the last 12 months. After the family moved to Spain our patient began to be followed up in our Hospital. Initially presented glycated hemoglobin figures of 11%. One week after the start of treatment, the patient was admitted in the emergency room due to the appearance of generalized edema and pain in the limbs. The main laboratory abnormalities include: blood glucose 225mg/dl; HbA1C 10.8% triglycerides 543 mg/dl, total cholesterol 339 mg/dl (LDL 225) GOT 124 U/l, GPT 89U/l. Abdominal ultrasound shows mild hepatomegaly and no signs of ascites were shown. The patient presented a progressive improvement with resolution of the edema and analitical abnormalities during the next two weeks. During admission, the family received diabetes education, achieving adequate glycemic control at discharge. Nowadays the patient has a good glycemic control having glycated hemoglobin levels around 7%.

Keywords: Mauriac, diabetes, complication, developing countries

Procedia PDF Downloads 55
230 Understanding Everyday Insecurities Emerging from Fragmented Territorial Control in Post-Accord Colombia

Authors: Clara Voyvodic

Abstract:

Transitions from conflict to peace are by no means smooth nor linear, particularly from the perspective of those living through them. Over the last few decades, the changing focus in peacebuilding studies has come to appreciate the everyday experience of communities and how that provides a lens through which the relative success or efficacy of these transitions can be understood. In particular, the demobilization of a significant conflict actor is not without consequences, not just for the macro-view of state stabilization and peace, but for the communities who find themselves without a clear authority of territorial control. In Colombia, the demobilization and disarmament of the FARC guerilla group provided a brief respite to the conflict and a major political win for President Manuel Santos. However, this victory has proven short-lived. Drawing from extensive field research in Colombia within the last year, including interviews with local communities and actors operating in these regions, field observations, and other primary resources, this paper examines the post-accord transitions in Colombia and the everyday security experiences of local communities in regions formerly controlled by the FARC. In order to do so, the research focused on a semi-ethnographic approach in the northern region of the department of Antioquia and the coastal area of the border department of Nariño that documented how individuals within these marginalized communities have come to understand and negotiate their security in the years following the accord and the demobilization of the FARC. This presentation will argue that the removal of the FARC as an informal governance actor opened a space for multiple actors to attempt to control the same territory, including the state. This shift has had a clear impact on the everyday security experiences of the local communities. With an exploration of the dynamics of local governance and its impact on lived security experiences, this research seeks to demonstrate how distinct patterns of armed group behavior are emerging not only from a vacuum of control left by the FARC but from an increase in state presence that nonetheless remains inconsistent and unpersuasive as a monopoly of force in the region. The increased multiplicity of actors, particularly the state, has meant that the normal (informal) rules for communities to navigate these territories are no longer in play as the identities, actions, and intentions of different competing groups have become frustratingly opaque. This research provides a prescient analysis on how the shifting dynamics of territorial control in a post-peace accord landscape produce uncertain realities that affect the daily lives of the local communities and endanger the long-term prospect of human-centered security.

Keywords: armed actors, conflict transitions, informal governance, post-accord, security experiences

Procedia PDF Downloads 132
229 The Effect of Metal-Organic Framework Pore Size to Hydrogen Generation of Ammonia Borane via Nanoconfinement

Authors: Jing-Yang Chung, Chi-Wei Liao, Jing Li, Bor Kae Chang, Cheng-Yu Wang

Abstract:

Chemical hydride ammonia borane (AB, NH3BH3) draws attentions to hydrogen energy researches for its high theoretical gravimetrical capacity (19.6 wt%). Nevertheless, the elevated AB decomposition temperatures (Td) and unwanted byproducts are main hurdles in practical application. It was reported that the byproducts and Td can be reduced with nanoconfinement technique, in which AB molecules are confined in porous materials, such as porous carbon, zeolite, metal-organic frameworks (MOFs), etc. Although nanoconfinement empirically shows effectiveness on hydrogen generation temperature reduction in AB, the theoretical mechanism is debatable. Low Td was reported in AB@IRMOF-1 (Zn4O(BDC)3, BDC = benzenedicarboxylate), where Zn atoms form closed metal clusters secondary building unit (SBU) with no exposed active sites. Other than nanosized hydride, it was also observed that catalyst addition facilitates AB decomposition in the composite of Li-catalyzed carbon CMK-3, MOF JUC-32-Y with exposed Y3+, etc. It is believed that nanosized AB is critical for lowering Td, while active sites eliminate byproducts. Nonetheless, some researchers claimed that it is the catalytic sites that are the critical factor to reduce Td, instead of the hydride size. The group physically ground AB with ZIF-8 (zeolitic imidazolate frameworks, (Zn(2-methylimidazolate)2)), and found similar reduced Td phenomenon, even though AB molecules were not ‘confined’ or forming nanoparticles by physical hand grinding. It shows the catalytic reaction, not nanoconfinement, leads to AB dehydrogenation promotion. In this research, we explored the possible criteria of hydrogen production temperature from nanoconfined AB in MOFs with different pore sizes and active sites. MOFs with metal SBU such as Zn (IRMOF), Zr (UiO), and Al (MIL-53), accompanying with various organic ligands (BDC and BPDC; BPDC = biphenyldicarboxylate) were modified with AB. Excess MOFs were used for AB size constrained in micropores estimated by revisiting Horvath-Kawazoe model. AB dissolved in methanol was added to MOFs crystalline with MOF pore volume to AB ratio 4:1, and the slurry was dried under vacuum to collect AB@MOF powders. With TPD-MS (temperature programmed desorption with mass spectroscopy), we observed Td was reduced with smaller MOF pores. For example, it was reduced from 100°C to 64°C when MOF micropore ~1 nm, while ~90°C with pore size up to 5 nm. The behavior of Td as a function of AB crystalline radius obeys thermodynamics when the Gibbs free energy of AB decomposition is zero, and no obvious correlation with metal type was observed. In conclusion, we discovered Td of AB is proportional to the reciprocal of MOF pore size, possibly stronger than the effect of active sites.

