Search results for: penalized logistic regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3431

Search results for: penalized logistic regression

2351 Unravelling the Relationship Between Maternal and Fetal ACE2 Gene Polymorphism and Preeclampsia Risk

Authors: Sonia Tamanna, Akramul Hassan, Mohammad Shakil Mahmood, Farzana Ansari, Gowhar Rashid, Mir Fahim Faisal, M. Zakir Hossain Howlader

Abstract:

Background: Preeclampsia (PE), a pregnancy-specific hypertensive disorder, significantly impacts maternal and fetal health. It is particularly prevalent in underdeveloped countries and is linked to preterm delivery and fetal growth. The renin-angiotensin system (RAS) plays a crucial role in ensuring a successful pregnancy outcome, with Angiotensin-Converting Enzyme 2 (ACE2) being a key component. ACE2 converts ANG II to Ang-(1-7), offering protection against ANG II-induced stress and inflammation while regulating blood pressure and osmotic balance during pregnancy. The reduced maternal plasma angiotensin-converting enzyme 2 (ACE2) seen in preeclampsia might contribute to its pathogenesis. However, there has been a dearth of comprehensive research into the association between ACE2 gene polymorphism and preeclampsia. In the South Asian population, hypertension is strongly linked to two SNPs: rs2285666 and rs879922. This genotype was therefore considered, and the possible association of maternal and fetal ACE2 gene polymorphism with preeclampsia within the Bangladeshi population was evaluated. Method: DNA was extracted from peripheral white blood cells (WBCs) using the organic method, and SNP genotyping was done via PCR-RFLP. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated using logistic regression to determine relative risk. Result: A comprehensive case-control study was conducted on 51 PE patients and their infants, along with 56 control subjects and their infants. Maternal single nuvleotide polymorphisms (SNP) (rs2285666) analysis revealed a strong association between the TT genotype and preeclampsia, with a four-fold increased risk in mothers (P=0.024, OR=4.00, 95% CI=1.36-11.37) compared to their ancestral genotype CC. However, the CT genotype (rs2285666) showed no significant difference (P=0.46, OR=1.54, 95% CI=0.57-4.14). Notably, no significant correlation was found in infants, regardless of their gender. For rs879922, no significant association was observed in both mothers and infants. This pioneering study suggests that mothers carrying the ACE2 gene variant rs2285666 (TT allele) may be at higher risk for preeclampsia, potentially influencing hypertension characteristics, whereas rs879922 does not appear to be associated with developing preeclampsia. Conclusion: This study sheds light on the role of ACE2 gene polymorphism, particularly the rs2285666 TT allele, in maternal susceptibility to preeclampsia. However, rs879922 does not appear to be linked to the risk of PE. This research contributes to our understanding of the genetic underpinnings of preeclampsia, offering insights into potential avenues for prevention and management.

Keywords: ACE2, PCR-RFLP, preeclampsia, single nuvleotide polymorphisms (SNPs)

Procedia PDF Downloads 61
2350 Medication Side Effects: Implications on the Mental Health and Adherence Behaviour of Patients with Hypertension

Authors: Irene Kretchy, Frances Owusu-Daaku, Samuel Danquah

Abstract:

Hypertension is the leading risk factor for cardiovascular diseases, and a major cause of death and disability worldwide. This study examined whether psychosocial variables influenced patients’ perception and experience of side effects of their medicines, how they coped with these experiences and the impact on mental health and medication adherence to conventional hypertension therapies. Methods: A hospital-based mixed methods study, using quantitative and qualitative approaches was conducted on hypertensive patients. Participants were asked about side effects, medication adherence, common psychological symptoms, and coping mechanisms with the aid of standard questionnaires. Information from the quantitative phase was analyzed with the Statistical Package for Social Sciences (SPSS) version 20. The interviews from the qualitative study were audio-taped with a digital audio recorder, manually transcribed and analyzed using thematic content analysis. The themes originated from participant interviews a posteriori. Results: The experiences of side effects – such as palpitations, frequent urination, recurrent bouts of hunger, erectile dysfunction, dizziness, cough, physical exhaustion - were categorized as no/low (39.75%), moderate (53.0%) and high (7.25%). Significant relationships between depression (x 2 = 24.21, P < 0.0001), anxiety (x 2 = 42.33, P < 0.0001), stress (x 2 = 39.73, P < 0.0001) and side effects were observed. A logistic regression model using the adjusted results for this association are reported – depression [OR = 1.9 (1.03 – 3.57), p = 0.04], anxiety [OR = 1.5 (1.22 – 1.77), p = < 0.001], and stress [OR = 1.3 (1.02 – 1.71), p = 0.04]. Side effects significantly increased the probability of individuals to be non-adherent [OR = 4.84 (95% CI 1.07 – 1.85), p = 0.04] with social factors, media influences and attitudes of primary caregivers further explaining this relationship. The personal adoption of medication modifying strategies, espousing the use of complementary and alternative treatments, and interventions made by clinicians were the main forms of coping with side effects. Conclusions: Results from this study show that contrary to a biomedical approach, the experience of side effects has biological, social and psychological interrelations. The result offers more support for the need for a multi-disciplinary approach to healthcare where all forms of expertise are incorporated into health provision and patient care. Additionally, medication side effects should be considered as a possible cause of non-adherence among hypertensive patients, thus addressing this problem from a Biopsychosocial perspective in any intervention may improve adherence and invariably control blood pressure.

Keywords: biopsychosocial, hypertension, medication adherence, psychological disorders

Procedia PDF Downloads 372
2349 Investigating the Relationship between Emotional Intelligence and Self-Efficacy of Physical Education Teachers in Ilam Province

Authors: Ali Heyrani, Maryam Saidyousefi

Abstract:

The aim of the present study was to investigate the relationship between emotional intelligence and Self-Efficacy of physical education teachers in Ilam province. The research method is descriptive correlational. The study participants were of 170 physical education teachers (90 males, 80 females) with an age range of 20 to 50 years, who were selected randomly. The instruments for data collection were Emotional Intelligence Questionnaire Bar-on (1997) to assess the Emotional Intelligence teachers and Self-Efficacy Questionnaire to measure their Self-Efficacy. The questionnaires used in the interior are reliable and valid. To analyze the data, descriptive statistics and inferential tests (Kolmogorov-Smirnov test, Pearson correlation and multiple regression) at a significance level of P <0/ 05 were used. The Results showed that there is a significant positive relationship between totall emotional intelligence and Self-Efficacy of teachers, so the more emotional intelligence of physical education teachers the better the extent of Self-Efficacy. Also, the results arising from regression analysis gradually showed that among components of emotional intelligence, three components, the General Mood, Adaptability, and Interpersonal Communication to Self-Efficacy are of a significant positive relationship and are able to predict the Self-Efficacy of physical education teachers. It seems the application of this study ҆s results can help to education authorities to promote the level of teachers’ emotional intelligence and therefore the improvement of their Self-Efficacy and success in learners’ teaching and training.

