Search results for: rhythm patterns
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3013

Search results for: rhythm patterns

1933 Arabic Light Stemmer for Better Search Accuracy

Authors: Sahar Khedr, Dina Sayed, Ayman Hanafy

Abstract:

Arabic is one of the most ancient and critical languages in the world. It has over than 250 million Arabic native speakers and more than twenty countries having Arabic as one of its official languages. In the past decade, we have witnessed a rapid evolution in smart devices, social network and technology sector which led to the need to provide tools and libraries that properly tackle the Arabic language in different domains. Stemming is one of the most crucial linguistic fundamentals. It is used in many applications especially in information extraction and text mining fields. The motivation behind this work is to enhance the Arabic light stemmer to serve the data mining industry and leverage it in an open source community. The presented implementation works on enhancing the Arabic light stemmer by utilizing and enhancing an algorithm that provides an extension for a new set of rules and patterns accompanied by adjusted procedure. This study has proven a significant enhancement for better search accuracy with an average 10% improvement in comparison with previous works.

Keywords: Arabic data mining, Arabic Information extraction, Arabic Light stemmer, Arabic stemmer

Procedia PDF Downloads 311
1932 Reading and Writing Memories in Artificial and Human Reasoning

Authors: Ian O'Loughlin

Abstract:

Memory networks aim to integrate some of the recent successes in machine learning with a dynamic memory base that can be updated and deployed in artificial reasoning tasks. These models involve training networks to identify, update, and operate over stored elements in a large memory array in order, for example, to ably perform question and answer tasks parsing real-world and simulated discourses. This family of approaches still faces numerous challenges: the performance of these network models in simulated domains remains considerably better than in open, real-world domains, wide-context cues remain elusive in parsing words and sentences, and even moderately complex sentence structures remain problematic. This innovation, employing an array of stored and updatable ‘memory’ elements over which the system operates as it parses text input and develops responses to questions, is a compelling one for at least two reasons: first, it addresses one of the difficulties that standard machine learning techniques face, by providing a way to store a large bank of facts, offering a way forward for the kinds of long-term reasoning that, for example, recurrent neural networks trained on a corpus have difficulty performing. Second, the addition of a stored long-term memory component in artificial reasoning seems psychologically plausible; human reasoning appears replete with invocations of long-term memory, and the stored but dynamic elements in the arrays of memory networks are deeply reminiscent of the way that human memory is readily and often characterized. However, this apparent psychological plausibility is belied by a recent turn in the study of human memory in cognitive science. In recent years, the very notion that there is a stored element which enables remembering, however dynamic or reconstructive it may be, has come under deep suspicion. In the wake of constructive memory studies, amnesia and impairment studies, and studies of implicit memory—as well as following considerations from the cognitive neuroscience of memory and conceptual analyses from the philosophy of mind and cognitive science—researchers are now rejecting storage and retrieval, even in principle, and instead seeking and developing models of human memory wherein plasticity and dynamics are the rule rather than the exception. In these models, storage is entirely avoided by modeling memory using a recurrent neural network designed to fit a preconceived energy function that attains zero values only for desired memory patterns, so that these patterns are the sole stable equilibrium points in the attractor network. So although the array of long-term memory elements in memory networks seem psychologically appropriate for reasoning systems, they may actually be incurring difficulties that are theoretically analogous to those that older, storage-based models of human memory have demonstrated. The kind of emergent stability found in the attractor network models more closely fits our best understanding of human long-term memory than do the memory network arrays, despite appearances to the contrary.

Keywords: artificial reasoning, human memory, machine learning, neural networks

Procedia PDF Downloads 272
1931 Genetic Divergence of Life History Traits in Indian Populations of Drosophila bipectinata

Authors: Manvender Singh

Abstract:

Temperature is one of the most important climatic parameter for explaining the geographic distribution of ectothermic species. Empirical investigations on norms of the reaction according to developmental temperatures are helpful in analyzing the adapture capacity of a species which may be related to its ecological niche. In the present investigation, we have compared the effects of developmental temperatures on fecundity, hatchability, viability, and duration of development in five natural populations of Drosophila bipectinata along the latitudinal range. The clinal patterns for fecundity, as well as ovariole number, were observed which showed significant positive correlation (r=0.97). Similarly, hatchability and duration of development also revealed a positive correlation with latitude. Hence, suggesting the role of natural selection in maintaining the genetic divergence for life history traits along the north-south transect of the Indian Subcontinent.

Keywords: growth temperature, fecundity, hatchability, viability, duration of development, Drosophila

Procedia PDF Downloads 244
1930 Induction Machine Design Method for Aerospace Starter/Generator Applications and Parametric FE Analysis

Authors: Wang Shuai, Su Rong, K. J.Tseng, V. Viswanathan, S. Ramakrishna

Abstract:

