Search results for: inference extraction
1204 Exploration on Extraction of Coalbed Seam in Water Sensitive Reservoir by Combustion of Coal Seams
Authors: Liu Yinga, Bai Xingjiab
Abstract:
The conventional way to exploit coalbed methane is to drop reservoirs pressure through drainage, which means that reducing pressure through water drainage for coalbed methane desorption. However, it has many limitations. In this paper, the recovery by conventional way is low, in order to exploit water-sensitive reservoir, combustion of coal seam is proposed to increase recovery ratio, and then theoretical feasibility is elaborated through four aspects: temperature, pressure, superficial area, competitive adsorption, then given an example of water sensitive reservoir, results can be obtained that recovery is effectively improved through combustion of coal seam. At the same time, the suitability and efficiency of combustion of coal seam determine that it can be widely applied.Keywords: coalbed methane, drainage decompression, water-sensitive, combustion of coal seams, competitive adsorption
Procedia PDF Downloads 2631203 Preliminary Knowledge Extraction from Beethoven’s Sonatas: from Musical Referential Patterns to Emotional Normative Ratings
Authors: Christina Volioti, Sotiris Manitsaris, Eleni Katsouli, Vasiliki Tsekouropoulou, Leontios J. Hadjileontiadis
Abstract:
The piano sonatas of Beethoven represent part of the Intangible Cultural Heritage. The aims of this research were to further explore this intangibility by placing emphasis on defining emotional normative ratings for the “Waldstein” (Op. 53) and “Tempest” (Op. 31) Sonatas of Beethoven. To this end, a musicological analysis was conducted on these particular sonatas and referential patterns in these works of Beethoven were defined. Appropriate interactive questionnaires were designed in order to create a statistical normative rating that describes the emotional status when an individual listens to these musical excerpts. Based on these ratings, it is possible for emotional annotations for these same referential patterns to be created and integrated into the music score.Keywords: emotional annotations, intangible cultural heritage, musicological analysis, normative ratings
Procedia PDF Downloads 1751202 Segmentation of Korean Words on Korean Road Signs
Authors: Lae-Jeong Park, Kyusoo Chung, Jungho Moon
Abstract:
This paper introduces an effective method of segmenting Korean text (place names in Korean) from a Korean road sign image. A Korean advanced directional road sign is composed of several types of visual information such as arrows, place names in Korean and English, and route numbers. Automatic classification of the visual information and extraction of Korean place names from the road sign images make it possible to avoid a lot of manual inputs to a database system for management of road signs nationwide. We propose a series of problem-specific heuristics that correctly segments Korean place names, which is the most crucial information, from the other information by leaving out non-text information effectively. The experimental results with a dataset of 368 road sign images show 96% of the detection rate per Korean place name and 84% per road sign image.Keywords: segmentation, road signs, characters, classification
Procedia PDF Downloads 4441201 Material Detection by Phase Shift Cavity Ring-Down Spectroscopy
Authors: Rana Muhammad Armaghan Ayaz, Yigit Uysallı, Nima Bavili, Berna Morova, Alper Kiraz
Abstract:
Traditional optical methods for example resonance wavelength shift and cavity ring-down spectroscopy used for material detection and sensing have disadvantages, for example, less resistance to laser noise, temperature fluctuations and extraction of the required information can be a difficult task like ring downtime in case of cavity ring-down spectroscopy. Phase shift cavity ring down spectroscopy is not only easy to use but is also capable of overcoming the said problems. This technique compares the phase difference between the signal coming out of the cavity with the reference signal. Detection of any material is made by the phase difference between them. By using this technique, air, water, and isopropyl alcohol can be recognized easily. This Methodology has far-reaching applications and can be used in air pollution detection, human breath analysis and many more.Keywords: materials, noise, phase shift, resonance wavelength, sensitivity, time domain approach
Procedia PDF Downloads 1491200 Robust and Transparent Spread Spectrum Audio Watermarking
Authors: Ali Akbar Attari, Ali Asghar Beheshti Shirazi
Abstract:
In this paper, we propose a blind and robust audio watermarking scheme based on spread spectrum in Discrete Wavelet Transform (DWT) domain. Watermarks are embedded in the low-frequency coefficients, which is less audible. The key idea is dividing the audio signal into small frames, and magnitude of the 6th level of DWT approximation coefficients is modifying based upon the Direct Sequence Spread Spectrum (DSSS) technique. Also, the psychoacoustic model for enhancing in imperceptibility, as well as Savitsky-Golay filter for increasing accuracy in extraction, is used. The experimental results illustrate high robustness against most common attacks, i.e. Gaussian noise addition, Low pass filter, Resampling, Requantizing, MP3 compression, without significant perceptual distortion (ODG is higher than -1). The proposed scheme has about 83 bps data payload.Keywords: audio watermarking, spread spectrum, discrete wavelet transform, psychoacoustic, Savitsky-Golay filter
Procedia PDF Downloads 2001199 Application of Host Factors as Biomarker in Early Diagnosis of Pulmonary Tuberculosis
Authors: Ambrish Tiwari, Sudhasini Panda, Archana Singh, Kalpana Luthra, S. K. Sharma
Abstract:
Introduction: On the basis of available literature we know that various host factors play a role in outcome of Tuberculosis (TB) infection by modulating innate immunity. One such factor is Inducible Nitric Oxide Synthase enzyme (iNOS) which help in the production of Nitric Oxide (NO), an antimicrobial agent. Expression of iNOS is in control of various host factors in which Vitamin D along with its nuclear receptor Vitamin D receptor (VDR) is one of them. Vitamin D along with its receptor also produces cathelicidin (antimicrobicidal agent). With this background, we attempted to investigate the levels of Vitamin D and NO along with their associated molecules in tuberculosis patients and household contacts as compared to healthy controls and assess the implication of these findings in susceptibility to tuberculosis (TB). Study subjects and methods: 100 active TB patients, 75 household contacts, and 70 healthy controls were taken. VDR and iNOS mRNA levels were studied using real-time PCR. Serum VDR, cathelicidin, iNOS levels were measured using ELISA. Serum Vitamin D levels were measured in serum samples using chemiluminescence based immunoassay. NO was measured using colorimetry based kit. Results: VDR and iNOS mRNA levels were found to be lower in active TB group compared to household contacts and healthy controls (P=0.0001 and 0.005 respectively). The serum levels of Vitamin D were also found to be lower in active TB group as compared to healthy controls (P =0.001). Levels of cathelicidin and NO was higher in patient group as compared to other groups (p=0.01 and 0.5 respectively). However, the expression of VDR and iNOS and levels of vitamin D was significantly (P < 0.05) higher in household contacts compared to both active TB and healthy control groups. Inference: Higher levels of Vitamin D along with VDR and iNOS expression in household contacts as compared to patients suggest that vitamin D might have a protective role against TB which prevents activation of the disease. From our data, we can conclude that decreased vitamin D levels could be implicated in disease progression and we can use cathelicidin and NO as a biomarker for early diagnosis of pulmonary tuberculosis.Keywords: vitamin D, VDR, iNOS, tuberculosis
Procedia PDF Downloads 3031198 Information in Public Domain: How Far It Measures Government's Accountability
Authors: Sandip Mitra
Abstract:
Studies on Governance and Accountability has often stressed the need to release Data in public domain to increase transparency ,which otherwise act as an evidence of performance. However, inefficient handling, lack of capacity and the dynamics of transfers (especially fund transfers) are important issues which need appropriate attention. E-Governance alone can not serve as a measure of transparency as long as a comprehensive planning is instituted. Studies on Governance and public exposure has often triggered public opinion in favour or against any government. The root of the problem (especially in local governments) lies in the management of the governance. The participation of the people in the local government functioning, the networks within and outside the locality, synergy with various layers of Government are crucial in understanding the activities of any government. Unfortunately, data on such issues are not released in the public domain .If they are at all released , the extraction of information is often hindered for complicated designs. A Study has been undertaken with a few local Governments in India. The data has been analysed to substantiate the views.Keywords: accountability, e-governance, transparency, local government
Procedia PDF Downloads 4361197 Crude Palm Oil Antioxidant Extraction and the Antioxidation Activity
Authors: Supriyono Supriyono, Sumardiyono Sumardiyono, Peni Pujiastuti, Dian Indriana Hapsari
Abstract:
Crude palm oil (CPO) is a vegetable oil that came from a palm tree bunch. The productivity of the oil is 12 ton/hectare/year. Thus palm oil tree was known as highest vegetable oil yield. It was grown across Equatorial County, especially in Malaysia and Indonesia. The greenish-red color on CPO was come from carotenoid. Carotenoid is one of the antioxidants that could be extracted. Carotenoid could be used as functional food and other purposes. Another antioxidant that also found in CPO is tocopherol. The aim of the research work is to find antioxidant activity on CPO comparing to the synthetic antioxidant that available in a market. In this research work, antioxidant was extracted by a mixture of acetone and n.hexane, while the activity of the antioxidant extract was determined by DPPH method. Antioxidant activity of the extracted compound about 46% compared to pure tocopherol. While the solvent mixture compose by 90% acetone and 10% n. hexane meet the best on the antioxidant activity.Keywords: antioxidant, beta carotene, crude palm oil, DPPH, tocopherol
Procedia PDF Downloads 2141196 The Stability and Performances of Terminalia Catappa L. Dye-Sensitized Solar Cell
Authors: A. O. Boyo, A. T. Akinwunmi
Abstract:
The effect of extracting solvent and adjustment of pHs on the stability of Terminalia catappa L. dye-sensitized solar cell was investigated. We introduced ZnO as an alternative to TiO2 in the dye sensitized solar cells (DSSCs) due to its band gap similar to TiO2, higher electron mobility, and flexible procedures of preparations. Dye-sensitized solar cells (DSSCs) based on Terminalia catappa L. was extracted in water (A), ethanol (B) and the mixture of ethanol and water in the ratio 1:1by volume (C). The best performance Solar cells sensitized was from extracts A and achieved up to Jsc 1.51 mAcm−2, Voc 0.75V, FF 0.88 and η 0.63%. We notice that as pHs decreases there is the increase in DSSC efficiency. There is Long period stability in efficiency of the cells prepared using A than in C and a fair stability in efficiency of B cell. The results obtained with extracts B and C confirmed that Ethanol with water could not be considered as a suitable solvent for the extraction of natural dye.Keywords: zinc oxide, dye-sensitized solar cell, terminalia catappa L., TiO2