Keywords: emotional intelligence, self-efficacy, physical education teachers, Ilam province

Procedia PDF Downloads 523
2348 Robust Inference with a Skew T Distribution

Authors: M. Qamarul Islam, Ergun Dogan, Mehmet Yazici

Abstract:

There is a growing body of evidence that non-normal data is more prevalent in nature than the normal one. Examples can be quoted from, but not restricted to, the areas of Economics, Finance and Actuarial Science. The non-normality considered here is expressed in terms of fat-tailedness and asymmetry of the relevant distribution. In this study a skew t distribution that can be used to model a data that exhibit inherent non-normal behavior is considered. This distribution has tails fatter than a normal distribution and it also exhibits skewness. Although maximum likelihood estimates can be obtained by solving iteratively the likelihood equations that are non-linear in form, this can be problematic in terms of convergence and in many other respects as well. Therefore, it is preferred to use the method of modified maximum likelihood in which the likelihood estimates are derived by expressing the intractable non-linear likelihood equations in terms of standardized ordered variates and replacing the intractable terms by their linear approximations obtained from the first two terms of a Taylor series expansion about the quantiles of the distribution. These estimates, called modified maximum likelihood estimates, are obtained in closed form. Hence, they are easy to compute and to manipulate analytically. In fact the modified maximum likelihood estimates are equivalent to maximum likelihood estimates, asymptotically. Even in small samples the modified maximum likelihood estimates are found to be approximately the same as maximum likelihood estimates that are obtained iteratively. It is shown in this study that the modified maximum likelihood estimates are not only unbiased but substantially more efficient than the commonly used moment estimates or the least square estimates that are known to be biased and inefficient in such cases. Furthermore, in conventional regression analysis, it is assumed that the error terms are distributed normally and, hence, the well-known least square method is considered to be a suitable and preferred method for making the relevant statistical inferences. However, a number of empirical researches have shown that non-normal errors are more prevalent. Even transforming and/or filtering techniques may not produce normally distributed residuals. Here, a study is done for multiple linear regression models with random error having non-normal pattern. Through an extensive simulation it is shown that the modified maximum likelihood estimates of regression parameters are plausibly robust to the distributional assumptions and to various data anomalies as compared to the widely used least square estimates. Relevant tests of hypothesis are developed and are explored for desirable properties in terms of their size and power. The tests based upon modified maximum likelihood estimates are found to be substantially more powerful than the tests based upon least square estimates. Several examples are provided from the areas of Economics and Finance where such distributions are interpretable in terms of efficient market hypothesis with respect to asset pricing, portfolio selection, risk measurement and capital allocation, etc.

Keywords: least square estimates, linear regression, maximum likelihood estimates, modified maximum likelihood method, non-normality, robustness

Procedia PDF Downloads 397
2347 Machine Learning Prediction of Diabetes Prevalence in the U.S. Using Demographic, Physical, and Lifestyle Indicators: A Study Based on NHANES 2009-2018

Authors: Oluwafunmibi Omotayo Fasanya, Augustine Kena Adjei

Abstract:

To develop a machine learning model to predict diabetes (DM) prevalence in the U.S. population using demographic characteristics, physical indicators, and lifestyle habits, and to analyze how these factors contribute to the likelihood of diabetes. We analyzed data from 23,546 participants aged 20 and older, who were non-pregnant, from the 2009-2018 National Health and Nutrition Examination Survey (NHANES). The dataset included key demographic (age, sex, ethnicity), physical (BMI, leg length, total cholesterol [TCHOL], fasting plasma glucose), and lifestyle indicators (smoking habits). A weighted sample was used to account for NHANES survey design features such as stratification and clustering. A classification machine learning model was trained to predict diabetes status. The target variable was binary (diabetes or non-diabetes) based on fasting plasma glucose measurements. The following models were evaluated: Logistic Regression (baseline), Random Forest Classifier, Gradient Boosting Machine (GBM), Support Vector Machine (SVM). Model performance was assessed using accuracy, F1-score, AUC-ROC, and precision-recall metrics. Feature importance was analyzed using SHAP values to interpret the contributions of variables such as age, BMI, ethnicity, and smoking status. The Gradient Boosting Machine (GBM) model outperformed other classifiers with an AUC-ROC score of 0.85. Feature importance analysis revealed the following key predictors: Age: The most significant predictor, with diabetes prevalence increasing with age, peaking around the 60s for males and 70s for females. BMI: Higher BMI was strongly associated with a higher risk of diabetes. Ethnicity: Black participants had the highest predicted prevalence of diabetes (14.6%), followed by Mexican-Americans (13.5%) and Whites (10.6%). TCHOL: Diabetics had lower total cholesterol levels, particularly among White participants (mean decline of 23.6 mg/dL). Smoking: Smoking showed a slight increase in diabetes risk among Whites (0.2%) but had a limited effect in other ethnic groups. Using machine learning models, we identified key demographic, physical, and lifestyle predictors of diabetes in the U.S. population. The results confirm that diabetes prevalence varies significantly across age, BMI, and ethnic groups, with lifestyle factors such as smoking contributing differently by ethnicity. These findings provide a basis for more targeted public health interventions and resource allocation for diabetes management.

Keywords: diabetes, NHANES, random forest, gradient boosting machine, support vector machine

Procedia PDF Downloads 12
2346 The Use of Boosted Multivariate Trees in Medical Decision-Making for Repeated Measurements

Authors: Ebru Turgal, Beyza Doganay Erdogan

Abstract:

Machine learning aims to model the relationship between the response and features. Medical decision-making researchers would like to make decisions about patients’ course and treatment, by examining the repeated measurements over time. Boosting approach is now being used in machine learning area for these aims as an influential tool. The aim of this study is to show the usage of multivariate tree boosting in this field. The main reason for utilizing this approach in the field of decision-making is the ease solutions of complex relationships. To show how multivariate tree boosting method can be used to identify important features and feature-time interaction, we used the data, which was collected retrospectively from Ankara University Chest Diseases Department records. Dataset includes repeated PF ratio measurements. The follow-up time is planned for 120 hours. A set of different models is tested. In conclusion, main idea of classification with weighed combination of classifiers is a reliable method which was shown with simulations several times. Furthermore, time varying variables will be taken into consideration within this concept and it could be possible to make accurate decisions about regression and survival problems.

Keywords: boosted multivariate trees, longitudinal data, multivariate regression tree, panel data

Procedia PDF Downloads 203
2345 Secure Image Encryption via Enhanced Fractional Order Chaotic Map

Authors: Ismail Haddad, Djamel Herbadji, Aissa Belmeguenai, Selma Boumerdassi

Abstract:

in this paper, we provide a novel approach for image encryption that employs the Fibonacci matrix and an enhanced fractional order chaotic map. The enhanced map overcomes the drawbacks of the classical map, especially the limited chaotic range and non-uniform distribution of chaotic sequences, resulting in a larger encryption key space. As a result, this strategy improves the encryption system's security. Our experimental results demonstrate that our proposed algorithm effectively encrypts grayscale images with exceptional efficiency. Furthermore, our technique is resistant to a wide range of potential attacks, including statistical and entropy attacks.