The More-Electric-Aircraft concept in aircraft industry levies an increasing demand on the embedded starter/generators (ESG). The high-speed and high-temperature environment within an engine poses great challenges to the operation of such machines. In view of such challenges, squirrel cage induction machines (SCIM) have shown advantages due to its simple rotor structure, absence of temperature-sensitive components as well as low torque ripples etc. The tight operation constraints arising from typical ESG applications together with the detailed operation principles of SCIMs have been exploited to derive the mathematical interpretation of the ESG-SCIM design process. The resultant non-linear mathematical treatment yielded unique solution to the SCIM design problem for each configuration of pole pair number p, slots/pole/phase q and conductors/slot zq, easily implemented via loop patterns. It was also found that not all configurations led to feasible solutions and corresponding observations have been elaborated. The developed mathematical procedures also proved an effective framework for optimization among electromagnetic, thermal and mechanical aspects by allocating corresponding degree-of-freedom variables. Detailed 3D FEM analysis has been conducted to validate the resultant machine performance against design specifications. To obtain higher power ratings, electrical machines often have to increase the slot areas for accommodating more windings. Since the available space for embedding such machines inside an engine is usually short in length, axial air gap arrangement appears more appealing compared to its radial gap counterpart. The aforementioned approach has been adopted in case studies of designing series of AFIMs and RFIMs respectively with increasing power ratings. Following observations have been obtained. Under the strict rotor diameter limitation AFIM extended axially for the increased slot areas while RFIM expanded radially with the same axial length. Beyond certain power ratings AFIM led to long cylinder geometry while RFIM topology resulted in the desired short disk shape. Besides the different dimension growth patterns, AFIMs and RFIMs also exhibited dissimilar performance degradations regarding power factor, torque ripples as well as rated slip along with increased power ratings. Parametric response curves were plotted to better illustrate the above influences from increased power ratings. The case studies may provide a basic guideline that could assist potential users in making decisions between AFIM and RFIM for relevant applications.

Keywords: axial flux induction machine, electrical starter/generator, finite element analysis, squirrel cage induction machine

Procedia PDF Downloads 457
1929 Redefining Solar Generation Estimation: A Comprehensive Analysis of Real Utility Advanced Metering Infrastructure (AMI) Data from Various Projects in New York

Authors: Haowei Lu, Anaya Aaron

Abstract:

Understanding historical solar generation and forecasting future solar generation from interconnected Distributed Energy Resources (DER) is crucial for utility planning and interconnection studies. The existing methodology, which relies on solar radiation, weather data, and common inverter models, is becoming less accurate. Rapid advancements in DER technologies have resulted in more diverse project sites, deviating from common patterns due to various factors such as DC/AC ratio, solar panel performance, tilt angle, and the presence of DC-coupled battery energy storage systems. In this paper, the authors review 10,000 DER projects within the system and analyze the Advanced Metering Infrastructure (AMI) data for various types to demonstrate the impact of different parameters. An updated methodology is proposed for redefining historical and future solar generation in distribution feeders.

Keywords: photovoltaic system, solar energy, fluctuations, energy storage, uncertainty

Procedia PDF Downloads 35
1928 Math and Religion in Arvo Pärt's Out of the Depths

Authors: Ismael Lins Patriota

Abstract:

Arvo Pärt is an Estonian composer who started his musical career under the influence of twelve-tone music and dodecaphonism. From 1968 to 1976, he isolated himself to search for a new path as a composer. In this period, he converted to Russian orthodoxy and changed his composing to tintinnabuli, a musical technique combining triadic chords with simple melodies. The recent analysis of Pärt’s output demonstrates that mathematics remained an influence after the invention of tintinnabuli. The present discussion deals with the relationship between math and religion in his work Out of the Depths (1980), proposing a musical-text approach and examining the minimum elements of the piece, such as motives and sub-phrases, which is the main focus of this work, considering text patterns and the role of the organ, which also uses the tintinnabuli system. The analysis of these elements demonstrates that Pärt uses math as a formal element, and the composer combines musical parameters to execute a personal and innovative interpretation of the text.

Keywords: Arvo Pärt, Out of the Depths, math, religion, analysis

Procedia PDF Downloads 84
1927 Presenting a Job Scheduling Algorithm Based on Learning Automata in Computational Grid

Authors: Roshanak Khodabakhsh Jolfaei, Javad Akbari Torkestani

Abstract:

As a cooperative environment for problem-solving, it is necessary that grids develop efficient job scheduling patterns with regard to their goals, domains and structure. Since the Grid environments facilitate distributed calculations, job scheduling appears in the form of a critical problem for the management of Grid sources that influences severely on the efficiency for the whole Grid environment. Due to the existence of some specifications such as sources dynamicity and conditions of the network in Grid, some algorithm should be presented to be adjustable and scalable with increasing the network growth. For this purpose, in this paper a job scheduling algorithm has been presented on the basis of learning automata in computational Grid which the performance of its results were compared with FPSO algorithm (Fuzzy Particle Swarm Optimization algorithm) and GJS algorithm (Grid Job Scheduling algorithm). The obtained numerical results indicated the superiority of suggested algorithm in comparison with FPSO and GJS. In addition, the obtained results classified FPSO and GJS in the second and third position respectively after the mentioned algorithm.

Keywords: computational grid, job scheduling, learning automata, dynamic scheduling

Procedia PDF Downloads 344
1926 The Quality Health Services and Patient Satisfaction in Hospital

Authors: Nadia Fatima Zahra Malki

Abstract:

Quality is one of the most important modern management patterns that organizations seek to achieve in all areas and sectors in order to meet the needs and desires of customers and to remain and continuity, as they constitute a competitive advantage for the organization. and among the most prominent organizations that must be available on the quality factor are health organizations as they relate to the most valuable component of production. It is a person, and his health, and any error in it threatens his life and may lead to death, so she must provide health services of high quality to achieve the highest degree of satisfaction for the patient. This research aims to study the quality of health services and the extent of their impact on patient satisfaction, and this is through an applied study that relied on measuring the level of quality of health services in the university hospital center of Algeria and the extent of their impact on patient satisfaction according to the dimensions of the quality of health services, and we reached a conclusion that the determinants of the quality of health services It affects patient satisfaction, which necessitates developing health services according to patients' requirements and improving their quality to obtain patient satisfaction.