Procedia PDF Downloads 4021195 Collaboration-Based Islamic Financial Services: Case Study of Islamic Fintech in Indonesia
Authors: Erika Takidah, Salina Kassim
Abstract:
Digital transformation has accelerated in the new millennium. It is reshaping the financial services industry from a traditional system to financial technology. Moreover, the number of financial inclusion rates in Indonesia is less than 60%. An innovative model needed to elucidate this national problem. On the other hand, the Islamic financial service industry and financial technology grow fast as a new aspire in economic development. An Islamic bank, takaful, Islamic microfinance, Islamic financial technology and Islamic social finance institution could collaborate to intensify the financial inclusion number in Indonesia. The primary motive of this paper is to examine the strategy of collaboration-based Islamic financial services to enhance financial inclusion in Indonesia, particularly facing the digital era. The fundamental findings for the main problems are the foundations and key ecosystems aspect involved in the development of collaboration-based Islamic financial services. By using the Interpretive Structural Model (ISM) approach, the core problems faced in the development of the models have lacked policy instruments guarding the collaboration-based Islamic financial services with fintech work process and availability of human resources for fintech. The core strategies or foundations that are needed in the framework of collaboration-based Islamic financial services are the ability to manage and analyze data in the big data era. For the aspects of the Ecosystem or actors involved in the development of this model, the important actor is government or regulator, educational institutions, and also existing industries (Islamic financial services). The outcome of the study designates that strategy collaboration of Islamic financial services institution supported by robust technology, a legal and regulatory commitment of the regulators and policymakers of the Islamic financial institutions, extensive public awareness of financial inclusion in Indonesia. The study limited itself to realize financial inclusion, particularly in Islamic finance development in Indonesia. The study will have an inference for the concerned professional bodies, regulators, policymakers, stakeholders, and practitioners of Islamic financial service institutions.Keywords: collaboration, financial inclusion, Islamic financial services, Islamic fintech
Procedia PDF Downloads 1421194 Moderate Electric Field and Ultrasound as Alternative Technologies to Raspberry Juice Pasteurization Process
Authors: Cibele F. Oliveira, Debora P. Jaeschke, Rodrigo R. Laurino, Amanda R. Andrade, Ligia D. F. Marczak
Abstract:
Raspberry is well-known as a good source of phenolic compounds, mainly anthocyanin. Some studies pointed out the importance of these bioactive compounds consumption, which is related to the decrease of the risk of cancer and cardiovascular diseases. The most consumed raspberry products are juices, yogurts, ice creams and jellies and, to ensure the safety of these products, raspberry is commonly pasteurized, for enzyme and microorganisms inactivation. Despite being efficient, the pasteurization process can lead to degradation reactions of the bioactive compounds, decreasing the products healthy benefits. Therefore, the aim of the present work was to evaluate moderate electric field (MEF) and ultrasound (US) technologies application on the pasteurization process of raspberry juice and compare the results with conventional pasteurization process. For this, phenolic compounds, anthocyanin content and physical-chemical parameters (pH, color changes, titratable acidity) of the juice were evaluated before and after the treatments. Moreover, microbiological analyses of aerobic mesophiles microorganisms, molds and yeast were performed in the samples before and after the treatments, to verify the potential of these technologies to inactivate microorganisms. All the pasteurization processes were performed in triplicate for 10 min, using a cylindrical Pyrex® vessel with a water jacket. The conventional pasteurization was performed at 90 °C using a hot water bath connected to the extraction cell. The US assisted pasteurization was performed using 423 and 508 W cm-2 (75 and 90 % of ultrasound intensity). It is important to mention that during US application the temperature was kept below 35 °C; for this, the water jacket of the extraction cell was connected to a water bath with cold water. MEF assisted pasteurization experiments were performed similarly to US experiments, using 25 and 50 V. Control experiments were performed at the maximum temperature of US and MEF experiments (35 °C) to evaluate only the effect of the aforementioned technologies on the pasteurization. The results showed that phenolic compounds concentration in the juice was not affected by US and MEF application. However, it was observed that the US assisted pasteurization, performed at the highest intensity, decreased anthocyanin content in 33 % (compared to in natura juice). This result was possibly due to the cavitation phenomena, which can lead to free radicals formation and accumulation on the medium; these radicals can react with anthocyanin decreasing the content of these antioxidant compounds in the juice. Physical-chemical parameters did not present statistical differences for samples before and after the treatments. Microbiological analyses results showed that all the pasteurization treatments decreased the microorganism content in two logarithmic cycles. However, as values were lower than 1000 CFU mL-1 it was not possible to verify the efficacy of each treatment. Thus, MEF and US were considered as potential alternative technologies for pasteurization process, once in the right conditions the application of the technologies decreased microorganism content in the juice and did not affected phenolic and anthocyanin content, as well as physical-chemical parameters. However, more studies are needed regarding the influence of MEF and US processes on microorganisms’ inactivation.Keywords: MEF, microorganism inactivation, anthocyanin, phenolic compounds