Keywords: image encryption, logistic map, fibonacci matrix, grayscale images

Procedia PDF Downloads 318
2344 Bioeconomic Modeling for the Sustainable Exploitation of Three Key Marine Species in Morocco

Authors: I .Ait El Harch, K. Outaaoui, Y. El Foutayeni

Abstract:

This study aims to deepen the understanding and optimize fishing activity in Morocco by holistically integrating biological and economic aspects. We develop a biological equilibrium model in which these competing species present their natural growth by logistic equations, taking into account density and competition between them. The integration of human intervention adds a realistic dimension to our model. A company specifically targets the three species, thus influencing population dynamics according to their fishing activities. The aim of this work is to determine the fishing effort that maximizes the company’s profit, taking into account the constraints associated with conserving ecosystem equilibrium.

Keywords: bioeconomical modeling, optimization techniques, linear complementarity problem LCP, biological equilibrium, maximizing profits

Procedia PDF Downloads 27
2343 Development of a Novel Clinical Screening Tool, Using the BSGE Pain Questionnaire, Clinical Examination and Ultrasound to Predict the Severity of Endometriosis Prior to Laparoscopic Surgery

Authors: Marlin Mubarak

Abstract:

Background: Endometriosis is a complex disabling disease affecting young females in the reproductive period mainly. The aim of this project is to generate a diagnostic model to predict severity and stage of endometriosis prior to Laparoscopic surgery. This will help to improve the pre-operative diagnostic accuracy of stage 3 & 4 endometriosis and as a result, refer relevant women to a specialist centre for complex Laparoscopic surgery. The model is based on the British Society of Gynaecological Endoscopy (BSGE) pain questionnaire, clinical examination and ultrasound scan. Design: This is a prospective, observational, study, in which women completed the BSGE pain questionnaire, a BSGE requirement. Also, as part of the routine preoperative assessment patient had a routine ultrasound scan and when recto-vaginal and deep infiltrating endometriosis was suspected an MRI was performed. Setting: Luton & Dunstable University Hospital. Patients: Symptomatic women (n = 56) scheduled for laparoscopy due to pelvic pain. The age ranged between 17 – 52 years of age (mean 33.8 years, SD 8.7 years). Interventions: None outside the recognised and established endometriosis centre protocol set up by BSGE. Main Outcome Measure(s): Sensitivity and specificity of endometriosis diagnosis predicted by symptoms based on BSGE pain questionnaire, clinical examinations and imaging. Findings: The prevalence of diagnosed endometriosis was calculated to be 76.8% and the prevalence of advanced stage was 55.4%. Deep infiltrating endometriosis in various locations was diagnosed in 32/56 women (57.1%) and some had DIE involving several locations. Logistic regression analysis was performed on 36 clinical variables to create a simple clinical prediction model. After creating the scoring system using variables with P < 0.05, the model was applied to the whole dataset. The sensitivity was 83.87% and specificity 96%. The positive likelihood ratio was 20.97 and the negative likelihood ratio was 0.17, indicating that the model has a good predictive value and could be useful in predicting advanced stage endometriosis. Conclusions: This is a hypothesis-generating project with one operator, but future proposed research would provide validation of the model and establish its usefulness in the general setting. Predictive tools based on such model could help organise the appropriate investigation in clinical practice, reduce risks associated with surgery and improve outcome. It could be of value for future research to standardise the assessment of women presenting with pelvic pain. The model needs further testing in a general setting to assess if the initial results are reproducible.

Keywords: deep endometriosis, endometriosis, minimally invasive, MRI, ultrasound.

Procedia PDF Downloads 355
2342 Monitoring Blood Pressure Using Regression Techniques

Authors: Qasem Qananwah, Ahmad Dagamseh, Hiam AlQuran, Khalid Shaker Ibrahim

Abstract:

Blood pressure helps the physicians greatly to have a deep insight into the cardiovascular system. The determination of individual blood pressure is a standard clinical procedure considered for cardiovascular system problems. The conventional techniques to measure blood pressure (e.g. cuff method) allows a limited number of readings for a certain period (e.g. every 5-10 minutes). Additionally, these systems cause turbulence to blood flow; impeding continuous blood pressure monitoring, especially in emergency cases or critically ill persons. In this paper, the most important statistical features in the photoplethysmogram (PPG) signals were extracted to estimate the blood pressure noninvasively. PPG signals from more than 40 subjects were measured and analyzed and 12 features were extracted. The features were fed to principal component analysis (PCA) to find the most important independent features that have the highest correlation with blood pressure. The results show that the stiffness index means and standard deviation for the beat-to-beat heart rate were the most important features. A model representing both features for Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) was obtained using a statistical regression technique. Surface fitting is used to best fit the series of data and the results show that the error value in estimating the SBP is 4.95% and in estimating the DBP is 3.99%.

Keywords: blood pressure, noninvasive optical system, principal component analysis, PCA, continuous monitoring

Procedia PDF Downloads 161
2341 A Longitudinal Study on the Relationship between Physical Activity and Gestational Weight Gain

Authors: Chia-Ching Sun, Li-Yin Chien, Chun-Ting Hsiao

Abstract:

Background: Appropriate gestation weight gain benefits pregnant women and their children; however, excessive weight gain could raise the risk of adverse health outcomes and chronicle diseases. Nevertheless, there is currently limited evidence on the effect of physical activities on pregnant women’s gestational weight gain. Purpose: This study aimed to explore the correlation between the level of physical activity and gestation weight gain during the second and third trimester of pregnancy. Methods: This longitudinal study enrolled 800 healthy pregnant women aged over 20 from six hospitals in northern Taiwan. Structured questionnaires were used to collect data twice for each participant during 14-27 and 28-40 weeks of gestation. Variables included demographic data, maternal health history, and lifestyle. The International Physical Activity Questionnaire-short form was used to measure the level of physical activity from walking and of moderate-intensity and vigorous-intensity before and during pregnancy. Weight recorded at prenatal checkups were used to calculate average weight gain in each trimester of pregnancy. T-tests, ANOVA, chi-squared tests, and multivariable logistic regression models were applied to determine the predicting factors for weight gain during the second and third trimester. Result: Participants who had achieved recommended physical activity level (150 minutes of moderate physical activity or 75 minutes of vigorous physical activity a week) before pregnancy (aOR=1.85, 95% CI=1.27-2.67) or who achieved recommended walking level (150 minutes a week) during the second trimester of pregnancy (aOR=1.43, 95% CI= 1.00-2.04) gained significantly more weight during the second trimester. Compared with those who did not reach recommended level of moderate-intensity physical activity (150 minutes a week), women who had reached that during the second trimester were more likely to be in the less than recommended weight gain group than in the recommended weight gain group (aOR=2.06, CI=1.06-4.00). However, there was no significant correlation between physical activity level and weight gain in the third trimester. Other predicting factors of excessive weight gain included education level which showed a negative correlation (aOR=0.38, CI=0.17-0.88), whereas overweight and obesity before pregnancy showed a positive correlation (OR=3.97, CI=1.23-12.78). Conclusions/implications for practice: Participants who had achieved recommended physical activity level before pregnancy significantly reduced exercise during pregnancy and gained excessive weight during the second trimester. However, women who engaged in the practice of physical activity as recommended could effectively control weight gain in the third trimester. Healthcare professionals could suggest that pregnant women who exercise maintain their pre-pregnancy level of physical activity, given activities requiring physical contact or causing falls are avoided. For those who do not exercise, health professionals should encourage them to gradually increase the level of physical activity. Health promotion strategies related to weight control and physical activity level achievement should be given to women before pregnancy.