Keywords: ammonia borane, chemical hydride, metal-organic framework, nanoconfinement

Procedia PDF Downloads 187
228 Three-Dimensional Carbon Foam Based Asymmetric Assembly of Metal Oxides Electrodes for High-Performance Solid-State Micro-Supercapacitor

Authors: Sumana Kumar, Abha Misra

Abstract:

Micro-supercapacitors hold great attention as one of the promising energy storage devices satisfying the increasing quest for miniaturized and portable devices. Despite having impressive power density, superior cyclic lifetime, and high charge-discharge rates, micro-supercapacitors still suffer from low energy density, which limits their practical application. The energy density (E=1/2CV²) can be increased either by increasing specific capacitance (C) or voltage range (V). Asymmetric micro-supercapacitors have attracted great attention by using two different electrode materials to expand the voltage window and thus increase the energy density. Currently, versatile fabrication technologies such as inkjet printing, lithography, laser scribing, etc., are used to directly or indirectly pattern the electrode material; these techniques still suffer from scalable production and cost inefficiency. Here, we demonstrate the scalable production of a three-dimensional (3D) carbon foam (CF) based asymmetric micro-supercapacitor by spray printing technique on an array of interdigital electrodes. The solid-state asymmetric micro-supercapacitor comprised of CF-MnO positive electrode and CF-Fe₂O₃ negative electrode achieves a high areal capacitance of 18.4 mF/cm² (2326.8 mF/cm³) at 5 mV/s and a wider potential window of 1.4 V. Consequently, a superior energy density of 5 µWh/cm² is obtained, and high cyclic stability is confirmed with retention of the initial capacitance by 86.1% after 10000 electrochemical cycles. The optimized decoration of pseudocapacitive metal oxides in the 3D carbon network helps in high electrochemical utilization of materials where the 3D interconnected network of carbon provides overall electrical conductivity and structural integrity. The research provides a simple and scalable spray printing method to fabricate an asymmetric micro-supercapacitor using a custom-made mask that can be integrated on a large scale.

Keywords: asymmetric micro-supercapacitors, high energy-density, hybrid materials, three-dimensional carbon-foam

Procedia PDF Downloads 115
227 Assessing the Mass Concentration of Microplastics and Nanoplastics in Wastewater Treatment Plants by Pyrolysis Gas Chromatography−Mass Spectrometry

Authors: Yanghui Xu, Qin Ou, Xintu Wang, Feng Hou, Peng Li, Jan Peter van der Hoek, Gang Liu

Abstract:

The level and removal of microplastics (MPs) in wastewater treatment plants (WWTPs) has been well evaluated by the particle number, while the mass concentration of MPs and especially nanoplastics (NPs) remains unclear. In this study, microfiltration, ultrafiltration and hydrogen peroxide digestion were used to extract MPs and NPs with different size ranges (0.01−1, 1−50, and 50−1000 μm) across the whole treatment schemes in two WWTPs. By identifying specific pyrolysis products, pyrolysis gas chromatography−mass spectrometry were used to quantify their mass concentrations of selected six types of polymers (i.e., polymethyl methacrylate (PMMA), polypropylene (PP), polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), and polyamide (PA)). The mass concentrations of total MPs and NPs decreased from 26.23 and 11.28 μg/L in the influent to 1.75 and 0.71 μg/L in the effluent, with removal rates of 93.3 and 93.7% in plants A and B, respectively. Among them, PP, PET and PE were the dominant polymer types in wastewater, while PMMA, PS and PA only accounted for a small part. The mass concentrations of NPs (0.01−1 μm) were much lower than those of MPs (>1 μm), accounting for 12.0−17.9 and 5.6− 19.5% of the total MPs and NPs, respectively. Notably, the removal efficiency differed with the polymer type and size range. The low-density MPs (e.g., PP and PE) had lower removal efficiency than high-density PET in both plants. Since particles with smaller size could pass the tertiary sand filter or membrane filter more easily, the removal efficiency of NPs was lower than that of MPs with larger particle size. Based on annual wastewater effluent discharge, it is estimated that about 0.321 and 0.052 tons of MPs and NPs were released into the river each year. Overall, this study investigated the mass concentration of MPs and NPs with a wide size range of 0.01−1000 μm in wastewater, which provided valuable information regarding the pollution level and distribution characteristics of MPs, especially NPs, in WWTPs. However, there are limitations and uncertainties in the current study, especially regarding the sample collection and MP/NP detection. The used plastic items (e.g., sampling buckets, ultrafiltration membranes, centrifugal tubes, and pipette tips) may introduce potential contamination. Additionally, the proposed method caused loss of MPs, especially NPs, which can lead to underestimation of MPs/NPs. Further studies are recommended to address these challenges about MPs/NPs in wastewater.