Keywords: health service, health quality, quality determinants, patient satisfaction

Procedia PDF Downloads 64
1925 The Association between Attachment Styles, Satisfaction of Life, Alexithymia, and Psychological Resilience: The Mediational Role of Self-Esteem

Authors: Zahide Tepeli Temiz, Itir Tari Comert

Abstract:

Attachment patterns based on early emotional interactions between infant and primary caregiver continue to be influential in adult life, in terms of mental health and behaviors of individuals. Several studies reveal that infant-caregiver relationships have impressed the affect regulation, coping with stressful and negative situations, general satisfaction of life, and self image in adulthood, besides the attachment styles. The present study aims to examine the relationships between university students’ attachment style and their self-esteem, alexithymic features, satisfaction of life, and level of resilience. In line with this aim, the hypothesis of the prediction of attachment styles (anxious and avoidant) over life satisfaction, self-esteem, alexithymia, and psychological resilience was tested. Additionally, in this study Structural Equational Modeling was conducted to investigate the mediational role of self-esteem in the relationship between attachment styles and alexithymia, life satisfaction, and resilience. This model was examined with path analysis. The sample of the research consists of 425 university students who take education from several region of Turkey. The participants who sign the informed consent completed the Demographic Information Form, Experiences in Close Relationships-Revised, Rosenberg Self-Esteem Scale, The Satisfaction with Life Scale, Toronto Alexithymia Scale, and Resilience Scale for Adults. According to results, anxious, and avoidant dimensions of insecure attachment predicted the self-esteem score and alexithymia in positive direction. On the other hand, these dimensions of attachment predicted life satisfaction in negative direction. The results of linear regression analysis indicated that anxious and avoidant attachment styles didn’t predict the resilience. This result doesn’t support the theory and research indicating the relationship between attachment style and psychological resilience. The results of path analysis revealed the mediational role self esteem in the relation between anxious, and avoidant attachment styles and life satisfaction. In addition, SEM analysis indicated the indirect effect of attachment styles over alexithymia and resilience besides their direct effect. These findings support the hypothesis of this research relation to mediating role of self-esteem. Attachment theorists suggest that early attachment experiences, including supportive and responsive family interactions, have an effect on resilience to harmful situations in adult life, ability to identify, describe, and regulate emotions and also general satisfaction with life. Several studies examining the relationship between attachment styles and life satisfaction, alexithymia, and psychological resilience draw attention to mediational role of self-esteem. Results of this study support the theory of attachment patterns with the mediation of self-image influence the emotional, cognitive, and behavioral regulation of person throughout the adulthood. Therefore, it is thought that any intervention intended for recovery in attachment relationship will increase the self-esteem, life satisfaction, and resilience level, on the one side, decrease the alexithymic features, on the other side.

Keywords: alexithymia, anxious attachment, avoidant attachment, life satisfaction, path analysis, resilience, self-esteem, structural equation

Procedia PDF Downloads 196
1924 Fisheries Education in Karnataka: Trends, Current Status, Performance and Prospects

Authors: A. Vinay, Mary Josephine, Shreesha. S. Rao, Dhande Kranthi Kumar, J. Nandini

Abstract:

This paper looks at the development of Fisheries education in Karnataka and the supply of skilled human capital to the sector. The study tries to analyse their job occupancy patterns, Compound Growth Rate (CGR) and forecasts the fisheries graduates supply using the Holt method. In Karnataka, fisheries are one of the neglected allied sectors of agriculture in spite of having enormous scope and potential to contribute to the State's agriculture GDP. The State Government has been negligent in absorbing skilled human capital for the development of fisheries, as there are so many vacant positions in both education institutes, as well as the State fisheries department. CGR and forecasting of fisheries graduates shows a positive growth rate and increasing trend, from which we can understand that by proper utilization of skilled human capital can bring development in the fisheries sector of Karnataka.

Keywords: compound growth rate, fisheries education, holt method, skilled human capital

Procedia PDF Downloads 267
1923 Changing Faces of the Authoritarian Reflex and Islamist Actors in the Maghreb and Mashreq after Arab Uprisings

Authors: Nur Köprülü

Abstract:

One of the main questions that have arisen after the Arab uprisings has centered on whether they will lead to democratic transition and what the roles of Islamist actors will be. It has become apparent today that one of the key outcomes has been the partial, if not total, overthrow of authoritarian regimes in some cases. So, this article aims to analyse three synchronous upshots brought about by the uprisings, referring to patterns of state formation in the Maghreb and Mashreq. One of the main outcomes has been the persistence of authoritarianism in various forms, and the fragility of the Arab republics coping with the protests as compared to the more resilient character of the monarchies. In addition, none of the uprisings has brought an Islamist organization to incontestable power, as some predicted. However, ‘old’ Islamist actors have since re-emerged as key players, namely the Muslim Brotherhood in Tunisia, Egypt, Jordan and elsewhere. Thus, to understand the synthesis of change and continuity in the Middle East in the aftermath of the Arab Spring, analysing the changing faces of authoritarianism in the region and the impact on Islamists in both the Maghreb and the Mashreq is imperative.