Keywords: pregnant woman, physical activity, gestation weight gain, obesity, overweight

Procedia PDF Downloads 156
2340 Development of PCI Prediction Models for Distress Evaluation of Asphalt Pavements

Authors: Hamid Noori

Abstract:

A scientific approach is essential for evaluating pavement surface conditions at the network level. The Pavement Condition Index (PCI) is widely used to assess surface conditions and determine appropriate treatments. This study examines three national highways using a network survey vehicle to collect distress data. The first two corridors were used for evaluation and comparison, while the third corridor validated the predicted PCI values. Multiple linear regression (MLR) initially modeled the relationship between PCI and distress variables but showed poor predictive accuracy. Therefore, K-nearest neighbors (KNN) and artificial neural network (ANN) models were developed, providing better results. A methodology for prioritizing pavement sections was introduced, and the pavement sections were based on PCI, IRI, and rut values through Combined Index Rankings (CIR). In addition, a methodology has been proposed for the selection of appropriate treatment of the ranked candidate pavement section. The proposed treatment selection process considers PCI, IRI, rutting, and FWD test results, aligning with a customized PCI rating scale. A Decision Tree was developed to recommend suitable treatments based on these criteria.

Keywords: pavement distresses, pavement condition index, multiple linear regression, artificial neural network, k-nearest neighbors, combined index ranking

Procedia PDF Downloads 0
2339 Incidence of and Risk Factors for Post-Operative Cognitive Dysfunction (POCD) in Neurosurgical Patients: A Prospective Cohort Study

Authors: Suparna Bharadwaj, Sriganesh Kamath, Gopalakrishna K. N., Subhas Konar

Abstract:

Introduction: Post-operative cognitive dysfunction (POCD) is a spectrum of clinical syndrome presenting as emergence delirium (ED) and/or post-operative delirium (POD). ED is a transient state (minutes to hours) of marked agitation after the discontinuation of general anesthesia, which does not respond to consoling measures. On the other hand, POD without identifiable etiology is not temporally related to emergence from anesthesia. These patients often emerge smoothly and may be lucid in the post-anesthesia care unit (PACU), but may develop fluctuating mental status, most commonly between postoperative days one and three. General anesthesia (GA) has been identified as a risk factor for POCD. Cranial surgeries involve brain handling in addition to exposure to GA. We hypothesize that the incidence of postoperative delirium after cranial surgery is twice that of spinal surgery. The primary objective of this study was to evaluate the incidence of emergence delirium and postoperative delirium in patients undergoing cranial and spinal neurosurgeries. The secondary objective was to identify the perioperative risk factors of ED and POD. Methods: This was a prospective cohort observation study conducted from March 2020 to September 2023 conducted at a tertiary neurocentre. After obtaining institutional ethics committee approval, adult patients undergoing cranial or spinal surgery with a Glasgow coma scale of 15 were included in the study. Patients undergoing cranial surgery are considered exposed to risk factors, while patients undergoing spinal surgery are considered unexposed. All study subjects received standard general anesthesia. About twenty perioperative parameters were identified as risk factors for POCD. ED was assessed using the Riker sedation agitation scale, and POD was assessed using the confusion assessment method. A sample size of 2000 patients was planned with 1000 each cranial and spinal cases. However, around 700 spinal patients could be recruited for this study. Results: In this study, about two thousand patients were screened for inclusion. However, 1185 cranial cases and 742 spinal cases were considered for final analysis. Both the groups were similar in terms of demographics. Incidence of ED was 25.8% after cranial surgery vs 10.24% after spinal surgery (relative risk 2.5). The incidence of POD after cranial surgery is 20.25% vs 2.15% after cranial surgery (relative risk 9.3). All the proposed risk factors were assessed using binomial logistic regression. Conclusion: Cranial cases expose patients to a nine times higher risk for the development of postoperative delirium. The presence of ED predisposes to POD representing a spectrum.

Keywords: post operative cognitive dysfunction, Neurosurgical patients cohort study, cohort study, emergence delirium

Procedia PDF Downloads 12
2338 Predictive Analysis of the Stock Price Market Trends with Deep Learning

Authors: Suraj Mehrotra

Abstract:

The stock market is a volatile, bustling marketplace that is a cornerstone of economics. It defines whether companies are successful or in spiral. A thorough understanding of it is important - many companies have whole divisions dedicated to analysis of both their stock and of rivaling companies. Linking the world of finance and artificial intelligence (AI), especially the stock market, has been a relatively recent development. Predicting how stocks will do considering all external factors and previous data has always been a human task. With the help of AI, however, machine learning models can help us make more complete predictions in financial trends. Taking a look at the stock market specifically, predicting the open, closing, high, and low prices for the next day is very hard to do. Machine learning makes this task a lot easier. A model that builds upon itself that takes in external factors as weights can predict trends far into the future. When used effectively, new doors can be opened up in the business and finance world, and companies can make better and more complete decisions. This paper explores the various techniques used in the prediction of stock prices, from traditional statistical methods to deep learning and neural networks based approaches, among other methods. It provides a detailed analysis of the techniques and also explores the challenges in predictive analysis. For the accuracy of the testing set, taking a look at four different models - linear regression, neural network, decision tree, and naïve Bayes - on the different stocks, Apple, Google, Tesla, Amazon, United Healthcare, Exxon Mobil, J.P. Morgan & Chase, and Johnson & Johnson, the naïve Bayes model and linear regression models worked best. For the testing set, the naïve Bayes model had the highest accuracy along with the linear regression model, followed by the neural network model and then the decision tree model. The training set had similar results except for the fact that the decision tree model was perfect with complete accuracy in its predictions, which makes sense. This means that the decision tree model likely overfitted the training set when used for the testing set.

Keywords: machine learning, testing set, artificial intelligence, stock analysis

Procedia PDF Downloads 96
2337 Optimization of Hemp Fiber Reinforced Concrete for Various Environmental Conditions

Authors: Zoe Chang, Max Williams, Gautham Das

Abstract:

The purpose of this study is to evaluate the incorporation of hemp fibers (HF) in concrete. Hemp fiber reinforced concrete (HFRC) is becoming more popular as an alternative for regular mix designs. This study was done to evaluate the compressive strength of HFRC regarding mix procedure. Hemp fibers were obtained from the manufacturer and hand-processed to ensure uniformity in width and length. The fibers were added to the concrete as both wet and dry mixes to investigate and optimize the mix design process. Results indicated that the dry mix had a compressive strength of 1157 psi compared to the wet mix of 985 psi. This dry mix compressive strength was within range of the standard mix compressive strength of 1533 psi. The statistical analysis revealed that the mix design process needs further optimization and uniformity concerning the addition of HF. Regression analysis revealed the standard mix design had a coefficient of 0.9 as compared to the dry mix of 0.375, indicating a variation in the mixing process. While completing the dry mix, the addition of plain hemp fibers caused them to intertwine, creating lumps and inconsistency. However, during the wet mixing process, combining water and hemp fibers before incorporation allows the fibers to uniformly disperse within the mix; hence the regression analysis indicated a better coefficient of 0.55. This study concludes that HRFC is a viable alternative to regular mixes; however, more research surrounding its characteristics needs to be conducted.