Keywords: microplastics, nanoplastics, mass concentration, WWTPs, Py-GC/MS

Procedia PDF Downloads 282
226 Adsorptive Removal of Methylene Blue Dye from Aqueous Solutions by Leaf and Stem Biochar Derived from Lantana camara: Adsorption Kinetics, Equilibrium, Thermodynamics and Possible Mechanism

Authors: Deepa Kundu, Prabhakar Sharma, Sayan Bhattacharya, Jianying Shang

Abstract:

The discharge of dye-containing effluents in the water bodies has raised concern due to the potential hazards related to their toxicity in the environment. There are various treatment technologies available for the removal of dyes from wastewaters. The use of biosorbent to remove dyes from wastewater is one of the effective and inexpensive techniques. In the study, the adsorption of phenothiazine dye methylene blue onto biosorbent prepared from Lantana camara L. has been studied in aqueous solutions. The batch adsorption experiments were conducted and the effects of various parameters such as pH (3-12), contact time, adsorbent dose (100-400 mg/L), initial dye concentration (5-20 mg/L), and temperature (303, 313 and 323 K) were investigated. The prepared leaf (BCL600) and shoot (BCS600) biochar of Lantana were characterized using FTIR, SEM, elemental analysis, and zeta potential (pH~7). A comparison between the adsorption potential of both the biosorbent was also evaluated. The results indicated that the amount of methylene blue dye (mg/g) adsorbed onto the surface of biochar was highly dependent on the pH of the dye solutions as it increased with an increase in pH from 3 to 12. It was observed that the dye treated with BCS600 and BCL600 attained an equilibrium within 60 and 100 minutes, respectively. The rate of the adsorption process was determined by performing the Lagergren pseudo-first-order and pseudo-second-order kinetics. It was found that dye treated with both BCS600 and BCL600 followed pseudo-second-order kinetics implying the multi-step nature of the adsorption process involving external adsorption and diffusion of dye molecules into the interior of the adsorbents. The data obtained from batch experiments were fitted well with Langmuir and Freundlich isotherms (R² > 0.98) to indicate the multilayer adsorption of dye over the biochar surfaces. The thermodynamic studies revealed that the adsorption process is favourable, spontaneous, and endothermic in nature. Based on the results, the inexpensive and easily available Lantana camara biomass can be used to remove methylene blue dye from wastewater. It can also help in managing the growth of the notorious weed in the environment.

Keywords: adsorption kinetics, biochar, Lantana camara, methylene blue dye, possible mechanism, thermodynamics

Procedia PDF Downloads 140
225 Molecular Characterization of Listeria monocytogenes from Fresh Fish and Fish Products

Authors: Beata Lachtara, Renata Szewczyk, Katarzyna Bielinska, Kinga Wieczorek, Jacek Osek

Abstract:

Listeria monocytogenes is an important human and animal pathogen that causes foodborne outbreaks. The bacteria may be present in different types of food: cheese, raw vegetables, sliced meat products and vacuum-packed sausages, poultry, meat, fish. The most common method, which has been used for the investigation of genetic diversity of L. monocytogenes, is PFGE. This technique is reliable and reproducible and established as gold standard for typing of L. monocytogenes. The aim of the study was characterization by molecular serotyping and PFGE analysis of L. monocytogenes strains isolated from fresh fish and fish products in Poland. A total of 301 samples, including fresh fish (n = 129) and fish products (n = 172) were, collected between January 2014 and March 2016. The bacteria were detected using the ISO 11290-1 standard method. Molecular serotyping was performed with PCR. The isolates were tested with the PFGE method according to the protocol developed by the European Union Reference Laboratory for L. monocytogenes with some modifications. Based on the PFGE profiles, two dendrograms were generated for strains digested separately with two restriction enzymes: AscI and ApaI. Analysis of the fingerprint profiles was performed using Bionumerics software version 6.6 (Applied Maths, Belgium). The 95% of similarity was applied to differentiate the PFGE pulsotypes. The study revealed that 57 of 301 (18.9%) samples were positive for L. monocytogenes. The bacteria were identified in 29 (50.9%) ready-to-eat fish products and in 28 (49.1%) fresh fish. It was found that 40 (70.2%) strains were of serotype 1/2a, 14 (24.6%) 1/2b, two (4.3%) 4b and one (1.8%) 1/2c. Serotypes 1/2a, 1/2b, and 4b were presented with the same frequency in both categories of food, whereas serotype 1/2c was detected only in fresh fish. The PFGE analysis with AscI demonstrated 43 different pulsotypes; among them 33 (76.7%) were represented by only one strain. The remaining 10 profiles contained more than one isolate. Among them 8 pulsotypes comprised of two L. monocytogenes isolates, one profile of three isolates and one restriction type of 5 strains. In case of ApaI typing, the PFGE analysis showed 27 different pulsotypes including 17 (63.0%) types represented by only one strain. Ten (37.0%) clusters contained more than one strain among which four profiles covered two strains; three had three isolates, one with five strains, one with eight strains and one with ten isolates. It was observed that the isolates assigned to the same PFGE type were usually of the same serotype (1/2a or 1/2b). The majority of the clusters had strains of both sources (fresh fish and fish products) isolated at different time. Most of the strains grouped in one cluster of the AscI restriction was assigned to the same groups in ApaI investigation. In conclusion, PFGE used in the study showed a high genetic diversity among L. monocytogenes. The strains were grouped into varied clonal clusters, which may suggest different sources of contamination. The results demonstrated that 1/2a serotype was the most common among isolates from fresh fish and fish products in Poland.