Keywords: authoritarianism, democratization, Arab spring, Islamists

Procedia PDF Downloads 222
1922 An Analysis into Global Suicide Trends and Their Relation to Current Events Through a Socio-Cultural Lens

Authors: Lyndsey Kim

Abstract:

We utilized country-level data on suicide rates from 1985 through 2015 provided by the WHO to explore global trends as well as country-specific trends. First, we find that up until 1995, there was an increase in suicide rates globally, followed by a steep decline in deaths. This observation is largely driven by the data from Europe, where suicides are prominent but steadily declining. Second, men are more likely to commit suicide than women across the world over the years. Third, the older generation is more likely to commit suicide than youth and adults. Finally, we turn to Durkheim’s theory and use it as a lens to understand trends in suicide across time and countries and attempt to identify social and economic events that might explain patterns that we observe. For example, we discovered a drastically different pattern in suicide rates in the US, with a steep increase in suicides in the early 2000s. We hypothesize this might be driven by both the 9/11 attacks and the recession of 2008.

Keywords: suicide trends, current events, data analysis, world health organization, durkheim theory

Procedia PDF Downloads 96
1921 Printed Thai Character Recognition Using Particle Swarm Optimization Algorithm

Authors: Phawin Sangsuvan, Chutimet Srinilta

Abstract:

This Paper presents the applications of Particle Swarm Optimization (PSO) Method for Thai optical character recognition (OCR). OCR consists of the pre-processing, character recognition and post-processing. Before enter into recognition process. The Character must be “Prepped” by pre-processing process. The PSO is an optimization method that belongs to the swarm intelligence family based on the imitation of social behavior patterns of animals. Route of each particle is determined by an individual data among neighborhood particles. The interaction of the particles with neighbors is the advantage of Particle Swarm to determine the best solution. So PSO is interested by a lot of researchers in many difficult problems including character recognition. As the previous this research used a Projection Histogram to extract printed digits features and defined the simple Fitness Function for PSO. The results reveal that PSO gives 67.73% for testing dataset. So in the future there can be explored enhancement the better performance of PSO with improve the Fitness Function.

Keywords: character recognition, histogram projection, particle swarm optimization, pattern recognition techniques

Procedia PDF Downloads 478
1920 Portable Hands-Free Process Assistant for Gas Turbine Maintenance

Authors: Elisabeth Brandenburg, Robert Woll, Rainer Stark

Abstract:

This paper presents how smart glasses and voice commands can be used for improving the maintenance process of industrial gas turbines. It presents the process of inspecting a gas turbine’s combustion chamber and how it is currently performed using a set of paper-based documents. In order to improve this process, a portable hands-free process assistance system has been conceived. In the following, it will be presented how the approach of user-centered design and the method of paper prototyping have been successfully applied in order to design a user interface and a corresponding workflow model that describes the possible interaction patterns between the user and the interface. The presented evaluation of these results suggests that the assistance system could help the user by rendering multiple manual activities obsolete, thus allowing him to work hands-free and to save time for generating protocols.

Keywords: paper prototyping, smart glasses, turbine maintenance, user centered design

Procedia PDF Downloads 324
1919 Exploring Cardiovascular and Behavioral Impacts of Aerobic Exercise: A ‎Moroccan Perspective

Authors: Ahmed Boujdad

Abstract:

‎ Morocco, a North African nation known for its rich culture and diverse landscapes, is facing evolving challenges related to cardiovascular health and behavioral well-being. Against this backdrop, the paper aims to spotlight the insights emerging from Moroccan research into the impacts of aerobic exercise on cardiovascular physiology and psychological outcomes. Presentations will encompass a range of topics, including exercise-induced adaptations in heart function, blood pressure management, and vascular health specific to the Moroccan population. A notable focus of the paper will be the examination of how aerobic exercise intertwines with Moroccan behavioral patterns and sociocultural factors. The research will delve into the links between regular exercise and its potential to alleviate stress, anxiety, and depression in the Moroccan context. This exploration extends to the role of exercise in bolstering the cultural fabric of Moroccan society, enhancing community engagement, and promoting a sense of well-being.

Keywords: event-related potential‎, executive function, physical activity, kinesiology

Procedia PDF Downloads 83
1918 A Long Short-Term Memory Based Deep Learning Model for Corporate Bond Price Predictions

Authors: Vikrant Gupta, Amrit Goswami

Abstract:

The fixed income market forms the basis of the modern financial market. All other assets in financial markets derive their value from the bond market. Owing to its over-the-counter nature, corporate bonds have relatively less data publicly available and thus is researched upon far less compared to Equities. Bond price prediction is a complex financial time series forecasting problem and is considered very crucial in the domain of finance. The bond prices are highly volatile and full of noise which makes it very difficult for traditional statistical time-series models to capture the complexity in series patterns which leads to inefficient forecasts. To overcome the inefficiencies of statistical models, various machine learning techniques were initially used in the literature for more accurate forecasting of time-series. However, simple machine learning methods such as linear regression, support vectors, random forests fail to provide efficient results when tested on highly complex sequences such as stock prices and bond prices. hence to capture these intricate sequence patterns, various deep learning-based methodologies have been discussed in the literature. In this study, a recurrent neural network-based deep learning model using long short term networks for prediction of corporate bond prices has been discussed. Long Short Term networks (LSTM) have been widely used in the literature for various sequence learning tasks in various domains such as machine translation, speech recognition, etc. In recent years, various studies have discussed the effectiveness of LSTMs in forecasting complex time-series sequences and have shown promising results when compared to other methodologies. LSTMs are a special kind of recurrent neural networks which are capable of learning long term dependencies due to its memory function which traditional neural networks fail to capture. In this study, a simple LSTM, Stacked LSTM and a Masked LSTM based model has been discussed with respect to varying input sequences (three days, seven days and 14 days). In order to facilitate faster learning and to gradually decompose the complexity of bond price sequence, an Empirical Mode Decomposition (EMD) has been used, which has resulted in accuracy improvement of the standalone LSTM model. With a variety of Technical Indicators and EMD decomposed time series, Masked LSTM outperformed the other two counterparts in terms of prediction accuracy. To benchmark the proposed model, the results have been compared with traditional time series models (ARIMA), shallow neural networks and above discussed three different LSTM models. In summary, our results show that the use of LSTM models provide more accurate results and should be explored more within the asset management industry.

Keywords: bond prices, long short-term memory, time series forecasting, empirical mode decomposition

Procedia PDF Downloads 137
1917 Model Updating-Based Approach for Damage Prognosis in Frames via Modal Residual Force

Authors: Gholamreza Ghodrati Amiri, Mojtaba Jafarian Abyaneh, Ali Zare Hosseinzadeh

Abstract:

This paper presents an effective model updating strategy for damage localization and quantification in frames by defining damage detection problem as an optimization issue. A generalized version of the Modal Residual Force (MRF) is employed for presenting a new damage-sensitive cost function. Then, Grey Wolf Optimization (GWO) algorithm is utilized for solving suggested inverse problem and the global extremums are reported as damage detection results. The applicability of the presented method is investigated by studying different damage patterns on the benchmark problem of the IASC-ASCE, as well as a planar shear frame structure. The obtained results emphasize good performance of the method not only in free-noise cases, but also when the input data are contaminated with different levels of noises.

Keywords: frame, grey wolf optimization algorithm, modal residual force, structural damage detection

Procedia PDF Downloads 390
1916 Geotechnical Distress Evaluation of a Damaged Structure

Authors: Zulfiqar Ali, Umar Saleem, Muhammad Junaid, Rizwan Tahir

Abstract:

Gulzar Mahal is a heritage site located in the city of Bahawalpur, Pakistan. The site is under a process of degradation, as cracks are appearing on the walls, roofs, and floor around the building due to differential settlement. To preserve the integrity of the structure, a geotechnical distress evaluation was carried out to evaluate the causal factors and recommend remediation measures. The research involved the characterization of the problematic soil and analysis of the observed distress with respect to the geotechnical properties. Both conventional lab and field tests were used in conjunction with the unconventional techniques like; Electrical Resistivity Tomography (ERT) and FEA. The temporal, geophysical and geotechnical evaluations have concluded that the foundation soil over the past was subjected to variations in the land use, poor drainage patterns, overloading and fluctuations in groundwater table all contributing to the differential settlements manifesting in the form of the visible shear crack across the length and breadth of the building.

Keywords: differential settlement, distress evaluation, finite element analysis, Gulzar Mahal

Procedia PDF Downloads 130
1915 Research on Energy-Related Occupant Behavior of Residential Air Conditioning Based on Zigbee Intelligent Electronic Equipment

Authors: Dawei Xia, Benyan Jiang, Yong Li

Abstract:

Split-type air conditioners is widely used for indoor temperature regulation in urban residential buildings in summer in China. The energy-related occupant behavior has a great impact on building energy consumption. Obtaining the energy-related occupant behavior data of air conditioners is the research basis for the energy consumption prediction and simulation. Relying on the development of sensing and control technology, this paper selects Zigbee intelligent electronic equipment to monitor the energy-related occupant behavior of 20 households for 3 months in summer. Through analysis of data, it is found that people of different ages in the region have significant difference in the time, duration, frequency, and energy consumption of air conditioners, and form a data model of three basic energy-related occupant behavior patterns to provide an accurate simulation of energy.

Keywords: occupant behavior, Zigbee, split air conditioner, energy simulation

Procedia PDF Downloads 197
1914 Strategic Planning Practice in a Global Perspective:the Case of Guangzhou, China

Authors: Shuyi Xie

Abstract:

As the vital city in south China since the ancient time, Guangzhou has been losing its leading role among the rising neighboring cities, especially, Hong Kong and Shenzhen, since the late 1980s, with the overloaded infrastructure and deteriorating urban environment in its old inner city. Fortunately, with the new expansion of its administrative area in 2000, the local municipality considered it as a great opportunity to solve a series of alarming urban problems. Thus, for the first time, strategic planning was introduced to China for providing more convincing and scientific basis towards better urban future. Differed from traditional Chinese planning practices, which rigidly and dogmatically focused on future blueprints, the strategic planning of Guangzhou proceeded from analyzing practical challenges and opportunities towards establishing reasonable developing objectives and proposing corresponding strategies. Moreover, it was pioneering that the municipality invited five planning institutions for proposals, among which, the paper focuses on the one proposed by China Academy of Urban Planning & Design from its theoretical basis to problems’ defining and analyzing the process, as well as planning results. Since it was closer to the following municipal decisions and had a more far-reaching influence for other Chinese cities' following practices. In particular, it demonstrated an innovative exploration on the role played by urban developing rate on deciding urban growth patterns (‘Spillover-reverberation’ or ‘Leapfrog’). That ultimately established an unprecedented paradigm on deciding an appropriate urban spatial structure in future, including its specific location, function and scale. Besides the proposal itself, this article highlights the role of interactions, among actors, as well as proposals, subsequent discussions, summaries and municipal decisions, especially the establishment of the rolling dynamic evaluation system for periodical reviews on implementation situations, as the first attempt in China. Undoubtedly, strategic planning of Guangzhou has brought out considerable benefits, especially opening the strategic mind for plentiful Chinese cities in the following years through establishing a flexible and dynamic planning mechanism highlighted the interactions among multiple actors with innovative and effective tools, methodologies and perspectives on regional, objective-approach and comparative analysis. However, compared with some developed countries, the strategic planning in China just started and has been greatly relied on empirical studies rather than scientific analysis. Moreover, it still faced a bit of controversy, for instance, the certain gap among institutional proposals, final municipal decisions and implemented results, due to the lacking legal constraint. Also, how to improve the public involvement in China with an absolute up-down administrative system is another urgent task. In future, despite of irresistible and irretrievable weakness, some experiences and lessons from previous international practices, with the combination of specific Chinese situations and domestic practices, would enable to promote the further advance on strategic planning in China.

Keywords: evaluation system, global perspective, Guangzhou, interactions, strategic planning, urban growth patterns

Procedia PDF Downloads 392
1913 Visual Overloaded on User-Generated Content by the Net Generation: Participatory Cultural Viewpoint

Authors: Hasanah Md. Amin

Abstract:

The existence of cyberspace and its growing contents is real and overwhelming. Visual as one of the properties of cyber contents is increasingly becoming more significant and popular among creator and user. The visual and aesthetic of the content is consistent with many similarities. Aesthetic, although universal, has slight differences across the world. Aesthetic power could impress, influence, and cause bias among the users. The content creator who knows how to manipulate this visuals and aesthetic expression can dominate the scenario and the user who is ‘expressive literate’ will gain much from the scenes. User who understands aesthetic will be rewarded with competence, confidence, and certainly, a personality enhanced experience in carrying out a task when participating in this chaotic but promising cyberworld. The aim of this article is to gain knowledge from related literature and research regarding User-Generated Content (UGC), which focuses on aesthetic expression by the Net generation. The objective of this preliminary study is to analyze the aesthetic expression linked to visual from the participatory cultural viewpoint looking for meaning, value, patterns, and characteristics.

Keywords: visual overloaded, user-generated content, net generation, visual arts

Procedia PDF Downloads 439
1912 Uncertainty of the Brazilian Earth System Model for Solar Radiation

Authors: Elison Eduardo Jardim Bierhals, Claudineia Brazil, Deivid Pires, Rafael Haag, Elton Gimenez Rossini

Abstract:

This study evaluated the uncertainties involved in the solar radiation projections generated by the Brazilian Earth System Model (BESM) of the Weather and Climate Prediction Center (CPTEC) belonging to Coupled Model Intercomparison Phase 5 (CMIP5), with the aim of identifying efficiency in the projections for solar radiation of said model and in this way establish the viability of its use. Two different scenarios elaborated by Intergovernmental Panel on Climate Change (IPCC) were evaluated: RCP 4.5 (with more optimistic contour conditions) and 8.5 (with more pessimistic initial conditions). The method used to verify the accuracy of the present model was the Nash coefficient and the Statistical bias, as it better represents these atmospheric patterns. The BESM showed a tendency to overestimate the data ​​of solar radiation projections in most regions of the state of Rio Grande do Sul and through the validation methods adopted by this study, BESM did not present a satisfactory accuracy.

Keywords: climate changes, projections, solar radiation, uncertainty

Procedia PDF Downloads 252
1911 Morphometric Relationships of Unfarmed Puntius sophore, Collected from Chenab River, Punjab, Pakistan

Authors: Alina Zafar

Abstract:

In this particular research, various morphometric characters such as total length (TL), wet weight (WW), standard length (SL), fork length (FL), head length (HL), head width (HW), body depth (BD), body girth (BG), dorsal fin length (DFL), pelvic fin length (PelFL), pectoral fin length (PecFL), anal fin length (AFL), dorsal fin base (DFB), anal fin base (AFB), caudal fin length (CFL) and caudal fin width (CFW) of wild collected Puntius sophore were studied, to know the types of growth patterns and correlations in reference to length and weight, however, high significant relationships were recorded between total length and wet weight, as the correlation coefficient (r) possessed value of 0.989. The growth pattern was observed to be positively allometric as the value of ‘b’ was 3.22 (slightly higher than the ideal value, 3) with 95% confidence intervals ranging from 3.076 to 3.372. Wet weight and total length parameters showed high significant correlations (p < 0.001) with all other morphometric characters.