Keywords: hemp fibers, hemp reinforced concrete, wet & dry, freeze thaw testing, compressive strength

Procedia PDF Downloads 200
2336 Impact Factor Analysis for Spatially Varying Aerosol Optical Depth in Wuhan Agglomeration

Authors: Wenting Zhang, Shishi Liu, Peihong Fu

Abstract:

As an indicator of air quality and directly related to concentration of ground PM2.5, the spatial-temporal variation and impact factor analysis of Aerosol Optical Depth (AOD) have been a hot spot in air pollution. This paper concerns the non-stationarity and the autocorrelation (with Moran’s I index of 0.75) of the AOD in Wuhan agglomeration (WHA), in central China, uses the geographically weighted regression (GRW) to identify the spatial relationship of AOD and its impact factors. The 3 km AOD product of Moderate Resolution Imaging Spectrometer (MODIS) is used in this study. Beyond the economic-social factor, land use density factors, vegetable cover, and elevation, the landscape metric is also considered as one factor. The results suggest that the GWR model is capable of dealing with spatial varying relationship, with R square, corrected Akaike Information Criterion (AICc) and standard residual better than that of ordinary least square (OLS) model. The results of GWR suggest that the urban developing, forest, landscape metric, and elevation are the major driving factors of AOD. Generally, the higher AOD trends to located in the place with higher urban developing, less forest, and flat area.

Keywords: aerosol optical depth, geographically weighted regression, land use change, Wuhan agglomeration

Procedia PDF Downloads 357
2335 Fear of Negative Evaluation, Social Support and Wellbeing in People with Vitiligo

Authors: Rafia Rafique, Mutmina Zainab

Abstract:

The present study investigated the relationship between fear of negative evaluation (FNE), social support and well-being in people with Vitiligo. It was hypothesized that low level of FNE and greater social support is likely to predict well-being. It was also hypothesized that social support is likely to moderate the relationship between FNE and well-being. Correlational research design was used for the present study. Non-probability purposive sampling technique was used to collect a sample (N=122) of people with Vitiligo. Hierarchical Moderated Regression analysis was used to test prediction and moderation. Brief Fear of Negative Evaluation Scale, Multidimensional Scale of Perceived Social Support (MSPSS) and Mental Health Continuum-Short form (MHC-SF) were used to evaluate the study variables. Fear of negative evaluation negatively predicted well-being (emotional and psychological). Social support from significant others and friends predicted social well-being. Social Support from family predicted emotional and psychological well-being. It was found that social support from significant others moderated the relationship between FNE and emotional well-being and social support from family moderated the relationship between FNE and social well-being. Dermatologists treating people with Vitiligo need to educate them and their families about the buffering role of social support (family and significant others). Future studies need to focus on other important mediating factors that can possibly explain the relationship between fear of negative evaluation and wellbeing.

Keywords: fear of negative evaluation, hierarchical moderated regression, vitiligo, well-being

Procedia PDF Downloads 303
2334 Transformational Justice for Employees' Job Satisfaction

Authors: Hassan Barau Singhry

Abstract:

Purpose: Leadership or the absence of it is an important behaviour affecting employees’ job satisfaction. Although, there are many models of leadership, one that stands out in a period of change is the transformational behaviour. The aim of this study is to investigate the role of an organizational justice on the relationship between transformational leadership and employee job satisfaction. The study is based on the assumption that change begins with leaders and leaders should be fair and just. Methodology: A cross-sectional survey through structured questionnaire was employed to collect the data of this study. The population is selected the three tiers of government such as the local, state, and federal governments in Nigeria. The sampling method used in this research is stratified random sampling. 418 middle managers of public organizations respondents to the questionnaire. Multiple regression aided by structural equation modeling was employed to test 4 hypothesized relationships. Finding: The regression results support for the mediating role of organizational justice such as distributive, procedural, interpersonal and informational justice in the link between transformational leadership and job satisfaction. Originality/value: This study adds to the literature of human resource management by empirically validating and integrating transformational leadership behaviour with the four dimensions of organizational justice theory. The study is expected to be beneficial to the top and middle-level administrators as well as theory building and testing.

Keywords: distributive justice, job satisfaction, organizational justice, procedural justice, transformational leadership

Procedia PDF Downloads 175
2333 Application of Groundwater Level Data Mining in Aquifer Identification

Authors: Liang Cheng Chang, Wei Ju Huang, You Cheng Chen

Abstract:

Investigation and research are keys for conjunctive use of surface and groundwater resources. The hydrogeological structure is an important base for groundwater analysis and simulation. Traditionally, the hydrogeological structure is artificially determined based on geological drill logs, the structure of wells, groundwater levels, and so on. In Taiwan, groundwater observation network has been built and a large amount of groundwater-level observation data are available. The groundwater level is the state variable of the groundwater system, which reflects the system response combining hydrogeological structure, groundwater injection, and extraction. This study applies analytical tools to the observation database to develop a methodology for the identification of confined and unconfined aquifers. These tools include frequency analysis, cross-correlation analysis between rainfall and groundwater level, groundwater regression curve analysis, and decision tree. The developed methodology is then applied to groundwater layer identification of two groundwater systems: Zhuoshui River alluvial fan and Pingtung Plain. The abovementioned frequency analysis uses Fourier Transform processing time-series groundwater level observation data and analyzing daily frequency amplitude of groundwater level caused by artificial groundwater extraction. The cross-correlation analysis between rainfall and groundwater level is used to obtain the groundwater replenishment time between infiltration and the peak groundwater level during wet seasons. The groundwater regression curve, the average rate of groundwater regression, is used to analyze the internal flux in the groundwater system and the flux caused by artificial behaviors. The decision tree uses the information obtained from the above mentioned analytical tools and optimizes the best estimation of the hydrogeological structure. The developed method reaches training accuracy of 92.31% and verification accuracy 93.75% on Zhuoshui River alluvial fan and training accuracy 95.55%, and verification accuracy 100% on Pingtung Plain. This extraordinary accuracy indicates that the developed methodology is a great tool for identifying hydrogeological structures.