Keywords: Listeria monocytogenes, molecular characteristic, PFGE, serotyping

Procedia PDF Downloads 290
224 Remediation of Dye Contaminated Wastewater Using N, Pd Co-Doped TiO₂ Photocatalyst Derived from Polyamidoamine Dendrimer G1 as Template

Authors: Sarre Nzaba, Bulelwa Ntsendwana, Bekkie Mamba, Alex Kuvarega

Abstract:

The discharge of azo dyes such as Brilliant black (BB) into the water bodies has carcinogenic and mutagenic effects on humankind and the ecosystem. Conventional water treatment techniques fail to degrade these dyes completely thereby posing more problems. Advanced oxidation processes (AOPs) are promising technologies in solving the problem. Anatase type nitrogen-platinum (N, Pt) co-doped TiO₂ photocatalysts were prepared by a modified sol-gel method using amine terminated polyamidoamine generation 1 (PG1) as a template and source of nitrogen. The resultant photocatalysts were characterized by X‐ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X‐ray photoelectron spectroscopy (XPS), UV‐Vis diffuse reflectance spectroscopy, photoluminescence spectroscopy (PL), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy (RS), thermal gravimetric analysis (TGA). The results showed that the calcination atmosphere played an important role in the morphology, crystal structure, spectral absorption, oxygen vacancy concentration, and visible light photocatalytic performance of the catalysts. Anatase phase particles ranging between 9- 20 nm were also confirmed by TEM, SEM, and analysis. The origin of the visible light photocatalytic activity was attributed to both the elemental N and Pd dopants and the existence of oxygen vacancies. Co-doping imparted a shift in the visible region of the solar spectrum. The visible light photocatalytic activity of the samples was investigated by monitoring the photocatalytic degradation of brilliant black dye. Co-doped TiO₂ showed greater photocatalytic brilliant black degradation efficiency compared to singly doped N-TiO₂ or Pd-TiO₂ under visible light irradiation. The highest reaction rate constant of 3.132 x 10-2 min⁻¹ was observed for N, Pd co-doped TiO₂ (2% Pd). The results demonstrated that the N, Pd co-doped TiO₂ (2% Pd) sample could completely degrade the dye in 3 h, while the commercial TiO₂ showed the lowest dye degradation efficiency (52.66%).

Keywords: brilliant black, Co-doped TiO₂, polyamidoamine generation 1 (PAMAM G1), photodegradation

Procedia PDF Downloads 179
223 Laparoscopic Uterovaginal Anastomosis in Cervicovaginal Agenesis

Authors: Anamika Choudhary, Neha Qurrat Ain

Abstract:

Background: Congenital agenesis of uterine cervix is a rare anomaly often associated with partial or complete agenesis of vagina. Here is a case report of a 14 year old girl who presented with primary amenorrhea and cyclical abdominal pain since last one year with suprapubic mass palpable. On examination complete absence of a vagina was found, and ultrasound along with magnetic resonance imaging (MRI) suggested cervicovaginal agenesis associated with cryptomenorrhea, which resulted in hematometra and b/l hematosalpinx with pelvic endometriosis. After proper counseling regarding anastomosis failure and the need for future laprotomy or hysterectomy, the patient planned for laparoscopic uterovaginal anastomosis with modified McIndoe vaginoplasty with split skin graft. Case Summary: Chief complaint: The 14 year old girl presented with primary amenorrhea and cyclical abdominal pain. Diagnosis:On history, examination and investigations we made differential diagnoses of cervicovaginal agenesis, cervicovaginal atresia. Post operatively, we concluded it’s a cervicovaginal agenesis. Intervention: Laparoscopic uterovaginal anastomosis was done, and neovagina was created using split skin graft from the thigh and silicone stent. The graft was kept patent, and restenosis was prevented using a dental mould as vaginal dilator. Outcome: Postoperatively 1 year follow-up has been done. We have observed successful uterovaginal anastomosis and good uptake of graft. We also observed the resumption of normal menstrual bleeding. Currently, there has been no restenosis, abnormal vaginal discharge and decreased dysmenorrhea. Conclusion: Laparoscopic-assisted uterovaginal anastomosis can be the treatment of choice in patients with cervical agenesis and atresia instead of hysterectomy, thereby preserving the reproductive function. This conservative approach has better outcomes, as stated in the procedure below. The procedure is successful insofar as the resumption of menstrual function. However, long-term reproductive outcomes, progression of endometriosis, functioning of fallopian tubes, and sexual life in these girls will require further follow-up.