Keywords: Puntius sophore, length and weight relation, morphometrics, small indigenous species

Procedia PDF Downloads 107
1910 Exploring Electroactive Polymers for Dynamic Data Physicalization

Authors: Joanna Dauner, Jan Friedrich, Linda Elsner, Kora Kimpel

Abstract:

Active materials such as Electroactive Polymers (EAPs) are promising for the development of novel shape-changing interfaces. This paper explores the potential of EAPs in a multilayer unimorph structure from a design perspective to investigate the visual qualities of the material for dynamic data visualization and data physicalization. We discuss various concepts of how the material can be used for this purpose. Multilayer unimorph EAPs are of particular interest to designers because they can be easily prototyped using everyday materials and tools. By changing the structure and geometry of the EAPs, their movement and behavior can be modified. We present the results of our preliminary user testing, where we evaluated different movement patterns. As a result, we introduce a prototype display built with EAPs for dynamic data physicalization. Finally, we discuss the potentials and drawbacks and identify further open research questions for the design discipline.

Keywords: electroactive polymer, shape-changing interfaces, smart material interfaces, data physicalization

Procedia PDF Downloads 101
1909 Frequency Decomposition Approach for Sub-Band Common Spatial Pattern Methods for Motor Imagery Based Brain-Computer Interface

Authors: Vitor M. Vilas Boas, Cleison D. Silva, Gustavo S. Mafra, Alexandre Trofino Neto

Abstract:

Motor imagery (MI) based brain-computer interfaces (BCI) uses event-related (de)synchronization (ERS/ ERD), typically recorded using electroencephalography (EEG), to translate brain electrical activity into control commands. To mitigate undesirable artifacts and noise measurements on EEG signals, methods based on band-pass filters defined by a specific frequency band (i.e., 8 – 30Hz), such as the Infinity Impulse Response (IIR) filters, are typically used. Spatial techniques, such as Common Spatial Patterns (CSP), are also used to estimate the variations of the filtered signal and extract features that define the imagined motion. The CSP effectiveness depends on the subject's discriminative frequency, and approaches based on the decomposition of the band of interest into sub-bands with smaller frequency ranges (SBCSP) have been suggested to EEG signals classification. However, despite providing good results, the SBCSP approach generally increases the computational cost of the filtering step in IM-based BCI systems. This paper proposes the use of the Fast Fourier Transform (FFT) algorithm in the IM-based BCI filtering stage that implements SBCSP. The goal is to apply the FFT algorithm to reduce the computational cost of the processing step of these systems and to make them more efficient without compromising classification accuracy. The proposal is based on the representation of EEG signals in a matrix of coefficients resulting from the frequency decomposition performed by the FFT, which is then submitted to the SBCSP process. The structure of the SBCSP contemplates dividing the band of interest, initially defined between 0 and 40Hz, into a set of 33 sub-bands spanning specific frequency bands which are processed in parallel each by a CSP filter and an LDA classifier. A Bayesian meta-classifier is then used to represent the LDA outputs of each sub-band as scores and organize them into a single vector, and then used as a training vector of an SVM global classifier. Initially, the public EEG data set IIa of the BCI Competition IV is used to validate the approach. The first contribution of the proposed method is that, in addition to being more compact, because it has a 68% smaller dimension than the original signal, the resulting FFT matrix maintains the signal information relevant to class discrimination. In addition, the results showed an average reduction of 31.6% in the computational cost in relation to the application of filtering methods based on IIR filters, suggesting FFT efficiency when applied in the filtering step. Finally, the frequency decomposition approach improves the overall system classification rate significantly compared to the commonly used filtering, going from 73.7% using IIR to 84.2% using FFT. The accuracy improvement above 10% and the computational cost reduction denote the potential of FFT in EEG signal filtering applied to the context of IM-based BCI implementing SBCSP. Tests with other data sets are currently being performed to reinforce such conclusions.

Keywords: brain-computer interfaces, fast Fourier transform algorithm, motor imagery, sub-band common spatial patterns

Procedia PDF Downloads 129
1908 Reading in Multiple Arabic's: Effects of Diglossia and Orthography

Authors: Aula Khatteb Abu-Liel

Abstract:

The study investigated the effects of diglossia and orthography on reading in Arabic, manipulating reading in Spoken Arabic (SA), using Arabizi, in which it is written using Latin letters on computers/phones, and the two forms of the conventional written form Modern Standard Arabic (MSA): vowelled (shallow) and unvowelled (deep). 77 skilled readers in 8th grade performed oral reading of single words and narrative and expository texts, and silent reading comprehension of both genres of text. Oral reading and comprehension revealed different patterns. Single words and texts were read faster and more accurately in unvoweled MSA, slowest and least accurately in vowelled MSA, and in-between in Arabizi. Comprehension was highest for vowelled MSA. Narrative texts were better than expository texts in Arabizi with the opposite pattern in MSA. The results suggest that frequency of the type of texts and the way in which phonology is encoded affect skilled reading.

