Search results for: post classification change detection
14494 Genetic Algorithms for Feature Generation in the Context of Audio Classification
Authors: José A. Menezes, Giordano Cabral, Bruno T. Gomes
Abstract:
Choosing good features is an essential part of machine learning. Recent techniques aim to automate this process. For instance, feature learning intends to learn the transformation of raw data into a useful representation to machine learning tasks. In automatic audio classification tasks, this is interesting since the audio, usually complex information, needs to be transformed into a computationally convenient input to process. Another technique tries to generate features by searching a feature space. Genetic algorithms, for instance, have being used to generate audio features by combining or modifying them. We find this approach particularly interesting and, despite the undeniable advances of feature learning approaches, we wanted to take a step forward in the use of genetic algorithms to find audio features, combining them with more conventional methods, like PCA, and inserting search control mechanisms, such as constraints over a confusion matrix. This work presents the results obtained on particular audio classification problems.Keywords: feature generation, feature learning, genetic algorithm, music information retrieval
Procedia PDF Downloads 43714493 Robust Barcode Detection with Synthetic-to-Real Data Augmentation
Authors: Xiaoyan Dai, Hsieh Yisan
Abstract:
Barcode processing of captured images is a huge challenge, as different shooting conditions can result in different barcode appearances. This paper proposes a deep learning-based barcode detection using synthetic-to-real data augmentation. We first augment barcodes themselves; we then augment images containing the barcodes to generate a large variety of data that is close to the actual shooting environments. Comparisons with previous works and evaluations with our original data show that this approach achieves state-of-the-art performance in various real images. In addition, the system uses hybrid resolution for barcode “scan” and is applicable to real-time applications.Keywords: barcode detection, data augmentation, deep learning, image-based processing
Procedia PDF Downloads 17414492 Early Diagnosis and Treatment of Cancer Using Synthetic Cationic Peptide
Authors: D. J. Kalita
Abstract:
Cancer is one of the prime causes of early death worldwide. Mutation of the gene involve in DNA repair and damage, like BRCA2 (Breast cancer gene two) genes, can be detected efficiently by PCR-RFLP to early breast cancer diagnosis and adopt the suitable method of treatment. Host Defense Peptide can be used as blueprint for the design and synthesis of novel anticancer drugs to avoid the side effect of conventional chemotherapy and chemo resistance. The change at nucleotide position 392 of a -› c in the cancer sample of dog mammary tumour at BRCA2 (exon 7) gene lead the creation of a new restriction site for SsiI restriction enzyme. This SNP may be a marker for detection of canine mammary tumour. Support vector machine (SVM) algorithm was used to design and predict the anticancer peptide from the mature functional peptide. MTT assay of MCF-7 cell line after 48 hours of post treatment showed an increase in the number of rounded cells when compared with untreated control cells. The ability of the synthesized peptide to induce apoptosis in MCF-7 cells was further investigated by staining the cells with the fluorescent dye Hoechst stain solution, which allows the evaluation of the nuclear morphology. Numerous cells with dense, pyknotic nuclei (the brighter fluorescence) were observed in treated but not in control MCF-7 cells when viewed using an inverted phase-contrast microscope. Thus, PCR-RFLP is one of the attractive approach for early diagnosis, and synthetic cationic peptide can be used for the treatment of canine mammary tumour.Keywords: cancer, cationic peptide, host defense peptides, Breast cancer genes
Procedia PDF Downloads 9114491 A Fast Silhouette Detection Algorithm for Shadow Volumes in Augmented Reality
Authors: Hoshang Kolivand, Mahyar Kolivand, Mohd Shahrizal Sunar, Mohd Azhar M. Arsad
Abstract:
Real-time shadow generation in virtual environments and Augmented Reality (AR) was always a hot topic in the last three decades. Lots of calculation for shadow generation among AR needs a fast algorithm to overcome this issue and to be capable of implementing in any real-time rendering. In this paper, a silhouette detection algorithm is presented to generate shadows for AR systems. Δ+ algorithm is presented based on extending edges of occluders to recognize which edges are silhouettes in the case of real-time rendering. An accurate comparison between the proposed algorithm and current algorithms in silhouette detection is done to show the reduction calculation by presented algorithm. The algorithm is tested in both virtual environments and AR systems. We think that this algorithm has the potential to be a fundamental algorithm for shadow generation in all complex environments.Keywords: silhouette detection, shadow volumes, real-time shadows, rendering, augmented reality
Procedia PDF Downloads 44314490 Capturing the Stress States in Video Conferences by Photoplethysmographic Pulse Detection
Authors: Jarek Krajewski, David Daxberger
Abstract:
We propose a stress detection method based on an RGB camera using heart rate detection, also known as Photoplethysmography Imaging (PPGI). This technique focuses on the measurement of the small changes in skin colour caused by blood perfusion. A stationary lab setting with simulated video conferences is chosen using constant light conditions and a sampling rate of 30 fps. The ground truth measurement of heart rate is conducted with a common PPG system. The proposed approach for pulse peak detection is based on a machine learning-based approach, applying brute force feature extraction for the prediction of heart rate pulses. The statistical analysis showed good agreement (correlation r = .79, p<0.05) between the reference heart rate system and the proposed method. Based on these findings, the proposed method could provide a reliable, low-cost, and contactless way of measuring HR parameters in daily-life environments.Keywords: heart rate, PPGI, machine learning, brute force feature extraction