Keywords: cervicovaginal agenesis, uterovaginal anastomosis, dental mould, silicon stent

Procedia PDF Downloads 26
222 Flow Duration Curves and Recession Curves Connection through a Mathematical Link

Authors: Elena Carcano, Mirzi Betasolo

Abstract:

This study helps Public Water Bureaus in giving reliable answers to water concession requests. Rapidly increasing water requests can be supported provided that further uses of a river course are not totally compromised, and environmental features are protected as well. Strictly speaking, a water concession can be considered a continuous drawing from the source and causes a mean annual streamflow reduction. Therefore, deciding if a water concession is appropriate or inappropriate seems to be easily solved by comparing the generic demand to the mean annual streamflow value at disposal. Still, the immediate shortcoming for such a comparison is that streamflow data are information available only for few catchments and, most often, limited to specific sites. Subsequently, comparing the generic water demand to mean daily discharge is indeed far from being completely satisfactory since the mean daily streamflow is greater than the water withdrawal for a long period of a year. Consequently, such a comparison appears to be of little significance in order to preserve the quality and the quantity of the river. In order to overcome such a limit, this study aims to complete the information provided by flow duration curves introducing a link between Flow Duration Curves (FDCs) and recession curves and aims to show the chronological sequence of flows with a particular focus on low flow data. The analysis is carried out on 25 catchments located in North-Eastern Italy for which daily data are provided. The results identify groups of catchments as hydrologically homogeneous, having the lower part of the FDCs (corresponding streamflow interval is streamflow Q between 300 and 335, namely: Q(300), Q(335)) smoothly reproduced by a common recession curve. In conclusion, the results are useful to provide more reliable answers to water request, especially for those catchments which show similar hydrological response and can be used for a focused regionalization approach on low flow data. A mathematical link between streamflow duration curves and recession curves is herein provided, thus furnishing streamflow duration curves information upon a temporal sequence of data. In such a way, by introducing assumptions on recession curves, the chronological sequence upon low flow data can also be attributed to FDCs, which are known to lack this information by nature.

Keywords: chronological sequence of discharges, recession curves, streamflow duration curves, water concession

Procedia PDF Downloads 189
221 The Re-Emergence of Russia Foreign Policy (Case Study: Middle East)

Authors: Maryam Azish

Abstract:

Russia, as an emerging global player in recent years, has projected a special place in the Middle East. Despite all the challenges it has faced over the years, it has always considered its presence in various fields with a strategy that has defined its maneuvering power as a level of competition and even confrontation with the United States. Therefore, its current approach is considered important as an influential actor in the Middle East. After the collapse of the Soviet Union, when the Russians withdrew completely from the Middle East, the American scene remained almost unrivaled by the Americans. With the start of the US-led war in Iraq and Afghanistan and the subsequent developments that led to the US military and political defeat, a new chapter in regional security was created in which ISIL and Taliban terrorism went along with the Arab Spring to destabilize the Middle East. Because of this, the Americans took every opportunity to strengthen their military presence. Iraq, Syria and Afghanistan have always been the three areas where terrorism was shaped, and the countries of the region have each reacted to this evil phenomenon accordingly. The West dealt with this phenomenon on a case-by-case basis in the general circumstances that created the fluid situation in the Arab countries and the region. Russian President Vladimir Putin accused the US of falling asleep in the face of ISIS and terrorism in Syria. In fact, this was an opportunity for the Russians to revive their presence in Syria. This article suggests that utilizing the recognition policy along with the constructivism theory will offer a better knowledge of Russia’s endeavors to endorse its international position. Accordingly, Russia’s distinctiveness and its ambitions for a situation of great power have played a vital role in shaping national interests and, subsequently, in foreign policy, in Putin's era in particular. The focal claim of the paper is that scrutinize Russia’s foreign policy with realistic methods cannot be attained. Consequently, with an aim to fill the prevailing vacuum, this study exploits the politics of acknowledgment in the context of constructivism to examine Russia’s foreign policy in the Middle East. The results of this paper show that the key aim of Russian foreign policy discourse, accompanied by increasing power and wealth, is to recognize and reinstate the position of great power in the universal system. The Syrian crisis has created an opportunity for Russia to unite its position in the developing global and regional order after ages of dynamic and prevalent existence in the Middle East as well as contradicting US unilateralism. In the meantime, the writer thinks that the question of identifying Russia’s position in the global system by the West has played a foremost role in serving its national interests.

Keywords: constructivism, foreign Policy, middle East, Russia, regionalism

Procedia PDF Downloads 152
220 Mitigation of Lithium-ion Battery Thermal Runaway Propagation Through the Use of Phase Change Materials Containing Expanded Graphite

Authors: Jayson Cheyne, David Butler, Iain Bomphray

Abstract:

In recent years, lithium-ion batteries have been used increasingly for electric vehicles and large energy storage systems due to their high-power density and long lifespan. Despite this, thermal runaway remains a significant safety problem because of its uncontrollable and irreversible nature - which can lead to fires and explosions. In large-scale lithium-ion packs and modules, thermal runaway propagation between cells can escalate fire hazards and cause significant damage. Thus, safety measures are required to mitigate thermal runaway propagation. The current research explores composite phase change materials (PCM) containing expanded graphite (EG) for thermal runaway mitigation. PCMs are an area of significant interest for battery thermal management due to their ability to absorb substantial quantities of heat during phase change. Moreover, the introduction of EG can support heat transfer from the cells to the PCM (owing to its high thermal conductivity) and provide shape stability to the PCM during phase change. During the research, a thermal model was established for an array of 16 cylindrical cells to simulate heat dissipation with and without the composite PCM. Two conditions were modeled, including the behavior during charge/discharge cycles (i.e., throughout regular operation) and thermal runaway. Furthermore, parameters including cell spacing, composite PCM thickness, and EG weight percentage (WT%) were varied to establish the optimal material parameters for enabling thermal runaway mitigation and effective thermal management. Although numerical modeling is still ongoing, initial findings suggest that a 3mm PCM containing 15WT% EG can effectively suppress thermal runaway propagation while maintaining shape stability. The next step in the research is to validate the model through controlled experimental tests. Additionally, with the perceived fire safety concerns relating to PCM materials, fire safety tests, including UL-94 and Limiting Oxygen Index (LOI), shall be conducted to explore the flammability risk.

Keywords: battery safety, electric vehicles, phase change materials, thermal management, thermal runaway

Procedia PDF Downloads 145
219 Peculiarities of Microflora of Odontogenic Inflammatory Processes in the Central Kazakhstan Region

Authors: Aliya Tokbergenova, Maida Tusupbekova, Daulet Dzhangaliyev, Alena Lavrinenko

Abstract:

Background: Odontogenic phlegmons are ranked the first among pyoinflammatory processes in the frequency of hospitalization in maxillofacial surgery in the post-Soviet countries. The main role in etiology is played by obligate anaerobes and aerobes. According to numerous data, the structure of aerobic pathogens is dominated by staphylococci and gram-negative bacteria. Aim: The research aim is to study the microflora of the purulent discharge odontogenic inflammatory processes. Materials and methods: A total of 220 patients have been examined, of which 120 patients aged 25-59 years have been included in the research who did not have comorbidity hospitalized in the maxillofacial hospital in Karaganda (Kazakhstan) from January 2016 to July 2017. The bacteriological research has been carried out on the basis of the multiaccess laboratory of the KSMU, through the Matrix Assisted Laser Desorption/Ionization (MALDI) apparatus. The material sample was pus from the inflammation focus, taken during the operating period. Results: According to the research among 120 patients (100%), 15 patients (12.5%) have had microorganisms not grown. From 105 (87.5%) bacteriological results, it has been revealed the following 1) Streptococcus: 51 (42.5%): Streptococcus beta-haemolytic: 17 (14.2%), Streptococcus pneumoniae: 12 (10%), Streptococcus anginosus: 8 (6.6%), Streptococcus oralis: 8 (6.6%), Streptococcus constellatus: 6 (5.0%); 2) Staphylococci: 27 (22.5%): Staphylococci aureus: 14 (11.7%) and Staphylococci epidermidis: 13 (10.8%); 3) Pseudomonas aeruginosa: 12 (10%); 4) Neisseria: 11 (9.1%): Neisseria mucosa: 5 (4.1%) and Neisseria macacae: 6 (5.0%); 5) Klebsiella pneumoniae: 2 (1.7%); 6) Stenotrophomonas maltophilia: 2 (1.7%). 15 patients (12.5%) experienced complications in the form of 1) The dissemination of the process in 10 patients (8.4%). 2) Osteomyelitis in 3 (2.5%). 3) Mediastinitis in 1 (0.8%). 4) Sinusitis in 1 (0.8%). 15 patients (100%) were carried out repeated bacteriological examination, the following was revealed: 1) Streptococcus: 10 (66.7%): Streptococcus beta-haemolytic: 4 (26.7%), Streptococcus pneumoniae: 2 (13.3%), Streptococcus аnginosus: 2 (13.3%), Streptococcus oralis: 1 (6.7%), Streptococcus constellatus: 1 (6.7%); 2) Staphylococci: 4 (26.7%): Staphylococci aureus: 3 (20%) and Staphylococci epidermidis: 1 (6.7%); 3) Pseudomonas aeruginosa: 1 (6.7%). Conclusions: Thus, according to our research data, streptococci predominate in the odontogenic processes microflora in aerobic flora in the central Kazakhstan region, which refutes the leading role of staphylococci in the development of odontogenic inflammatory processes, thus creating prerequisites for studying new treatment approaches.

Keywords: maxillofacial surgery, microflora, odontogenic phlegmons, pyo-inflammatory

Procedia PDF Downloads 195
218 Fabrication of Highly Conductive Graphene/ITO Transparent Bi-Film through Chemical Vapor Deposition (CVD) and Organic Additives-Free Sol-Gel Techniques

Authors: Bastian Waduge Naveen Harindu Hemasiri, Jae-Kwan Kim, Ji-Myon Lee

Abstract:

Indium tin oxide (ITO) remains the industrial standard transparent conducting oxides with better performances. Recently, graphene becomes as a strong material with unique properties to replace the ITO. However, graphene/ITO hybrid composite material is a newly born field in the electronic world. In this study, the graphene/ITO composite bi-film was synthesized by a two steps process. 10 wt.% tin-doped, ITO thin films were produced by an environmentally friendly aqueous sol-gel spin coating technique with economical salts of In(NO3)3.H2O and SnCl4 without using organic additives. The wettability and surface free energy (97.6986 mJ/m2) enhanced oxygen plasma treated glass substrates were used to form voids free continuous ITO film. The spin-coated samples were annealed at 600 0C for 1 hour under low vacuum conditions to obtained crystallized, ITO film. The crystal structure and crystalline phases of ITO thin films were analyzed by X-ray diffraction (XRD) technique. The Scherrer equation was used to determine the crystallite size. Detailed information about chemical composition and elemental composition of the ITO film were determined by X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX) coupled with FE-SEM respectively. Graphene synthesis was done under chemical vapor deposition (CVD) method by using Cu foil at 1000 0C for 1 min. The quality of the synthesized graphene was characterized by Raman spectroscopy (532nm excitation laser beam) and data was collected at room temperature and normal atmosphere. The surface and cross-sectional observation were done by using FE-SEM. The optical transmission and sheet resistance were measured by UV-Vis spectroscopy and four point probe head at room temperature respectively. Electrical properties were also measured by using V-I characteristics. XRD patterns reveal that the films contain the In2O3 phase only and exhibit the polycrystalline nature of the cubic structure with the main peak of (222) plane. The peak positions of In3d5/2 (444.28 eV) and Sn3d5/2 (486.7 eV) in XPS results indicated that indium and tin are in the oxide form only. The UV-visible transmittance shows 91.35 % at 550 nm with 5.88 x 10-3 Ωcm specific resistance. The G and 2D band in Raman spectroscopy of graphene appear at 1582.52 cm-1 and 2690.54 cm-1 respectively when the synthesized CVD graphene on SiO2/Si. The determined intensity ratios of 2D to G (I2D/IG) and D to G (ID/IG) were 1.531 and 0.108 respectively. However, the above-mentioned G and 2D peaks appear at 1573.57 cm-1 and 2668.14 cm-1 respectively when the CVD graphene on the ITO coated glass, the positions of G and 2D peaks were red shifted by 8.948 cm-1 and 22.396 cm-1 respectively. This graphene/ITO bi-film shows modified electrical properties when compares with sol-gel derived ITO film. The reduction of sheet resistance in the bi-film was 12.03 % from the ITO film. Further, the fabricated graphene/ITO bi-film shows 88.66 % transmittance at 550 nm wavelength.

Keywords: chemical vapor deposition, graphene, ITO, Raman Spectroscopy, sol-gel

Procedia PDF Downloads 260
217 The Analysis of Drill Bit Optimization by the Application of New Electric Impulse Technology in Shallow Water Absheron Peninsula

Authors: Ayshan Gurbanova

Abstract:

Despite based on the fact that drill bit which is the smallest part of bottom hole assembly costs only in between 10% and 15% of the total expenses made, they are the first equipment that is in contact with the formation itself. Hence, it is consequential to choose the appropriate type and dimension of drilling bit, which will prevent majority of problems by not demanding many tripping procedure. However, within the advance in technology, it is now seamless to be beneficial in the terms of many concepts such as subsequent time of operation, energy, expenditure, power and so forth. With the intention of applying the method to Azerbaijan, the field of Shallow Water Absheron Peninsula has been suggested, where the mainland has been located 15 km away from the wildcat wells, named as “NKX01”. It has the water depth of 22 m as indicated. In 2015 and 2016, the seismic survey analysis of 2D and 3D have been conducted in contract area as well as onshore shallow water depth locations. With the aim of indicating clear elucidation, soil stability, possible submersible dangerous scenarios, geohazards and bathymetry surveys have been carried out as well. Within the seismic analysis results, the exact location of exploration wells have been determined and along with this, the correct measurement decisions have been made to divide the land into three productive zones. In the term of the method, Electric Impulse Technology (EIT) is based on discharge energies of electricity within the corrosivity in rock. Take it simply, the highest value of voltages could be created in the less range of nano time, where it is sent to the rock through electrodes’ baring as demonstrated below. These electrodes- higher voltage powered and grounded are placed on the formation which could be obscured in liquid. With the design, it is more seamless to drill horizontal well based on the advantage of loose contact of formation. There is also no chance of worn ability as there are no combustion, mechanical power exist. In the case of energy, the usage of conventional drilling accounts for 1000 𝐽/𝑐𝑚3 , where this value accounts for between 100 and 200 𝐽/𝑐𝑚3 in EIT. Last but not the least, from the test analysis, it has been yielded that it achieves the value of ROP more than 2 𝑚/ℎ𝑟 throughout 15 days. Taking everything into consideration, it is such a fact that with the comparison of data analysis, this method is highly applicable to the fields of Azerbaijan.