Keywords: Arabic, Arabize, computer mediated communication, diglossia, modern standard Arabic

Procedia PDF Downloads 165
1907 Finite Element Modeling Techniques of Concrete in Steel and Concrete Composite Members

Authors: J. Bartus, J. Odrobinak

Abstract:

The paper presents a nonlinear analysis 3D model of composite steel and concrete beams with web openings using the Finite Element Method (FEM). The core of the study is the introduction of basic modeling techniques comprehending the description of material behavior, appropriate elements selection, and recommendations for overcoming problems with convergence. Results from various finite element models are compared in the study. The main objective is to observe the concrete failure mechanism and its influence on the structural performance of numerical models of the beams at particular load stages. The bearing capacity of beams, corresponding deformations, stresses, strains, and fracture patterns were determined. The results show how load-bearing elements consisting of concrete parts can be analyzed using FEM software with various options to create the most suitable numerical model. The paper demonstrates the versatility of Ansys software usage for structural simulations.

Keywords: Ansys, concrete, modeling, steel

Procedia PDF Downloads 122
1906 Critical Pedagogy and Literacy Development

Authors: Rajendra Chetty

Abstract:

This paper analyses the experiences of teachers of literacy in underprivileged schools in the Western Cape, South Africa. The purpose is to provide teachers in poorly resourced schools within economically deprived areas an opportunity to voice their experiences of teaching literacy. The paper is based on an empirical study using interviews and classroom observation. A descriptive account of the observation data was followed by an interpretive analysis. The content analysis of the interview data led to the development of themes and patterns for the discussion. The study reveals key factors for literacy underachievement that include lack of critical and emancipatory pedagogies, resources, parental support, lack of teacher knowledge, absence of cognitive activities, and the social complexity of poverty. The paper recommends that a new model of literacy that is underpinned by critical pedagogy challenge inequality and provides strategic and sustained teacher support in disadvantaged schools is crucial in a society emerging from oppression and racism.

Keywords: critical pedagogy, disadvantaged schools, literacy, poverty

Procedia PDF Downloads 112
1905 Enhancing Financial Security: Real-Time Anomaly Detection in Financial Transactions Using Machine Learning

Authors: Ali Kazemi

Abstract:

The digital evolution of financial services, while offering unprecedented convenience and accessibility, has also escalated the vulnerabilities to fraudulent activities. In this study, we introduce a distinct approach to real-time anomaly detection in financial transactions, aiming to fortify the defenses of banking and financial institutions against such threats. Utilizing unsupervised machine learning algorithms, specifically autoencoders and isolation forests, our research focuses on identifying irregular patterns indicative of fraud within transactional data, thus enabling immediate action to prevent financial loss. The data we used in this study included the monetary value of each transaction. This is a crucial feature as fraudulent transactions may have distributions of different amounts than legitimate ones, such as timestamps indicating when transactions occurred. Analyzing transactions' temporal patterns can reveal anomalies (e.g., unusual activity in the middle of the night). Also, the sector or category of the merchant where the transaction occurred, such as retail, groceries, online services, etc. Specific categories may be more prone to fraud. Moreover, the type of payment used (e.g., credit, debit, online payment systems). Different payment methods have varying risk levels associated with fraud. This dataset, anonymized to ensure privacy, reflects a wide array of transactions typical of a global banking institution, ranging from small-scale retail purchases to large wire transfers, embodying the diverse nature of potentially fraudulent activities. By engineering features that capture the essence of transactions, including normalized amounts and encoded categorical variables, we tailor our data to enhance model sensitivity to anomalies. The autoencoder model leverages its reconstruction error mechanism to flag transactions that deviate significantly from the learned normal pattern, while the isolation forest identifies anomalies based on their susceptibility to isolation from the dataset's majority. Our experimental results, validated through techniques such as k-fold cross-validation, are evaluated using precision, recall, and the F1 score alongside the area under the receiver operating characteristic (ROC) curve. Our models achieved an F1 score of 0.85 and a ROC AUC of 0.93, indicating high accuracy in detecting fraudulent transactions without excessive false positives. This study contributes to the academic discourse on financial fraud detection and provides a practical framework for banking institutions seeking to implement real-time anomaly detection systems. By demonstrating the effectiveness of unsupervised learning techniques in a real-world context, our research offers a pathway to significantly reduce the incidence of financial fraud, thereby enhancing the security and trustworthiness of digital financial services.

Keywords: anomaly detection, financial fraud, machine learning, autoencoders, isolation forest, transactional data analysis

Procedia PDF Downloads 59
1904 Dual Role of Microalgae: Carbon Dioxide Capture Nutrients Removal

Authors: Mohamad Shurair, Fares Almomani, Simon Judd, Rahul Bhosale, Anand Kumar, Ujjal Gosh

Abstract:

This study evaluated the use of mixed indigenous microalgae (MIMA) as a treatment process for wastewaters and CO2 capturing technology at different temperatures. The study follows the growth rate of MIMA, removals of organic matter, removal of nutrients from synthetic wastewater and its effectiveness as CO2 capturing technology from flue gas. A noticeable difference between the growth patterns of MIMA was observed at different CO2 and different operational temperatures. MIMA showed the highest growth grate when injected with CO2 dosage of 10% and limited growth was observed for the systems injected with 5% and 15 % of CO2 at 30 ◦C. Ammonia and phosphorus removals for Spirulina were 69%, 75%, and 83%, and 20%, 45%, and 75% for the media injected with 0, 5 and 10% CO2. The results of this study show that simple and cost-effective microalgae-based wastewater treatment systems can be successfully employed at different temperatures as a successful CO2 capturing technology even with the small probability of inhibition at high temperatures

Keywords: greenhouse, climate change, CO2 capturing, green algae

Procedia PDF Downloads 335