Procedia PDF Downloads 12514489 Domain Adaptation Save Lives - Drowning Detection in Swimming Pool Scene Based on YOLOV8 Improved by Gaussian Poisson Generative Adversarial Network Augmentation
Authors: Simiao Ren, En Wei
Abstract:
Drowning is a significant safety issue worldwide, and a robust computer vision-based alert system can easily prevent such tragedies in swimming pools. However, due to domain shift caused by the visual gap (potentially due to lighting, indoor scene change, pool floor color etc.) between the training swimming pool and the test swimming pool, the robustness of such algorithms has been questionable. The annotation cost for labeling each new swimming pool is too expensive for mass adoption of such a technique. To address this issue, we propose a domain-aware data augmentation pipeline based on Gaussian Poisson Generative Adversarial Network (GP-GAN). Combined with YOLOv8, we demonstrate that such a domain adaptation technique can significantly improve the model performance (from 0.24 mAP to 0.82 mAP) on new test scenes. As the augmentation method only require background imagery from the new domain (no annotation needed), we believe this is a promising, practical route for preventing swimming pool drowning.Keywords: computer vision, deep learning, YOLOv8, detection, swimming pool, drowning, domain adaptation, generative adversarial network, GAN, GP-GAN
Procedia PDF Downloads 10114488 Object-Scene: Deep Convolutional Representation for Scene Classification
Authors: Yanjun Chen, Chuanping Hu, Jie Shao, Lin Mei, Chongyang Zhang
Abstract:
Traditional image classification is based on encoding scheme (e.g. Fisher Vector, Vector of Locally Aggregated Descriptor) with low-level image features (e.g. SIFT, HoG). Compared to these low-level local features, deep convolutional features obtained at the mid-level layer of convolutional neural networks (CNN) have richer information but lack of geometric invariance. For scene classification, there are scattered objects with different size, category, layout, number and so on. It is crucial to find the distinctive objects in scene as well as their co-occurrence relationship. In this paper, we propose a method to take advantage of both deep convolutional features and the traditional encoding scheme while taking object-centric and scene-centric information into consideration. First, to exploit the object-centric and scene-centric information, two CNNs that trained on ImageNet and Places dataset separately are used as the pre-trained models to extract deep convolutional features at multiple scales. This produces dense local activations. By analyzing the performance of different CNNs at multiple scales, it is found that each CNN works better in different scale ranges. A scale-wise CNN adaption is reasonable since objects in scene are at its own specific scale. Second, a fisher kernel is applied to aggregate a global representation at each scale and then to merge into a single vector by using a post-processing method called scale-wise normalization. The essence of Fisher Vector lies on the accumulation of the first and second order differences. Hence, the scale-wise normalization followed by average pooling would balance the influence of each scale since different amount of features are extracted. Third, the Fisher vector representation based on the deep convolutional features is followed by a linear Supported Vector Machine, which is a simple yet efficient way to classify the scene categories. Experimental results show that the scale-specific feature extraction and normalization with CNNs trained on object-centric and scene-centric datasets can boost the results from 74.03% up to 79.43% on MIT Indoor67 when only two scales are used (compared to results at single scale). The result is comparable to state-of-art performance which proves that the representation can be applied to other visual recognition tasks.Keywords: deep convolutional features, Fisher Vector, multiple scales, scale-specific normalization
Procedia PDF Downloads 33314487 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 14414486 Geoinformation Technology of Agricultural Monitoring Using Multi-Temporal Satellite Imagery
Authors: Olena Kavats, Dmitry Khramov, Kateryna Sergieieva, Vladimir Vasyliev, Iurii Kavats
Abstract:
Geoinformation technologies of space agromonitoring are a means of operative decision making support in the tasks of managing the agricultural sector of the economy. Existing technologies use satellite images in the optical range of electromagnetic spectrum. Time series of optical images often contain gaps due to the presence of clouds and haze. A geoinformation technology is created. It allows to fill gaps in time series of optical images (Sentinel-2, Landsat-8, PROBA-V, MODIS) with radar survey data (Sentinel-1) and use information about agrometeorological conditions of the growing season for individual monitoring years. The technology allows to perform crop classification and mapping for spring-summer (winter and spring crops) and autumn-winter (winter crops) periods of vegetation, monitoring the dynamics of crop state seasonal changes, crop yield forecasting. Crop classification is based on supervised classification algorithms, takes into account the peculiarities of crop growth at different vegetation stages (dates of sowing, emergence, active vegetation, and harvesting) and agriculture land state characteristics (row spacing, seedling density, etc.). A catalog of samples of the main agricultural crops (Ukraine) is created and crop spectral signatures are calculated with the preliminary removal of row spacing, cloud cover, and cloud shadows in order