Procedia PDF Downloads 2421193 An Ensemble-based Method for Vehicle Color Recognition
Authors: Saeedeh Barzegar Khalilsaraei, Manoocheher Kelarestaghi, Farshad Eshghi
Abstract:
The vehicle color, as a prominent and stable feature, helps to identify a vehicle more accurately. As a result, vehicle color recognition is of great importance in intelligent transportation systems. Unlike conventional methods which use only a single Convolutional Neural Network (CNN) for feature extraction or classification, in this paper, four CNNs, with different architectures well-performing in different classes, are trained to extract various features from the input image. To take advantage of the distinct capability of each network, the multiple outputs are combined using a stack generalization algorithm as an ensemble technique. As a result, the final model performs better than each CNN individually in vehicle color identification. The evaluation results in terms of overall average accuracy and accuracy variance show the proposed method’s outperformance compared to the state-of-the-art rivals.Keywords: Vehicle Color Recognition, Ensemble Algorithm, Stack Generalization, Convolutional Neural Network
Procedia PDF Downloads 851192 University-home Partnerships for Enhancing Students’ Career Adapting Responses: A Moderated-mediation Model
Authors: Yin Ma, Xun Wang, Kelsey Austin
Abstract:
Purpose – Building upon career construction theory and the conservation of resources theory, we developed a moderated mediation model to examine how the perceived university support impact students’ career adapting responses, namely, crystallization, exploration, decision and preparation, via the mediator career adaptability and moderator perceived parental support. Design/methodology/approach – The multi-stage sampling strategy was employed and survey data were collected. Structural equation modeling was used to perform the analysis. Findings – Perceived university support could directly promote students’ career adaptability, and promote three career adapting responses, namely, exploration, decision and preparation. It could also impact four career adapting responses via mediation effect of career adaptability. Its impact on students’ career adaptability can greatly increase when students’ receive parental related career support. Research limitations/implications – The cross-sectional design limits causal inference. Conducted in China, our findings should be cautiously interpreted in other countries due to cultural differences. Practical implications – University support is vital to students’ career adaptability and supports from parents can enhance this process. University-home collaboration is necessary to promote students’ career adapting responses. For students, seeking and utilizing as much supporting resources as possible is vital for their human resources development. On an organizational level, universities could benefit from our findings by introducing the practices which ask students to rate the career-related courses and encourage them to chat with parents regularly. Originality/ value – Using recently developed scale, current work contributes to the literature by investigating the impact of multiple contextual factors on students’ career adapting response. It also provide the empirical support for the role of human intervention in fostering career adapting responses.Keywords: career adapability, university and parental support, China studies, sociology of education
Procedia PDF Downloads 651191 Trabecular Bone Radiograph Characterization Using Fractal, Multifractal Analysis and SVM Classifier
Authors: I. Slim, H. Akkari, A. Ben Abdallah, I. Bhouri, M. Hedi Bedoui
Abstract:
Osteoporosis is a common disease characterized by low bone mass and deterioration of micro-architectural bone tissue, which provokes an increased risk of fracture. This work treats the texture characterization of trabecular bone radiographs. The aim was to analyze according to clinical research a group of 174 subjects: 87 osteoporotic patients (OP) with various bone fracture types and 87 control cases (CC). To characterize osteoporosis, Fractal and MultiFractal (MF) methods were applied to images for features (attributes) extraction. In order to improve the results, a new method of MF spectrum based on the q-stucture function calculation was proposed and a combination of Fractal and MF attributes was used. The Support Vector Machines (SVM) was applied as a classifier to distinguish between OP patients and CC subjects. The features fusion (fractal and MF) allowed a good discrimination between the two groups with an accuracy rate of 96.22%.Keywords: fractal, micro-architecture analysis, multifractal, osteoporosis, SVM
Procedia PDF Downloads 3931190 Liver Lesion Extraction with Fuzzy Thresholding in Contrast Enhanced Ultrasound Images
Authors: Abder-Rahman Ali, Adélaïde Albouy-Kissi, Manuel Grand-Brochier, Viviane Ladan-Marcus, Christine Hoeffl, Claude Marcus, Antoine Vacavant, Jean-Yves Boire
Abstract:
In this paper, we present a new segmentation approach for focal liver lesions in contrast enhanced ultrasound imaging. This approach, based on a two-cluster Fuzzy C-Means methodology, considers type-II fuzzy sets to handle uncertainty due to the image modality (presence of speckle noise, low contrast, etc.), and to calculate the optimum inter-cluster threshold. Fine boundaries are detected by a local recursive merging of ambiguous pixels. The method has been tested on a representative database. Compared to both Otsu and type-I Fuzzy C-Means techniques, the proposed method significantly reduces the segmentation errors.Keywords: defuzzification, fuzzy clustering, image segmentation, type-II fuzzy sets
Procedia PDF Downloads 4851189 Analysis of Matching Pursuit Features of EEG Signal for Mental Tasks Classification
Authors: Zin Mar Lwin
Abstract:
Brain Computer Interface (BCI) Systems have developed for people who suffer from severe motor disabilities and challenging to communicate with their environment. BCI allows them for communication by a non-muscular way. For communication between human and computer, BCI uses a type of signal called Electroencephalogram (EEG) signal which is recorded from the human„s brain by means of an electrode. The electroencephalogram (EEG) signal is an important information source for knowing brain processes for the non-invasive BCI. Translating human‟s thought, it needs to classify acquired EEG signal accurately. This paper proposed a typical EEG signal classification system which experiments the Dataset from “Purdue University.” Independent Component Analysis (ICA) method via EEGLab Tools for removing artifacts which are caused by eye blinks. For features extraction, the Time and Frequency features of non-stationary EEG signals are extracted by Matching Pursuit (MP) algorithm. The classification of one of five mental tasks is performed by Multi_Class Support Vector Machine (SVM). For SVMs, the comparisons have been carried out for both 1-against-1 and 1-against-all methods. Procedia PDF Downloads 2781188 Implant Guided Surgery and Immediate Loading
Authors: Omid Tavakol, Mahnaz Gholami
Abstract:
Introduction : In this oral presentation the main goal is discussing immediate loading in dental implants , from treatment planning and surgical guide designing to delivery , follow up and occlusal consideration . Methods and materials : first of all systematic reviews about immediate loading will be considered . besides , a comparison will be made between immediate loading and conventional loading in terms of success rate and complications . After that different methods , prosthetic options and materials best used in immediate loading will be explained. Particularly multi unit abutments and their mechanism of function will be explained .Digital impressions and designing the temporaries is the next topic we are to explicate .Next issue is the differences between single unit , multiple unit and full arch implantation in immediate loading .Following we are going to describe methods for tissue engineering and papilla formation after extraction . Last slides are about a full mouth rehabilitation via immediate loading technique from surgical designing to follow up .At the end we would talk about potential complications , how to prevent from occurrence and what to do if we face up with .Keywords: guided surgery, digital implantology, immediate loading, digital dentistry
Procedia PDF Downloads 441187 Generation of Photo-Mosaic Images through Block Matching and Color Adjustment
Authors: Hae-Yeoun Lee
Abstract:
Mosaic refers to a technique that makes image by gathering lots of small materials in various colours. This paper presents an automatic algorithm that makes the photomosaic image using photos. The algorithm is composed of four steps: Partition and feature extraction, block matching, redundancy removal and colour adjustment. The input image is partitioned in the small block to extract feature. Each block is matched to find similar photo in database by comparing similarity with Euclidean difference between blocks. The intensity of the block is adjusted to enhance the similarity of image by replacing the value of light and darkness with that of relevant block. Further, the quality of image is improved by minimizing the redundancy of tiles in the adjacent blocks. Experimental results support that the proposed algorithm is excellent in quantitative analysis and qualitative analysis.Keywords: photomosaic, Euclidean distance, block matching, intensity adjustment
Procedia PDF Downloads 2781186 Day/Night Detector for Vehicle Tracking in Traffic Monitoring Systems
Authors: M. Taha, Hala H. Zayed, T. Nazmy, M. Khalifa
Abstract:
Recently, traffic monitoring has attracted the attention of computer vision researchers. Many algorithms have been developed to detect and track moving vehicles. In fact, vehicle tracking in daytime and in nighttime cannot be approached with the same techniques, due to the extreme different illumination conditions. Consequently, traffic-monitoring systems are in need of having a component to differentiate between daytime and nighttime scenes. In this paper, a HSV-based day/night detector is proposed for traffic monitoring scenes. The detector employs the hue-histogram and the value-histogram on the top half of the image frame. Experimental results show that the extraction of the brightness features along with the color features within the top region of the image is effective for classifying traffic scenes. In addition, the detector achieves high precision and recall rates along with it is feasible for real time applications.Keywords: day/night detector, daytime/nighttime classification, image classification, vehicle tracking, traffic monitoring
Procedia PDF Downloads 5551185 Suitability Verification of Cellulose Nanowhisker as a Scaffold for Bone Tissue Engineering