Keywords: drilling, drill bit cost, efficiency, cost

Procedia PDF Downloads 74
216 Investigation of Xanthomonas euvesicatoria on Seed Germination and Seed to Seedling Transmission in Tomato

Authors: H. Mayton, X. Yan, A. G. Taylor

Abstract:

Infested tomato seeds were used to investigate the influence of Xanthomonas euvesicatoria on germination and seed to seedling transmission in a controlled environment and greenhouse assays in an effort to develop effective seed treatments and characterize seed borne transmission of bacterial leaf spot of tomato. Bacterial leaf spot of tomato, caused by four distinct Xanthomonas species, X. euvesicatoria, X. gardneri, X. perforans, and X. vesicatoria, is a serious disease worldwide. In the United States, disease prevention is expensive for commercial growers in warm, humid regions of the country, and crop losses can be devastating. In this study, four different infested tomato seed lots were extracted from tomato fruits infected with bacterial leaf spot from a field in New York State in 2017 that had been inoculated with X. euvesicatoria. In addition, vacuum infiltration at 61 kilopascals for 1, 5, 10, and 15 minutes and seed soaking for 5, 10, 15, and 30 minutes with different bacterial concentrations were used to artificially infest seed in the laboratory. For controlled environment assays, infested tomato seeds from the field and laboratory were placed othe n moistened blue blotter in square plastic boxes (10 cm x 10 cm) and incubated at 20/30 ˚C with an 8/16 hour light cycle, respectively. Infested tomato seeds from the field and laboratory were also planted in small plastic trays in soil (peat-lite medium) and placed in the greenhouse with 24/18 ˚C day and night temperatures, respectively, with a 14-hour photoperiod. Seed germination was assessed after eight days in the laboratory and 14 days in the greenhouse. Polymerase chain reaction (PCR) using the hrpB7 primers (RST65 [5’- GTCGTCGTTACGGCAAGGTGGTG-3’] and RST69 [5’-TCGCCCAGCGTCATCAGGCCATC-3’]) was performed to confirm presence or absence of the bacterial pathogen in seed lots collected from the field and in germinating seedlings in all experiments. For infested seed lots from the field, germination was lowest (84%) in the seed lot with the highest level of bacterial infestation (55%) and ranged from 84-98%. No adverse effect on germination was observed from artificially infested seeds for any bacterial concentration and method of infiltration when compared to a non-infested control. Germination in laboratory assays for artificially infested seeds ranged from 82-100%. In controlled environment assays, 2.5 % were PCR positive for the pathogen, and in the greenhouse assays, no infected seedlings were detected. From these experiments, X. euvesicatoria does not appear to adversely influence germination. The lowest rate of germination from field collected seed may be due to contamination with multiple pathogens and saprophytic organisms as no effect of artificial bacterial seed infestation in the laboratory on germination was observed. No evidence of systemic movement from seed to seedling was observed in the greenhouse assays; however, in the controlled environment assays, some seedlings were PCR positive. Additional experiments are underway with green fluorescent protein-expressing isolates to further characterize seed to seedling transmission of the bacterial leaf spot pathogen in tomato.

Keywords: bacterial leaf spot, seed germination, tomato, Xanthomonas euvesicatoria

Procedia PDF Downloads 135
215 Comparison of Microstructure, Mechanical Properties and Residual Stresses in Laser and Electron Beam Welded Ti–5Al–2.5Sn Titanium Alloy

Authors: M. N. Baig, F. N. Khan, M. Junaid

Abstract:

Titanium alloys are widely employed in aerospace, medical, chemical, and marine applications. These alloys offer many advantages such as low specific weight, high strength to weight ratio, excellent corrosion resistance, high melting point and good fatigue behavior. These attractive properties make titanium alloys very unique and therefore they require special attention in all areas of processing, especially welding. In this work, 1.6 mm thick sheets of Ti-5Al-2,5Sn, an alpha titanium (α-Ti) alloy, were welded using electron beam (EBW) and laser beam (LBW) welding processes to achieve a full penetration Bead-on Plate (BoP) configuration. The weldments were studied using polarized optical microscope, SEM, EDS and XRD. Microhardness distribution across the weld zone and smooth and notch tensile strengths of the weldments were also recorded. Residual stresses using Hole-drill Strain Measurement (HDSM) method and deformation patterns of the weldments were measured for the purpose of comparison of the two welding processes. Fusion zone widths of both EBW and LBW weldments were found to be approximately equivalent owing to fairly similar high power densities of both the processes. Relatively less oxide content and consequently high joint quality were achieved in EBW weldment as compared to LBW due to vacuum environment and absence of any shielding gas. However, an increase in heat-affected zone width and partial ά-martensitic transformation infusion zone of EBW weldment were observed because of lesser cooling rates associated with EBW as compared with LBW. The microstructure infusion zone of EBW weldment comprised both acicular α and ά martensite within the prior β grains whereas complete ά martensitic transformation was observed within the fusion zone of LBW weldment. Hardness of the fusion zone in EBW weldment was found to be lower than the fusion zone of LBW weldment due to the observed microstructural differences. Notch tensile specimen of LBW exhibited higher load capacity, ductility, and absorbed energy as compared with EBW specimen due to the presence of high strength ά martensitic phase. It was observed that the sheet deformation and deformation angle in EBW weldment were more than LBW weldment due to relatively more heat retention in EBW which led to more thermal strains and hence higher deformations and deformation angle. The lowest residual stresses were found in LBW weldments which were tensile in nature. This was owing to high power density and higher cooling rates associated with LBW process. EBW weldment exhibited highest compressive residual stresses due to which the service life of EBW weldment is expected to improve.

Keywords: Laser and electron beam welding, Microstructure and mechanical properties, Residual stress and distortions, Titanium alloys

Procedia PDF Downloads 229