to construct time series of crop growth characteristics. The obtained data is used in grain crop growth tracking and in timely detection of growth trends deviations from reference samples of a given crop for a selected date. Statistical models of crop yield forecast are created in the forms of linear and nonlinear interconnections between crop yield indicators and crop state characteristics (temperature, precipitation, vegetation indices, etc.). Predicted values of grain crop yield are evaluated with an accuracy up to 95%. The developed technology was used for agricultural areas monitoring in a number of Great Britain and Ukraine regions using EOS Crop Monitoring Platform (https://crop-monitoring.eos.com). The obtained results allow to conclude that joint use of Sentinel-1 and Sentinel-2 images improve separation of winter crops (rapeseed, wheat, barley) in the early stages of vegetation (October-December). It allows to separate successfully the soybean, corn, and sunflower sowing areas that are quite similar in their spectral characteristics.Keywords: geoinformation technology, crop classification, crop yield prediction, agricultural monitoring, EOS Crop Monitoring Platform
Procedia PDF Downloads 45914485 Low Cost Real Time Robust Identification of Impulsive Signals
Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman
Abstract:
This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.Keywords: sound detection, impulsive signal, background noise, neural network
Procedia PDF Downloads 32214484 An Approach for Vocal Register Recognition Based on Spectral Analysis of Singing
Authors: Aleksandra Zysk, Pawel Badura
Abstract:
Recognizing and controlling vocal registers during singing is a difficult task for beginner vocalist. It requires among others identifying which part of natural resonators is being used when a sound propagates through the body. Thus, an application has been designed allowing for sound recording, automatic vocal register recognition (VRR), and a graphical user interface providing real-time visualization of the signal and recognition results. Six spectral features are determined for each time frame and passed to the support vector machine classifier yielding a binary decision on the head or chest register assignment of the segment. The classification training and testing data have been recorded by ten professional female singers (soprano, aged 19-29) performing sounds for both chest and head register. The classification accuracy exceeded 93% in each of various validation schemes. Apart from a hard two-class clustering, the support vector classifier returns also information on the distance between particular feature vector and the discrimination hyperplane in a feature space. Such an information reflects the level of certainty of the vocal register classification in a fuzzy way. Thus, the designed recognition and training application is able to assess and visualize the continuous trend in singing in a user-friendly graphical mode providing an easy way to control the vocal emission.Keywords: classification, singing, spectral analysis, vocal emission, vocal register
Procedia PDF Downloads 30514483 Deepfake Detection for Compressed Media
Authors: Sushil Kumar Gupta, Atharva Joshi, Ayush Sonawale, Sachin Naik, Rajshree Khande
Abstract:
The usage of artificially created videos and audio by deep learning is a major problem of the current media landscape, as it pursues the goal of misinformation and distrust. In conclusion, the objective of this work targets generating a reliable deepfake detection model using deep learning that will help detect forged videos accurately. In this work, CelebDF v1, one of the largest deepfake benchmark datasets in the literature, is adopted to train and test the proposed models. The data includes authentic and synthetic videos of high quality, therefore allowing an assessment of the model’s performance against realistic distortions.Keywords: deepfake detection, CelebDF v1, convolutional neural network (CNN), xception model, data augmentation, media manipulation
Procedia PDF Downloads 1314482 Bundle Block Detection Using Spectral Coherence and Levenberg Marquardt Neural Network
Authors: K. Padmavathi, K. Sri Ramakrishna
Abstract:
This study describes a procedure for the detection of Left and Right Bundle Branch Block (LBBB and RBBB) ECG patterns using spectral Coherence(SC) technique and LM Neural Network. The Coherence function finds common frequencies between two signals and evaluate the similarity of the two signals. The QT variations of Bundle Blocks are observed in lead V1 of ECG. Spectral Coherence technique uses Welch method for calculating PSD. For the detection of normal and Bundle block beats, SC output values are given as the input features for the LMNN classifier. Overall accuracy of LMNN classifier is 99.5 percent. The data was collected from MIT-BIH Arrhythmia database.Keywords: bundle block, SC, LMNN classifier, welch method, PSD, MIT-BIH, arrhythmia database
Procedia PDF Downloads 28314481 Regional Analysis of Freight Movement by Vehicle Classification
Authors: Katerina Koliou, Scott Parr, Evangelos Kaisar
Abstract:
The surface transportation of freight is particularly vulnerable to storm and hurricane disasters, while at the same time, it is the primary transportation mode for delivering medical supplies, fuel, water, and other essential goods. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The research investigation used Florida's statewide continuous-count station traffic volumes, where then compared between years, to identify locations where traffic was moving differently during the evacuation. The data was then used to identify days on which traffic was significantly different between years. While the literature on auto-based evacuations is extensive, the consideration of freight travel is lacking. To better plan for commercial vehicles during an evacuation, it is necessary to understand how these vehicles travel during an evacuation and determine if this travel is different from the general public. The goal of this research was to investigate the movement of vehicles by classification, with an emphasis on freight during two major evacuation events: hurricanes Irma (2017) and Michael (2018). The methodology of the research was divided into three phases: data collection and management, spatial analysis, and temporal comparisons. Data collection and management obtained continuous-co station data from the state of Florida for both 2017 and 2018 by vehicle classification. The data was then processed into a manageable format. The second phase used geographic information systems (GIS) to display where and when traffic varied across the state. The third and final phase was a quantitative investigation into which vehicle classifications were statistically different and on which dates statewide. This phase used a two-sample, two-tailed t-test to compare sensor volume by classification on similar days between years. Overall, increases in freight movement between years prevented a more precise paired analysis. This research sought to identify where and when different classes of vehicles were traveling leading up to hurricane landfall and post-storm reentry. Of the more significant findings, the research results showed that commercial-use vehicles may have underutilized rest areas during the evacuation, or perhaps these rest areas were closed. This may suggest that truckers are driving longer distances and possibly longer hours before hurricanes. Another significant finding of this research was that changes in traffic patterns for commercial-use vehicles occurred earlier and lasted longer than changes for personal-use vehicles. This finding suggests that commercial vehicles are perhaps evacuating in a fashion different from personal use vehicles. This paper may serve as the foundation for future research into commercial travel during evacuations and explore additional factors that may influence freight movements during evacuations.Keywords: evacuation, freight, travel time, evacuation
Procedia PDF Downloads 7014480 The Positive Effects of Processing Instruction on the Acquisition of French as a Second Language: An Eye-Tracking Study
Authors: Cecile Laval, Harriet Lowe
Abstract:
Processing Instruction is a psycholinguistic pedagogical approach drawing insights from the Input Processing Model which establishes the initial innate strategies used by second language learners to connect form and meaning of linguistic features. With the ever-growing use of technology in Second Language Acquisition research, the present study uses eye-tracking to measure the effectiveness of Processing Instruction in the acquisition of French and its effects on learner’s cognitive strategies. The experiment was designed using a TOBII Pro-TX300 eye-tracker to measure participants’ default strategies when processing French linguistic input and any cognitive changes after receiving Processing Instruction treatment. Participants were drawn from lower intermediate adult learners of French at the University of Greenwich and randomly assigned to two groups. The study used a pre-test/post-test methodology. The pre-tests (one per linguistic item) were administered via the eye-tracker to both groups one week prior to instructional treatment. One group received full Processing Instruction treatment (explicit information on the grammatical item and on the processing strategies, and structured input activities) on the primary target linguistic feature (French past tense imperfective aspect). The second group received Processing Instruction treatment except the explicit information on the processing strategies. Three immediate post-tests on the three grammatical structures under investigation (French past tense imperfective aspect, French Subjunctive used for the expression of doubt, and the French causative construction with Faire) were administered with the eye-tracker. The eye-tracking data showed the positive change in learners’ processing of the French target features after instruction with improvement in the interpretation of the three linguistic features under investigation. 100% of participants in both groups made a statistically significant improvement (p=0.001) in the interpretation of the primary target feature (French past tense imperfective aspect) after treatment. 62.5% of participants made an improvement in the secondary target item (French Subjunctive used for the expression of doubt) and 37.5% of participants made an improvement in the cumulative target feature (French causative construction with Faire). Statistically there was no significant difference between the pre-test and post-test scores in the cumulative target feature; however, the variance approximately tripled between the pre-test and the post-test (3.9 pre-test and 9.6 post-test). This suggests that the treatment does not affect participants homogenously and implies a role for individual differences in the transfer-of-training effect of Processing Instruction. The use of eye-tracking provides an opportunity for the study of unconscious processing decisions made during moment-by-moment comprehension. The visual data from the eye-tracking demonstrates changes in participants’ processing strategies. Gaze plots from pre- and post-tests display participants fixation points changing from focusing on content words to focusing on the verb ending. This change in processing strategies can be clearly seen in the interpretation of sentences in both primary and secondary target features. This paper will present the research methodology, design and results of the experimental study using eye-tracking to investigate the primary effects and transfer-of-training effects of Processing Instruction. It will then provide evidence of the cognitive benefits of Processing Instruction in Second Language Acquisition and offer suggestion in second language teaching of grammar.Keywords: eye-tracking, language teaching, processing instruction, second language acquisition