Keywords: aquifer identification, decision tree, groundwater, Fourier transform

Procedia PDF Downloads 157
2332 Blood Glucose Level Measurement from Breath Analysis

Authors: Tayyab Hassan, Talha Rehman, Qasim Abdul Aziz, Ahmad Salman

Abstract:

The constant monitoring of blood glucose level is necessary for maintaining health of patients and to alert medical specialists to take preemptive measures before the onset of any complication as a result of diabetes. The current clinical monitoring of blood glucose uses invasive methods repeatedly which are uncomfortable and may result in infections in diabetic patients. Several attempts have been made to develop non-invasive techniques for blood glucose measurement. In this regard, the existing methods are not reliable and are less accurate. Other approaches claiming high accuracy have not been tested on extended dataset, and thus, results are not statistically significant. It is a well-known fact that acetone concentration in breath has a direct relation with blood glucose level. In this paper, we have developed the first of its kind, reliable and high accuracy breath analyzer for non-invasive blood glucose measurement. The acetone concentration in breath was measured using MQ 138 sensor in the samples collected from local hospitals in Pakistan involving one hundred patients. The blood glucose levels of these patients are determined using conventional invasive clinical method. We propose a linear regression classifier that is trained to map breath acetone level to the collected blood glucose level achieving high accuracy.

Keywords: blood glucose level, breath acetone concentration, diabetes, linear regression

Procedia PDF Downloads 173
2331 Qsar Studies of Certain Novel Heterocycles Derived From bis-1, 2, 4 Triazoles as Anti-Tumor Agents

Authors: Madhusudan Purohit, Stephen Philip, Bharathkumar Inturi

Abstract:

In this paper we report the quantitative structure activity relationship of novel bis-triazole derivatives for predicting the activity profile. The full model encompassed a dataset of 46 Bis- triazoles. Tripos Sybyl X 2.0 program was used to conduct CoMSIA QSAR modeling. The Partial Least-Squares (PLS) analysis method was used to conduct statistical analysis and to derive a QSAR model based on the field values of CoMSIA descriptor. The compounds were divided into test and training set. The compounds were evaluated by various CoMSIA parameters to predict the best QSAR model. An optimum numbers of components were first determined separately by cross-validation regression for CoMSIA model, which were then applied in the final analysis. A series of parameters were used for the study and the best fit model was obtained using donor, partition coefficient and steric parameters. The CoMSIA models demonstrated good statistical results with regression coefficient (r2) and the cross-validated coefficient (q2) of 0.575 and 0.830 respectively. The standard error for the predicted model was 0.16322. In the CoMSIA model, the steric descriptors make a marginally larger contribution than the electrostatic descriptors. The finding that the steric descriptor is the largest contributor for the CoMSIA QSAR models is consistent with the observation that more than half of the binding site area is occupied by steric regions.

Keywords: 3D QSAR, CoMSIA, triazoles, novel heterocycles

Procedia PDF Downloads 444
2330 Use of Protection Motivation Theory to Assess Preventive Behaviors of COVID-19

Authors: Maryam Khazaee-Pool, Tahereh Pashaei, Koen Ponnet

Abstract:

Background: The global prevalence and morbidity of Coronavirus disease 2019 (COVID-19) are high. Preventive behaviors are proven to reduce the damage caused by the disease. There is a paucity of information on determinants of preventive behaviors in response to COVID-19 in Mazandaran province, north of Iran. So, we aimed to evaluate the protection motivation theory (PMT) in promoting preventive behaviors of COVID-19 in Mazandaran province. Materials and Methods: In this descriptive cross-sectional study, 1220 individuals participated. They were selected via social networks using convenience sampling in 2020. Data were collected online using a demographic questionnaire and a valid and reliable scale based on PMT. Data analysis was done using the Pearson correlation coefficient and linear regression in SPSS V24. Result: The mean age of the participants was 39.34±8.74 years. The regression model showed perceived threat (ß =0.033, P =0.007), perceived costs (ß=0.039, P=0.045), perceived self-efficacy (ß =0.116, P>0.001), and perceived fear (ß=0.131, P>0.001) as the significant predictors of COVID-19 preventive behaviors. This model accounted for 78% of the variance in these behaviors. Conclusion: According to constructs of the PMT associated with protection against COVID-19, educational programs and health promotion based on the theory and benefiting from social networks could be helpful in increasing the motivation of people towards protective behaviors against COVID-19.

Keywords: questionnaire development, validation, intention, prevention, covid-19

Procedia PDF Downloads 44
2329 Epidemiology, Clinical, Immune, and Molecular Profiles of Microsporidiosis and Cryptosporidiosis among HIV/AIDS patients

Authors: Roger WUMBA

Abstract:

The objective of this study was to determine the prevalence of intestinal parasites, with special emphasis on microsporidia and Cryptosporidium, as well as their association with human immunodeficiency virus (HIV) symptoms, risk factors, and other digestive parasites. We also wish to determine the molecular biology definitions of the species and genotypes of microsporidia and Cryptosporidium in HIV patients. In this cross-sectional study, carried out in Kinshasa, Democratic Republic of the Congo, stool samples were collected from 242 HIV patients (87 men and 155 women) with referred symptoms and risk factors for opportunistic intestinal parasites. The analysis of feces specimen were performed using Ziehl–Neelsen stainings, real-time polymerase chain reaction (PCR), immunofluorescence indirect monoclonal antibody, nested PCR-restriction fragment length polymorphism, and PCR amplification and sequencing. Odds ratio (OR) and 95% confidence intervals were used to quantify the risk. Of the 242 HIV patients, 7.8%, 0.4%, 5.4%, 0.4%, 2%, 10.6%, and 2.8% had Enterocytozoon bieneusi, Encephalitozoon intestinalis, Cryptosporidium spp., Isospora belli, pathogenic intestinal protozoa, nonpathogenic intestinal protozoa, and helminths, respectively. We found five genotypes of E. bieneusi: two older, NIA1 and D, and three new, KIN1, KIN2, and KIN3. Only 0.4% and 1.6% had Cryptosporidium parvum and Cryptosporidium hominis, respectively. Of the patients, 36.4%, 34.3%, 31%, and 39% had asthenia, diarrhea, a CD4 count of ,100 cells/mm³, and no antiretroviral therapy (ART), respectively. The majority of those with opportunistic intestinal parasites and C. hominis, and all with C. parvum and new E. bieneusi genotypes, had diarrhea, low CD4+ counts of ,100 cells/mm³, and no ART. There was a significant association between Entamoeba coli, Kaposi sarcoma, herpes zoster, chronic diarrhea, and asthenia, and the presence of 28 cases with opportunistic intestinal parasites. Rural areas, public toilets, and exposure to farm pigs were the univariate risk factors present in the 28 cases with opportunistic intestinal parasites. In logistic regression analysis, a CD4 count of ,100 cells/mm³ (OR = 4.60; 95% CI 1.70–12.20; P = 0.002), no ART (OR = 5.00; 95% CI 1.90–13.20; P , 0.001), and exposure to surface water (OR = 2.90; 95% CI 1.01–8.40; P = 0.048) were identified as the significant and independent determinants for the presence of opportunistic intestinal parasites. E. bieneusi and Cryptosporidium are becoming more prevalent in Kinshasa, Congo. Based on the findings, we recommend epidemiology surveillance and prevention by means of hygiene, the emphasis of sensitive PCR methods, and treating opportunistic intestinal parasites that may be acquired through fecal–oral transmission, surface water, normal immunity, rural area-based person–person and animal–human nfection, and transmission of HIV. Therapy, including ART and treatment with fumagillin, is needed.