Authors: Moon Hee Jung, Dae Seung Kim, Sang-Myung Jung, Gwang Heum Yoon, Hoo Cheol Lee, Hwa Sung Shin
Abstract:
Scaffolds are an important part to support growth and differentiation of osteoblast for regeneration of injured bone in bone tissue engineering. We utilized tunicate cellulose nanowhisker (CNW) as scaffold and developed complex system that can enhance differentiation of osteoblast by applying mechanical stimulation. CNW, a crystal form of cellulose, has high stiffness with a large surface area and is useful as a biomedical material due to its biodegradability and biocompatibility. In this study, CNW was obtained from tunicate extraction and was confirmed for its adhesion, differentiation, growth of osteoblast without cytotoxicity. In addition, osteoblast was successfully differentiated under mechanical stimulation, followed by calcium dependent signaling. In conclusion, we verified suitability of CNW as scaffold and possibility of bone substitutes.Keywords: osteoblast, cellulose nanowhisker, CNW, mechanical stimulation, bone tissue engineering, bone substitute
Procedia PDF Downloads 3671184 Production of Biodiesel from Melon Seed Oil Using Sodium Hydroxide as a Catalyst
Authors: Ene Rosemary Ndidiamaka, Nwangwu Florence Chinyere
Abstract:
The physiochemical properties of the melon seed oil was studied to determine its potentials as viable feed stock for biodisel production. The melon seed was extracted by solvent extraction using n-hexane as the extracting solvent. In this research, methanol was the alcohol used in the production of biodiesel, although alcohols like ethanol, propanol may also be used. Sodium hydroxide was employed for the catalysis. The melon seed oil was characterized for specific gravity, pH, ash content, iodine value, acid value, saponification value, peroxide value, free fatty acid value, flash point, viscosity, and refractive index using standard methods. The melon seed oil had very high oil content. Specific gravity and flash point of the oil is satisfactory. However, moisture content of the oil exceeded the stipulated ASRTM standard for biodiesel production. The overall results indicates that the melon seed oil is suitable for single-stage transesterification process to biodiesel production.Keywords: biodiesel, catalyst, melon seed, transesterification
Procedia PDF Downloads 3661183 Gradient Boosted Trees on Spark Platform for Supervised Learning in Health Care Big Data
Authors: Gayathri Nagarajan, L. D. Dhinesh Babu
Abstract:
Health care is one of the prominent industries that generate voluminous data thereby finding the need of machine learning techniques with big data solutions for efficient processing and prediction. Missing data, incomplete data, real time streaming data, sensitive data, privacy, heterogeneity are few of the common challenges to be addressed for efficient processing and mining of health care data. In comparison with other applications, accuracy and fast processing are of higher importance for health care applications as they are related to the human life directly. Though there are many machine learning techniques and big data solutions used for efficient processing and prediction in health care data, different techniques and different frameworks are proved to be effective for different applications largely depending on the characteristics of the datasets. In this paper, we present a framework that uses ensemble machine learning technique gradient boosted trees for data classification in health care big data. The framework is built on Spark platform which is fast in comparison with other traditional frameworks. Unlike other works that focus on a single technique, our work presents a comparison of six different machine learning techniques along with gradient boosted trees on datasets of different characteristics. Five benchmark health care datasets are considered for experimentation, and the results of different machine learning techniques are discussed in comparison with gradient boosted trees. The metric chosen for comparison is misclassification error rate and the run time of the algorithms. The goal of this paper is to i) Compare the performance of gradient boosted trees with other machine learning techniques in Spark platform specifically for health care big data and ii) Discuss the results from the experiments conducted on datasets of different characteristics thereby drawing inference and conclusion. The experimental results show that the accuracy is largely dependent on the characteristics of the datasets for other machine learning techniques whereas gradient boosting trees yields reasonably stable results in terms of accuracy without largely depending on the dataset characteristics.Keywords: big data analytics, ensemble machine learning, gradient boosted trees, Spark platform
Procedia PDF Downloads 2401182 Underwater Remotely Operated Vehicle (ROV) Exploration
Authors: M. S. Sukumar
Abstract:
Our objective is to develop a full-fledged system for exploring and studying nature of fossils and to extend this to underwater archaeology and mineral mapping. This includes aerial surveying, imaging techniques, artefact extraction and spectrum analysing techniques. These techniques help in regular monitoring of fossils and also the sensing system. The ROV was designed to complete several tasks which simulate collecting data and samples. Given the time constraints, the ROV was engineered for efficiency and speed in performing tasks. Its other major design consideration was modularity, allowing the team to distribute the building process, to easily test systems as they were completed and troubleshoot and replace systems as necessary. Our design itself had several challenges of on-board waterproofed sensor mounting, waterproofing of motors, ROV stability criteria, camera mounting and hydrophone sound acquisition.Keywords: remotely operated vehicle (ROV) dragonair, underwater archaeology, full-fledged system, aerial imaging and detection