Procedia PDF Downloads 28014479 Collaborative Leadership in a Post-COVID-19 Era in Saudi Arabia
Authors: Norah Alshayhan
Abstract:
Dealing with public problems is one of the struggles that may face the leaders in the public sector. Collaborative leadership is one of the most important approaches in dealing with difficult situations that affect both public, private, and nonprofit organizations. Current literature does not show exactly the extent of utilizing collaborative leadership during the post-COVID-19 world in Saudi Arabia. This study is worth exploring in order to examine collaborative leadership in similar environments. This research will utilize both integrative public leadership and transformational leadership theories to guide the researcher in answering the research question. The researcher utilizes content analysis and reviews government documents, plans, and reports to gain more information about collaborative leadership in Saudi Arabia. The researcher analyzes the data in themes and sub-themes to categorize the data in answering the research question. Leader’s behavior and performance in the public sector will be the focus of this study. Findings from this research will benefit leaders in both public, private, and nonprofit sectors in their leadership during a post-disaster time. Findings from this study support collaborative leadership practices and performance in leading future post-crises/disasters.Keywords: collaborative leadership, post-COVID-19, Saudi Arabia, performance, skills
Procedia PDF Downloads 7114478 Safe Zone: A Framework for Detecting and Preventing Drones Misuse
Authors: AlHanoof A. Alharbi, Fatima M. Alamoudi, Razan A. Albrahim, Sarah F. Alharbi, Abdullah M Almuhaideb, Norah A. Almubairik, Abdulrahman Alharby, Naya M. Nagy
Abstract:
Recently, drones received a rapid interest in different industries worldwide due to its powerful impact. However, limitations still exist in this emerging technology, especially privacy violation. These aircrafts consistently threaten the security of entities by entering restricted areas accidentally or deliberately. Therefore, this research project aims to develop drone detection and prevention mechanism to protect the restricted area. Until now, none of the solutions have met the optimal requirements of detection which are cost-effectiveness, high accuracy, long range, convenience, unaffected by noise and generalization. In terms of prevention, the existing methods are focusing on impractical solutions such as catching a drone by a larger drone, training an eagle or a gun. In addition, the practical solutions have limitations, such as the No-Fly Zone and PITBULL jammers. According to our study and analysis of previous related works, none of the solutions includes detection and prevention at the same time. The proposed solution is a combination of detection and prevention methods. To implement the detection system, a passive radar will be used to properly identify the drone against any possible flying objects. As for the prevention, jamming signals and forceful safe landing of the drone integrated together to stop the drone’s operation. We believe that applying this mechanism will limit the drone’s invasion of privacy incidents against highly restricted properties. Consequently, it effectively accelerates drones‘ usages at personal and governmental levels.Keywords: detection, drone, jamming, prevention, privacy, RF, radar, UAV
Procedia PDF Downloads 21314477 Performance Comparison of Deep Convolutional Neural Networks for Binary Classification of Fine-Grained Leaf Images
Authors: Kamal KC, Zhendong Yin, Dasen Li, Zhilu Wu
Abstract:
Intra-plant disease classification based on leaf images is a challenging computer vision task due to similarities in texture, color, and shape of leaves with a slight variation of leaf spot; and external environmental changes such as lighting and background noises. Deep convolutional neural network (DCNN) has proven to be an effective tool for binary classification. In this paper, two methods for binary classification of diseased plant leaves using DCNN are presented; model created from scratch and transfer learning. Our main contribution is a thorough evaluation of 4 networks created from scratch and transfer learning of 5 pre-trained models. Training and testing of these models were performed on a plant leaf images dataset belonging to 16 distinct classes, containing a total of 22,265 images from 8 different plants, consisting of a pair of healthy and diseased leaves. We introduce a deep CNN model, Optimized MobileNet. This model with depthwise separable CNN as a building block attained an average test accuracy of 99.77%. We also present a fine-tuning method by introducing the concept of a convolutional block, which is a collection of different deep neural layers. Fine-tuned models proved to be efficient in terms of accuracy and computational cost. Fine-tuned MobileNet achieved an average test accuracy of 99.89% on 8 pairs of [healthy, diseased] leaf ImageSet.Keywords: deep convolution neural network, depthwise separable convolution, fine-grained classification, MobileNet, plant disease, transfer learning
Procedia PDF Downloads 18814476 Adversarial Attacks and Defenses on Deep Neural Networks
Authors: Jonathan Sohn
Abstract:
Deep neural networks (DNNs) have shown state-of-the-art performance for many applications, including computer vision, natural language processing, and speech recognition. Recently, adversarial attacks have been studied in the context of deep neural networks, which aim to alter the results of deep neural networks by modifying the inputs slightly. For example, an adversarial attack on a DNN used for object detection can cause the DNN to miss certain objects. As a result, the reliability of DNNs is undermined by their lack of robustness against adversarial attacks, raising concerns about their use in safety-critical applications such as autonomous driving. In this paper, we focus on studying the adversarial attacks and defenses on DNNs for image classification. There are two types of adversarial attacks studied which are fast gradient sign method (FGSM) attack and projected gradient descent (PGD) attack. A DNN forms decision boundaries that separate the input images into different categories. The adversarial attack slightly alters the image to move over the decision boundary, causing the DNN to misclassify the image. FGSM attack obtains the gradient with respect to the image and updates the image once based on the gradients to cross the decision boundary. PGD attack, instead of taking one big step, repeatedly modifies the input image with multiple small steps. There is also another type of attack called the target attack. This adversarial attack is designed to make the machine classify an image to a class chosen by the attacker. We can defend against adversarial attacks by incorporating adversarial examples in training. Specifically, instead of training the neural network with clean examples, we can explicitly let the neural network learn from the adversarial examples. In our experiments, the digit recognition accuracy on the MNIST dataset drops from 97.81% to 39.50% and 34.01% when the DNN is attacked by FGSM and PGD attacks, respectively. If we utilize FGSM training as a defense method, the classification accuracy greatly improves from 39.50% to 92.31% for FGSM attacks and from 34.01% to 75.63% for PGD attacks. To further improve the classification accuracy under adversarial attacks, we can also use a stronger PGD training method. PGD training improves the accuracy by 2.7% under FGSM attacks and 18.4% under PGD attacks over FGSM training. It is worth mentioning that both FGSM and PGD training do not affect the accuracy of clean images. In summary, we find that PGD attacks can greatly degrade the performance of DNNs, and PGD training is a very effective way to defend against such attacks. PGD attacks and defence are overall significantly more effective than FGSM methods.Keywords: deep neural network, adversarial attack, adversarial defense, adversarial machine learning
Procedia PDF Downloads 19614475 Anticipating the Change: Visions and Perspectives towards a Post-Car World
Authors: Farzaneh Bahrami
Abstract:
Different indicators, such as modal shares in mobility practices or car ownership, may suggest that the century of car dominance - at least in Europe and North America - is already behind us. If the emergence of the car had radical spatial and social consequences, what would be the implications of its gradual disappearance - which could be expected in the context of ecological consciousness, economic and energetic constraints as a result of both urban policies as well as lifestyle choices? To what extend shall urban experts account for this limited but visible transition from car-dominated systems towards alternative models of mobility in which the individual-motorized mobility (car) is not central; what models of urbanity could be imagined to support such a transformation? We have examined a selection of projects at different scales and within different contexts - new planned cities, dense urban areas or territories of dispersion – whose visions involve a significant shift from the current car system. We have been looking into their tools, strategies and different measures of car reduction, as well as their varied approaches to public space as an inevitable corollary to this change. The car’s dominance was formerly questioned by advocates of public space, rather than through interests in ecological urban design or other urban planning concerns. In the 60s already a universal longing for the qualities of traditional urban space led to a critique of the proliferation of fast roads, and thus the car’s colonization of everyday life. Reclamation of public space as the city’s quintessential social territory reappears today in contemporary discourses and reinforces the shift-provoking trends towards a new urbanity freed from car dominance. In a hypothetical process of the progressive phasing-out of the car, we shall expect fundamental transformations in spatial practices of the city, accompanied by the physical configuration of its public spaces. What will be the main characteristics of the new emerging spaces of sociability and where shall we encounter them? This contribution is an ongoing research within the framework of Post-Car World, an interdisciplinary project that explores the future of mobility through the role of the car.Keywords: mobility, urbanity, future visions, public space
Procedia PDF Downloads 37114474 Hybrid Deep Learning and FAST-BRISK 3D Object Detection Technique for Bin-Picking Application
Authors: Thanakrit Taweesoontorn, Sarucha Yanyong, Poom Konghuayrob
Abstract:
Robotic arms have gained popularity in various industries due to their accuracy and efficiency. This research proposes a method for bin-picking tasks using the Cobot, combining the YOLOv5 CNNs model for object detection and pose estimation with traditional feature detection (FAST), feature description (BRISK), and matching algorithms. By integrating these algorithms and utilizing a small-scale depth sensor camera for capturing depth and color images, the system achieves real-time object detection and accurate pose estimation, enabling the robotic arm to pick objects correctly in both position and orientation. Furthermore, the proposed method is implemented within the ROS framework to provide a seamless platform for robotic control and integration. This integration of robotics, cameras, and AI technology contributes to the development of industrial robotics, opening up new possibilities for automating challenging tasks and improving overall operational efficiency.Keywords: robotic vision, image processing, applications of robotics, artificial intelligent
Procedia PDF Downloads 9714473 Renewable Energy and Ecosystem Services: A Geographi̇cal Classification in Azerbaijan
Authors: Nijat S. İmamverdiyev
Abstract:
The transition to renewable energy sources has become a critical component of global efforts to mitigate climate change and promote sustainable development. However, the deployment of renewable energy technologies can also have significant impacts on ecosystems and the services they provide, such as carbon sequestration, soil fertility, water quality, and biodiversity. It also highlights the potential co-benefits of renewable energy deployment for ecosystem services, such as reducing greenhouse gas emissions and improving air and water quality. Renewable energy sources, such as wind, solar, hydro, and biomass, are increasingly being used to meet the world's energy needs due to their environmentally friendly nature and the desire to reduce greenhouse gas emissions. However, the expansion of renewable energy infrastructure can also impact ecosystem services, which are the benefits that humans derive from nature, such as clean water, air, and food. This geographical assessment aims to evaluate the relationship between renewable energy infrastructure and ecosystem services. Here, also explores potential solutions to mitigate the negative effects of renewable energy infrastructure on ecosystem services, such as the use of ecological compensation measures, biodiversity-friendly design of renewable energy infrastructure, and stakeholder involvement in decision-making processes.Keywords: renewable energy, solar energy, climate change, energy production
Procedia PDF Downloads 6414472 Harmonic Data Preparation for Clustering and Classification
Authors: Ali Asheibi
Abstract:
The rapid increase in the size of databases required to store power quality monitoring data has demanded new techniques for analysing and understanding the data. One suggested technique to assist in analysis is data mining. Preparing raw data to be ready for data mining exploration take up most of the effort and time spent in the whole data mining process. Clustering is an important technique in data mining and machine learning in which underlying and meaningful groups of data are discovered. Large amounts of harmonic data have been collected from an actual harmonic monitoring system in a distribution system in Australia for three years. This amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. In this paper, harmonic data preparation processes to better understanding of the data have been presented. Underlying classes in this data has then been identified using clustering technique based on the Minimum Message Length (MML) method. The underlying operational information contained within the clusters can be rapidly visualised by the engineers. The C5.0 algorithm was used for classification and interpretation of the generated clusters.Keywords: data mining, harmonic data, clustering, classification
Procedia PDF Downloads 25014471 Application of the Mesoporous Silica Oxidants on Immunochromatography Detections
Authors: Chang, Ya-Ju, Hsieh, Pei-Hsin, Wu, Jui-Chuang, Chen-Yang, Yui Whei
Abstract:
A mesoporous silica material was prepared to apply to the lateral-flow immunochromatography for detecting a model biosample. The probe antibody is immobilized on the silica surface as the test line to capture its affinity antigen, which laterally flows through the chromatography strips. The antigen is labeled with nano-gold particles, such that the detection can be visually read out from the test line without instrument aids. The result reveals that the mesoporous material provides a vast area for immobilizing the detection probes. Biosening surfaces corresponding with a positive proportion of detection signals is obtained with the biosample loading.Keywords: mesoporous silica, immunochromatography, lateral-flow strips, biosensors, nano-gold particles
Procedia PDF Downloads 60914470 Unravelling the Knot: Towards a Definition of ‘Digital Labor’
Authors: Marta D'Onofrio
Abstract:
The debate on the digitalization of the economy has raised questions about how both labor and the regulation of work processes are changing due to the introduction of digital technologies in the productive system. Within the literature, the term ‘digital labor’ is commonly used to identify the impact of digitalization on labor. Despite the wide use of this term, it is still not available an unambiguous definition of it, and this could create confusion in the use of terminology and in the attempts of classification. As a consequence, the purpose of this paper is to provide for a definition and to propose a classification of ‘digital labor’, resorting to the theoretical approach of organizational studies.Keywords: digital labor, digitalization, data-driven algorithms, big data, organizational studies
Procedia PDF Downloads 15614469 Detection and Tracking for the Protection of the Elderly and Socially Vulnerable People in the Video Surveillance System
Authors: Mobarok Hossain Bhuyain
Abstract:
Video surveillance processing has attracted various security fields transforming it into one of the leading research fields. Today's demand for detection and tracking of human mobility for security is very useful for human security, such as in crowded areas. Accordingly, video surveillance technology has seen a rapid advancement in recent years, with algorithms analyzing the behavior of people under surveillance automatically. The main motivation of this research focuses on the detection and tracking of the elderly and socially vulnerable people in crowded areas. Degenerate people are a major health concern, especially for elderly people and socially vulnerable people. One major disadvantage of video surveillance is the need for continuous monitoring, especially in crowded areas. To assist the security monitoring live surveillance video, image processing, and artificial intelligence methods can be used to automatically send warning signals to the monitoring officers about elderly people and socially vulnerable people.Keywords: human detection, target tracking, neural network, particle filter
Procedia PDF Downloads 16614468 Classification of Tropical Semi-Modules
Authors: Wagneur Edouard
Abstract:
Tropical algebra is the algebra constructed over an idempotent semifield S. We show here that every m-dimensional tropical module M over S with strongly independent basis can be embedded into Sm, and provide an algebraic invariant -the Γ-matrix of M- which characterises the isomorphy class of M. The strong independence condition also yields a significant improvement to the Whitney embedding for tropical torsion modules published earlier We also show that the strong independence of the basis of M is equivalent to the unique representation of elements of M. Numerous examples illustrate our results.Keywords: classification, idempotent semi-modules, strong independence, tropical algebra
Procedia PDF Downloads 37114467 A Study on the Failure Modes of Steel Moment Frame in Post-Earthquake Fire Using Coupled Mechanical-Thermal Analysis
Authors: Ehsan Asgari, Meisam Afazeli, Nezhla Attarchian
Abstract:
Post-earthquake fire is considered as a major threat in seismic areas. After an earthquake, fire is possible in structures. In this research, the effect of post-earthquake fire on steel moment frames with and without fireproofing coating is investigated. For this purpose, finite element method is employed. For the verification of finite element results, the results of an experimental study carried out by previous researchers are used, and the predicted FE results are compared with the test results, and good agreement is observed. After ensuring the accuracy of the predictions of finite element models, the effect of post-earthquake fire on the frames is investigated taking into account the parameters including the presence or absence of fire protection, frame design assumptions, earthquake type and different fire scenario. Ordinary fire and post-earthquake fire effect on the frames is also studied. The plastic hinges induced by earthquake in the structure are determined in the beam to the column connection and in panel zone. These areas should be accurately considered when providing fireproofing coatings. The results of the study show that the occurrence of fire beside corner columns is the most damaging scenario that results in progressive collapse of structure. It was also concluded that the behavior of structure in fire after a strong ground motion is significantly different from that in a normal fire.Keywords: post earthquake fire, moment frame, finite element simulation, coupled temperature-displacement analysis, fire scenario
Procedia PDF Downloads 15414466 Classification of Potential Biomarkers in Breast Cancer Using Artificial Intelligence Algorithms and Anthropometric Datasets
Authors: Aref Aasi, Sahar Ebrahimi Bajgani, Erfan Aasi
Abstract:
Breast cancer (BC) continues to be the most frequent cancer in females and causes the highest number of cancer-related deaths in women worldwide. Inspired by recent advances in studying the relationship between different patient attributes and features and the disease, in this paper, we have tried to investigate the different classification methods for better diagnosis of BC in the early stages. In this regard, datasets from the University Hospital Centre of Coimbra were chosen, and different machine learning (ML)-based and neural network (NN) classifiers have been studied. For this purpose, we have selected favorable features among the nine provided attributes from the clinical dataset by using a random forest algorithm. This dataset consists of both healthy controls and BC patients, and it was noted that glucose, BMI, resistin, and age have the most importance, respectively. Moreover, we have analyzed these features with various ML-based classifier methods, including Decision Tree (DT), K-Nearest Neighbors (KNN), eXtreme Gradient Boosting (XGBoost), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM) along with NN-based Multi-Layer Perceptron (MLP) classifier. The results revealed that among different techniques, the SVM and MLP classifiers have the most accuracy, with amounts of 96% and 92%, respectively. These results divulged that the adopted procedure could be used effectively for the classification of cancer cells, and also it encourages further experimental investigations with more collected data for other types of cancers.Keywords: breast cancer, diagnosis, machine learning, biomarker classification, neural network
Procedia PDF Downloads 13914465 Real-Time Multi-Vehicle Tracking Application at Intersections Based on Feature Selection in Combination with Color Attribution
Authors: Qiang Zhang, Xiaojian Hu
Abstract:
In multi-vehicle tracking, based on feature selection, the tracking system efficiently tracks vehicles in a video with minimal error in combination with color attribution, which focuses on presenting a simple and fast, yet accurate and robust solution to the problem such as inaccurately and untimely responses of statistics-based adaptive traffic control system in the intersection scenario. In this study, a real-time tracking system is proposed for multi-vehicle tracking in the intersection scene. Considering the complexity and application feasibility of the algorithm, in the object detection step, the detection result provided by virtual loops were post-processed and then used as the input for the tracker. For the tracker, lightweight methods were designed to extract and select features and incorporate them into the adaptive color tracking (ACT) framework. And the approbatory online feature selection algorithms are integrated on the mature ACT system with good compatibility. The proposed feature selection methods and multi-vehicle tracking method are evaluated on KITTI datasets and show efficient vehicle tracking performance when compared to the other state-of-the-art approaches in the same category. And the system performs excellently on the video sequences recorded at the intersection. Furthermore, the presented vehicle tracking system is suitable for surveillance applications.Keywords: real-time, multi-vehicle tracking, feature selection, color attribution
Procedia PDF Downloads 163