Keywords: diarrhea, enterocytozoon bieneusi, cryptosporidium hominis, cryptosporidium parvum, risk factors, africans

Procedia PDF Downloads 126
2328 Cross-Sectional Analysis of the Health Product E-Commerce Market in Singapore

Authors: Andrew Green, Jiaming Liu, Kellathur Srinivasan, Raymond Chua

Abstract:

Introduction: The size of Singapore’s online health product (HP) market (e-commerce) is largely unknown. However, it is recognized that a large majority comes from overseas and thus, unregulated. As buying HP from unauthorized sources significantly compromises public health safety, understanding e-commerce users’ demographics and their perceptions on online HP purchasing becomes a pivotal first step to form a basis for recommendations in Singapore’s pharmacovigilance efforts. Objective: To assess the prevalence of online HP purchasing behaviour among Singaporean e-commerce users. Methodology: This is a cross-sectional study targeting Singaporean e-commerce users recruited from various local websites and online forums. Participants were not randomized into study arms but instead stratified by random sampling method based on participants’ age. A self-administered anonymous questionnaire was used to explore participants' demographics, online HP purchasing behaviour, knowledge and attitude. The association of different variables with online HP purchasing behaviour was analysed using logistic regression statistics. Main outcome measures: Prevalence of HP e-commerce users in Singapore (%) and variables that contribute to the prevalence (adjusted prevalent ratio). Results: The study recruited 372 complete and valid responses. The prevalence of online HP consumers among e-commerce users in Singapore is estimated to be 55.9% (1.7 million consumers). Online purchasing of complementary HP (46.9%) was the most prevalent, followed by medical devices (21.6%) and Western medicine (20.5%). Multivariate analysis showed that age is an independent variable that correlates with the likelihood of buying HP online. The prevalence of HP e-commerce users is highest in the 35-44 age group (64.1%) and lowest among the 16-24 age group (36.4%). The most bought HP through the internet are vitamins and minerals (21.5%), non-herbal (15.9%), herbal (13.9%), weight loss (8.7%) and sports (8.4%) supplements. While the top 3 products are distributed equally between the genders, there is a skew towards female respondents (12.4% in females vs. 4.9% in males) for weight loss supplements and towards males (13.2% in males vs. 3.7% in females) for sports supplements. Even though online consumers are in the younger age brackets, our study found that up to 72.0% of HP bought online are bought for others (buyer’s family and/or friends). Multivariate analysis showed a statistically significant association between purchasing HP through online means and the perceptions that 'internet is safe' (adjusted Prevalence Ratio=1.15, CI 1.03-1.28), 'buying HP online is time saving' (PR=1.17, CI 1.01-1.36), and 'recognition of HP brand' (PR=1.21 CI 1.06-1.40). Conclusions: This study has provided prevalence data for online HP market in Singapore, and has allowed the country’s regulatory body to formulate a targeted pharmacovigilance approach to this growing problem.

Keywords: e-commerce, pharmaceuticals, pharmacovigilance, Singapore

Procedia PDF Downloads 364
2327 Modeling Karachi Dengue Outbreak and Exploration of Climate Structure

Authors: Syed Afrozuddin Ahmed, Junaid Saghir Siddiqi, Sabah Quaiser

Abstract:

Various studies have reported that global warming causes unstable climate and many serious impact to physical environment and public health. The increasing incidence of dengue incidence is now a priority health issue and become a health burden of Pakistan. In this study it has been investigated that spatial pattern of environment causes the emergence or increasing rate of dengue fever incidence that effects the population and its health. The climatic or environmental structure data and the Dengue Fever (DF) data was processed by coding, editing, tabulating, recoding, restructuring in terms of re-tabulating was carried out, and finally applying different statistical methods, techniques, and procedures for the evaluation. Five climatic variables which we have studied are precipitation (P), Maximum temperature (Mx), Minimum temperature (Mn), Humidity (H) and Wind speed (W) collected from 1980-2012. The dengue cases in Karachi from 2010 to 2012 are reported on weekly basis. Principal component analysis is applied to explore the climatic variables and/or the climatic (structure) which may influence in the increase or decrease in the number of dengue fever cases in Karachi. PC1 for all the period is General atmospheric condition. PC2 for dengue period is contrast between precipitation and wind speed. PC3 is the weighted difference between maximum temperature and wind speed. PC4 for dengue period contrast between maximum and wind speed. Negative binomial and Poisson regression model are used to correlate the dengue fever incidence to climatic variable and principal component score. Relative humidity is estimated to positively influence on the chances of dengue occurrence by 1.71% times. Maximum temperature positively influence on the chances dengue occurrence by 19.48% times. Minimum temperature affects positively on the chances of dengue occurrence by 11.51% times. Wind speed is effecting negatively on the weekly occurrence of dengue fever by 7.41% times.

Keywords: principal component analysis, dengue fever, negative binomial regression model, poisson regression model

Procedia PDF Downloads 446
2326 A Regression Analysis Study of the Applicability of Side Scan Sonar based Safety Inspection of Underwater Structures

Authors: Chul Park, Youngseok Kim, Sangsik Choi

Abstract:

This study developed an electric jig for underwater structure inspection in order to solve the problem of the application of side scan sonar to underwater inspection, and analyzed correlations of empirical data in order to enhance sonar data resolution. For the application of tow-typed sonar to underwater structure inspection, an electric jig was developed. In fact, it was difficult to inspect a cross-section at the time of inspection with tow-typed equipment. With the development of the electric jig for underwater structure inspection, it was possible to shorten an inspection time over 20%, compared to conventional tow-typed side scan sonar, and to inspect a proper cross-section through accurate angle control. The indoor test conducted to enhance sonar data resolution proved that a water depth, the distance from an underwater structure, and a filming angle influenced a resolution and data quality. Based on the data accumulated through field experience, multiple regression analysis was conducted on correlations between three variables. As a result, the relational equation of sonar operation according to a water depth was drawn.

Keywords: underwater structure, SONAR, safety inspection, resolution

Procedia PDF Downloads 265
2325 Comparing Xbar Charts: Conventional versus Reweighted Robust Estimation Methods for Univariate Data Sets

Authors: Ece Cigdem Mutlu, Burak Alakent

Abstract:

Maintaining the quality of manufactured products at a desired level depends on the stability of process dispersion and location parameters and detection of perturbations in these parameters as promptly as possible. Shewhart control chart is the most widely used technique in statistical process monitoring to monitor the quality of products and control process mean and variability. In the application of Xbar control charts, sample standard deviation and sample mean are known to be the most efficient conventional estimators in determining process dispersion and location parameters, respectively, based on the assumption of independent and normally distributed datasets. On the other hand, there is no guarantee that the real-world data would be normally distributed. In the cases of estimated process parameters from Phase I data clouded with outliers, efficiency of traditional estimators is significantly reduced, and performance of Xbar charts are undesirably low, e.g. occasional outliers in the rational subgroups in Phase I data set may considerably affect the sample mean and standard deviation, resulting a serious delay in detection of inferior products in Phase II. For more efficient application of control charts, it is required to use robust estimators against contaminations, which may exist in Phase I. In the current study, we present a simple approach to construct robust Xbar control charts using average distance to the median, Qn-estimator of scale, M-estimator of scale with logistic psi-function in the estimation of process dispersion parameter, and Harrell-Davis qth quantile estimator, Hodge-Lehmann estimator and M-estimator of location with Huber psi-function and logistic psi-function in the estimation of process location parameter. Phase I efficiency of proposed estimators and Phase II performance of Xbar charts constructed from these estimators are compared with the conventional mean and standard deviation statistics both under normality and against diffuse-localized and symmetric-asymmetric contaminations using 50,000 Monte Carlo simulations on MATLAB. Consequently, it is found that robust estimators yield parameter estimates with higher efficiency against all types of contaminations, and Xbar charts constructed using robust estimators have higher power in detecting disturbances, compared to conventional methods. Additionally, utilizing individuals charts to screen outlier subgroups and employing different combination of dispersion and location estimators on subgroups and individual observations are found to improve the performance of Xbar charts.