Procedia PDF Downloads 2371181 Measurement of Coal Fineness, Air Fuel Ratio, and Fuel Weight Distribution in a Vertical Spindle Mill’s Pulverized Fuel Pipes at Classifier Vane 40%
Authors: Jayasiler Kunasagaram
Abstract:
In power generation, coal fineness is crucial to maintain flame stability, ensure combustion efficiency, and lower emissions to the environment. In order for the pulverized coal to react effectively in the boiler furnace, the size of coal particles needs to be at least 70% finer than 74 μm. This paper presents the experiment results of coal fineness, air fuel ratio and fuel weight distribution in pulverized fuel pipes at classifier vane 40%. The aim of this experiment is to extract the pulverized coal is kinetically and investigate the data accordingly. Dirty air velocity, coal sample extraction, and coal sieving experiments were performed to measure coal fineness. The experiment results show that required coal fineness can be achieved at 40 % classifier vane. However, this does not surpass the desired value by a great margin.Keywords: coal power, emissions, isokinetic sampling, power generation
Procedia PDF Downloads 6081180 Catalytic and Non-Catalytic Pyrolysis of Walnut Shell Waste to Biofuel: Characterisation of Catalytic Biochar and Biooil
Authors: Saimatun Nisa
Abstract:
Walnut is an important export product from the Union Territory of Jammy and Kashmir. After extraction of the kernel, the walnut shell forms a solid waste that needs to be managed. Pyrolysis is one interesting option for the utilization of this walnut waste. In this study microwave pyrolysis reactor is used to convert the walnut shell biomass into its value-added products. Catalytic and non-catalytic conversion of walnut shell waste to oil, gas and char was evaluated using a Co-based catalyst. The catalyst was characterized using XPS and SEM analysis. Pyrolysis temperature, reaction time, particle size and sweeping gas (N₂) flow rate were set in the ranges of 400–600 °C, 40 min, <0.6mm to < 4.75mm and 300 ml min−1, respectively. The heating rate was fixed at 40 °C min−1. Maximum gas yield was obtained at 600 °C, 40 min, particle size range 1.18-2.36, 0.5 molar catalytic as 45.2%. The liquid product catalytic and non-catalytic was characterized by GC–MS analyses. In addition, the solid product was analyzed by means of FTIR & SEM.Keywords: walnut shell, biooil, biochar, microwave pyrolysis
Procedia PDF Downloads 521179 Biotechnology Approach: A Tool of Enhancement of Sticky Mucilage of Pulicaria Incisa (Medicinal Plant) for Wounds Treatment
Authors: Djamila Chabane, Asma Rouane, Karim Arab
Abstract:
Depending of the chemical substances responsible for the pharmacological effects, a future therapeutic drug might be produced by extraction from whole plants or by callus initiated from some parts. The optimized callus culture protocols now offer the possibility to use cell culture techniques for vegetative propagation and open minds for further studies on secondary metabolites and drug establishment. In Algerian traditional medicine, Pulicaria incisa (Asteraceae) is used in the treatment of daily troubles (stomachache, headhache., cold, sore throat and rheumatic arthralgia). Field findings revealed that many healers use some fresh parts (leaves, flowers) of this plant to treat skin wounds. This study aims to evaluate the healing efficiency of artisanal cream prepared from sticky mucilage isolated from calluses on dermal wounds of animal models. Callus cultures were initiated from reproductive explants (young inflorescences) excised from adult plants and transferred to a MS basal medium supplemented with growth regulators and maintained under dark for for months. Many calluses types were obtained with various color and aspect (friable, compact). Several subcultures of calli were performed to enhance the mucilage accumulation. After extraction, the mucilage extracts were tested on animal models as follows. The wound healing potential was studied by causing dermal wounds (1 cm diameter) at the dorsolumbar part of Rattus norvegicus; different samples of the cream were applied after hair removal on three rats each, including two controls (one treated by Vaseline and one without any treatment), two experimental groups (experimental group 1, treated with a reference ointment "Madecassol® and experimental group 2 treated by callus mucilage cream for a period of seventeen days. The evolution of the healing activity was estimated by calculating the percentage reduction of the area wounds treated by all compounds tested compared to the controls by using AutoCAD software. The percentage of healing effect of the cream prepared from callus mucilage was (99.79%) compared to that of Madecassol® (99.76%). For the treatment time, the significant healing activity was observed after 17 days compared to that of the reference pharmaceutical products without any wound infection. The healing effect of Madecassol® is more effective because it stimulates and regulates the production of collagen, a fibrous matrix essential for wound healing. Mucilage extracts also showed a high capacity to heal the skin without any infection. According to this pharmacological activity, we suggest to use calluses produced by in vitro culture to producing new compounds for the skin care and treatment.Keywords: calluses, Pulicaria incisa, mucilage, Wounds
Procedia PDF Downloads 1291178 ACBM: Attention-Based CNN and Bi-LSTM Model for Continuous Identity Authentication
Authors: Rui Mao, Heming Ji, Xiaoyu Wang
Abstract:
Keystroke dynamics are widely used in identity recognition. It has the advantage that the individual typing rhythm is difficult to imitate. It also supports continuous authentication through the keyboard without extra devices. The existing keystroke dynamics authentication methods based on machine learning have a drawback in supporting relatively complex scenarios with massive data. There are drawbacks to both feature extraction and model optimization in these methods. To overcome the above weakness, an authentication model of keystroke dynamics based on deep learning is proposed. The model uses feature vectors formed by keystroke content and keystroke time. It ensures efficient continuous authentication by cooperating attention mechanisms with the combination of CNN and Bi-LSTM. The model has been tested with Open Data Buffalo dataset, and the result shows that the FRR is 3.09%, FAR is 3.03%, and EER is 4.23%. This proves that the model is efficient and accurate on continuous authentication.Keywords: keystroke dynamics, identity authentication, deep learning, CNN, LSTM
Procedia PDF Downloads 1551177 In Vitro Antifungal Activity of Essential Oil Artemisia Absinthium
Authors: Bouchenak Fatima, Lmegharbi Abdelbaki, Houssem Degaichia, Benrebiha Fatima
Abstract:
The essential oil composition of the leaf of Artemisia absinthium from region of Cherchell (The south of Algeria) was investigated by GC, GC-MS. 27 constituents were identified correspond to 84, 63% of the total oil. The major components are Thujone (60, 82%), Chamazulènel (16, 62%), ρ-cymène (4, 29%) and 2-carène (4.25%). The antimicrobial activity of oil was tested in vitro by two methods (agar diffusion and microdilution) on three plant pathogenic fungi. This oil has been tested for antimicrobial activity against three pathogenic fungi (Botrytis cinerea, Fusarium culmorum and Helminthosporium Sp.).The study of activity was evaluated by two methods: Method of diffusion in gelose and the minimum inhibitory concentration MIC. This oil exhibited an interesting antimicrobial activity. A preliminary study showed that this oil presented high toxicity against this fungus. These results, although preliminary show a good antifungal activity, to limit and inhibit stop the development of those pathogen agent.Keywords: artemisia absinthian, extraction process, chemical study, antifungal activity
Procedia PDF Downloads 4841176 Challenges and Opportunities: One Stop Processing for the Automation of Indonesian Large-Scale Topographic Base Map Using Airborne LiDAR Data
Authors: Elyta Widyaningrum
Abstract:
The LiDAR data acquisition has been recognizable as one of the fastest solution to provide the basis data for topographic base mapping in Indonesia. The challenges to accelerate the provision of large-scale topographic base maps as a development plan basis gives the opportunity to implement the automated scheme in the map production process. The one stop processing will also contribute to accelerate the map provision especially to conform with the Indonesian fundamental spatial data catalog derived from ISO 19110 and geospatial database integration. Thus, the automated LiDAR classification, DTM generation and feature extraction will be conducted in one GIS-software environment to form all layers of topographic base maps. The quality of automated topographic base map will be assessed and analyzed based on its completeness, correctness, contiguity, consistency and possible customization.Keywords: automation, GIS environment, LiDAR processing, map quality
Procedia PDF Downloads 3681175 Machine Learning Techniques to Predict Cyberbullying and Improve Social Work Interventions
Authors: Oscar E. Cariceo, Claudia V. Casal
Abstract:
Machine learning offers a set of techniques to promote social work interventions and can lead to support decisions of practitioners in order to predict new behaviors based on data produced by the organizations, services agencies, users, clients or individuals. Machine learning techniques include a set of generalizable algorithms that are data-driven, which means that rules and solutions are derived by examining data, based on the patterns that are present within any data set. In other words, the goal of machine learning is teaching computers through 'examples', by training data to test specifics hypothesis and predict what would be a certain outcome, based on a current scenario and improve that experience. Machine learning can be classified into two general categories depending on the nature of the problem that this technique needs to tackle. First, supervised learning involves a dataset that is already known in terms of their output. Supervising learning problems are categorized, into regression problems, which involve a prediction from quantitative variables, using a continuous function; and classification problems, which seek predict results from discrete qualitative variables. For social work research, machine learning generates predictions as a key element to improving social interventions on complex social issues by providing better inference from data and establishing more precise estimated effects, for example in services that seek to improve their outcomes. This paper exposes the results of a classification algorithm to predict cyberbullying among adolescents. Data were retrieved from the National Polyvictimization Survey conducted by the government of Chile in 2017. A logistic regression model was created to predict if an adolescent would experience cyberbullying based on the interaction and behavior of gender, age, grade, type of school, and self-esteem sentiments. The model can predict with an accuracy of 59.8% if an adolescent will suffer cyberbullying. These results can help to promote programs to avoid cyberbullying at schools and improve evidence based practice.Keywords: cyberbullying, evidence based practice, machine learning, social work research
Procedia PDF Downloads 168