Keywords: average run length, M-estimators, quality control, robust estimators

Procedia PDF Downloads 191
2324 Evaluation of Three Commercially Available Materials in Reducing the White Spot Lesions During Fixed Orthodontic Treatment: A Prospective Randomized Controlled Trial

Authors: Sayeeda Laeque Bangi

Abstract:

Objectives: Treating white spot lesions (WSL) to create a sound and esthetically pleasing enamel surface is a question yet to be fully answered. The objective of this randomized controlled trial was to measure and compare the degree of regression of WSL during orthodontic treatment achieved by using three commercially available materials. Methods: A single-blinded randomized prospective clinical trial, comprising 80 patients categorized into four groups (one control group and three experimental groups, with 20 subjects per group) using block randomization, was conducted. Group A (control group): Colgate strong toothpaste; and experiments groups were Group B: GC tooth mousse, Group C: Phos-Flur mouthwash and Group D: SHY-NM. Subjects were instructed to use the designated dentifrice/mouthwash and photographs were taken at baseline, third and sixth months, and white spot lesions were reassessed in the maxillomandibular anterior teeth. Results: All the three groups had shown an improvement in WSL. But Group B has shown the greatest difference in mean values of decalcification index (DI) scores. Conclusion: All three commercially available products showed a regression of WSL over a 6-month duration. GC tooth mousse proved to be the most effective means of treating WSL over other regimens.

Keywords: white spot lesions, dentifrices, orthodontic therapy, remineralization

Procedia PDF Downloads 201
2323 Identifying Protein-Coding and Non-Coding Regions in Transcriptomes

Authors: Angela U. Makolo

Abstract:

Protein-coding and Non-coding regions determine the biology of a sequenced transcriptome. Research advances have shown that Non-coding regions are important in disease progression and clinical diagnosis. Existing bioinformatics tools have been targeted towards Protein-coding regions alone. Therefore, there are challenges associated with gaining biological insights from transcriptome sequence data. These tools are also limited to computationally intensive sequence alignment, which is inadequate and less accurate to identify both Protein-coding and Non-coding regions. Alignment-free techniques can overcome the limitation of identifying both regions. Therefore, this study was designed to develop an efficient sequence alignment-free model for identifying both Protein-coding and Non-coding regions in sequenced transcriptomes. Feature grouping and randomization procedures were applied to the input transcriptomes (37,503 data points). Successive iterations were carried out to compute the gradient vector that converged the developed Protein-coding and Non-coding Region Identifier (PNRI) model to the approximate coefficient vector. The logistic regression algorithm was used with a sigmoid activation function. A parameter vector was estimated for every sample in 37,503 data points in a bid to reduce the generalization error and cost. Maximum Likelihood Estimation (MLE) was used for parameter estimation by taking the log-likelihood of six features and combining them into a summation function. Dynamic thresholding was used to classify the Protein-coding and Non-coding regions, and the Receiver Operating Characteristic (ROC) curve was determined. The generalization performance of PNRI was determined in terms of F1 score, accuracy, sensitivity, and specificity. The average generalization performance of PNRI was determined using a benchmark of multi-species organisms. The generalization error for identifying Protein-coding and Non-coding regions decreased from 0.514 to 0.508 and to 0.378, respectively, after three iterations. The cost (difference between the predicted and the actual outcome) also decreased from 1.446 to 0.842 and to 0.718, respectively, for the first, second and third iterations. The iterations terminated at the 390th epoch, having an error of 0.036 and a cost of 0.316. The computed elements of the parameter vector that maximized the objective function were 0.043, 0.519, 0.715, 0.878, 1.157, and 2.575. The PNRI gave an ROC of 0.97, indicating an improved predictive ability. The PNRI identified both Protein-coding and Non-coding regions with an F1 score of 0.970, accuracy (0.969), sensitivity (0.966), and specificity of 0.973. Using 13 non-human multi-species model organisms, the average generalization performance of the traditional method was 74.4%, while that of the developed model was 85.2%, thereby making the developed model better in the identification of Protein-coding and Non-coding regions in transcriptomes. The developed Protein-coding and Non-coding region identifier model efficiently identified the Protein-coding and Non-coding transcriptomic regions. It could be used in genome annotation and in the analysis of transcriptomes.

Keywords: sequence alignment-free model, dynamic thresholding classification, input randomization, genome annotation

Procedia PDF Downloads 68
2322 Combined Analysis of m⁶A and m⁵C Modulators on the Prognosis of Hepatocellular Carcinoma

Authors: Hongmeng Su, Luyu Zhao, Yanyan Qian, Hong Fan

Abstract:

Aim: Hepatocellular carcinoma (HCC) is one of the most common malignant tumors that endanger human health seriously. RNA methylation, especially N6-methyladenosine (m⁶A) and 5-methylcytosine (m⁵C), a crucial epigenetic transcriptional regulatory mechanism, plays an important role in tumorigenesis, progression and prognosis. This research aims to systematically evaluate the prognostic value of m⁶A and m⁵C modulators in HCC patients. Methods: Twenty-four modulators of m⁶A and m⁵C were candidates to analyze their expression level and their contribution to predict the prognosis of HCC. Consensus clustering analysis was applied to classify HCC patients. Cox and LASSO regression were used to construct the risk model. According to the risk score, HCC patients were divided into high-risk and low/medium-risk groups. The clinical pathology factors of HCC patients were analyzed by univariate and multivariate Cox regression analysis. Results: The HCC patients were classified into 2 clusters with significant differences in overall survival and clinical characteristics. Nine-gene risk model was constructed including METTL3, VIRMA, YTHDF1, YTHDF2, NOP2, NSUN4, NSUN5, DNMT3A and ALYREF. It was indicated that the risk score could serve as an independent prognostic factor for patients with HCC. Conclusion: This study constructed a Nine-gene risk model by modulators of m⁶A and m⁵C and investigated its effect on the clinical prognosis of HCC. This model may provide important consideration for the therapeutic strategy and prognosis evaluation analysis of patients with HCC.

Keywords: hepatocellular carcinoma, m⁶A, m⁵C, prognosis, RNA methylation

Procedia PDF Downloads 68