Search results for: high density lipoprotein
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 22092

Search results for: high density lipoprotein

21012 The White Stork (Ciconia ciconia) in the Wetlands of North East of Algeria

Authors: Aicha Beya Mammeria, Idir Bitam

Abstract:

Our study focuses on the distribution of the white stork "Ciconia ciconia L. 1758" in the wetlands of El Tarf (North eastern of Algeria): recognized by its remarkable number of breeding pairs, monitoring of nesting, using a GPS has been performed in an attempt to explain the functioning of populations and population strategies for an overall design of its distribution, which has not so far been investigated in this region. Between 2012 and 2013, the number of breeding pairs has increased considerably from 174 in 1996 to 475 in 2007 and 968 in 2013. It should be noted that in the distribution of breeding pairs between 1996 and 2011, there is a significant development since the density of nests increased from 25.22 in 1996 to 84.16 couples/100 km² in 2013. More endemic bread apears in the region, this fluctuation is related to climatic change and changing season. Changes related to local climatic conditions might induce binding conditions for the development of this species.

Keywords: white stork, Ciconia ciconia, wetland El Tarf, northeast Algeria, climatic changing, density

Procedia PDF Downloads 535
21011 Influence of the Molecular Architecture of a Polycarboxylate-Based Superplasticizer on the Rheological and Physicomechanical Properties of Cement Pastes

Authors: Alya Harichane, Abderraouf Achour, Abdelbaki Benmounah

Abstract:

The main difficulty encountered in the formulation of high-performance concrete (HPC) consists in choosing the most efficient cement-superplasticizer pair allowing to obtain maximum water reduction, good workability of the concrete in the fresh state, and very good mechanical resistance in the hardened state. The aim of this work is to test the efficiency of three polycarboxylate ether-based superplasticizers (PCE) marketed in Algeria with CEMI 52.5 R cement and to study the effect of chemical structure of PCE on zeta potential, rheological and mechanical properties of cement pastes. The property of the polymers in cement was tested by a Malvern Zetasizer 2000 apparatus and VT 550 viscometer. Results showed that the zeta potential and its rheological properties are related to the molecular weight and the density carboxylic of PCE. The PCE with a moderate molecular weight and the highest carboxylic groups had the best dispersion (high value of zeta potential) and lowest viscosity. The effect of the chemical structure of PCEs on mechanical properties is evaluated by the formulation of cement mortar with these PCEs. The result shows that there is a correlation between the zeta potential of polymer and the compressive strength of cement paste.

Keywords: molecular weight, polycarboxylate-ether superplasticizer, rheology, zeta potential

Procedia PDF Downloads 89
21010 A Computational Study of N–H…O Hydrogen Bonding to Investigate Cooperative Effects

Authors: Setareh Shekarsaraei, Marjan Moridi, Nasser L. Hadipour

Abstract:

In this study, nuclear magnetic resonance spectroscopy and nuclear quadrupole resonance spectroscopy parameters of 14N (Nitrogen in imidazole ring) in N–H…O hydrogen bonding for Histidine hydrochloride monohydrate were calculated via density functional theory. We considered a five-molecule model system of Histidine hydrochloride monohydrate. Also, we examined the trends of environmental effect on hydrogen bonds as well as cooperativity. The functional used in this research is M06-2X which is a good functional and the obtained results have shown good agreement with experimental data. This functional was applied to calculate the NMR and NQR parameters. Some correlations among NBO parameters, NMR, and NQR parameters have been studied which have shown the existence of strong correlations among them. Furthermore, the geometry optimization has been performed using M062X/6-31++G(d,p) method. In addition, in order to study cooperativity and changes in structural parameters, along with increase in cluster size, natural bond orbitals have been employed.

Keywords: hydrogen bonding, density functional theory (DFT), natural bond orbitals (NBO), cooperativity effect

Procedia PDF Downloads 456
21009 Slope Instability Study Using Kinematic Analysis and Lineament Density Mapping along a Part of National Highway 58, Uttarakhand, India

Authors: Kush Kumar, Varun Joshi

Abstract:

Slope instability is a major problem of the mountainous region, especially in parts of the Indian Himalayan Region (IHR). The on-going tectonic, rugged topography, steep slope, heavy precipitation, toe erosion, structural discontinuities, and deformation are the main triggering factors of landslides in this region. Besides the loss of life, property, and infrastructure caused by a landslide, it also results in various environmental problems, i.e., degradation of slopes, land use, river quality by increased sediments, and loss of well-established vegetation. The Indian state of Uttarakhand, being a part of the active Himalayas, also faces numerous cases of slope instability. Therefore, the vulnerable landslide zones need to be delineated to safeguard various losses. The study area is focused in Garhwal and Tehri -Garhwal district of Uttarakhand state along National Highway 58, which is a strategic road and also connects the four important sacred pilgrims (Char Dham) of India. The lithology of these areas mainly comprises of sandstone, quartzite of Chakrata formation, and phyllites of Chandpur formation. The greywacke and sandstone rock of Saknidhar formation dips northerly and is overlain by phyllite of Chandpur formation. The present research incorporates the lineament density mapping using remote sensing satellite data supplemented by a detailed field study via kinematic analysis. The DEM data of ALOS PALSAR (12.5 m resolution) is resampled to 10 m resolution and used for preparing various thematic maps such as slope, aspect, drainage, hill shade, lineament, and lineament density using ARCGIS 10.6 software. Furthermore, detailed field mapping, including structural mapping, geomorphological mapping, is integrated for kinematic analysis of the slope using Dips 6.0 software of Rockscience. The kinematic analysis of 40 locations was carried out, among which 15 show the planar type of failure, five-show wedge failure, and rest, 20 show no failures. The lineament density map is overlapped with the location of the unstable slope inferred from kinematic analysis to infer the association of the field information and remote sensing derived information, and significant compatibility was observed. With the help of the present study, location-specific mitigation measures could be suggested. The mitigation measures would be helping in minimizing the probability of slope instability, especially during the rainy season, and reducing the hampering of road traffic.

Keywords: Indian Himalayan Region, kinematic analysis, lineament density mapping, slope instability

Procedia PDF Downloads 138
21008 Structure and Magnetic Properties of Low-Temperature Synthesized M-W Hexaferrite Composites

Authors: Young-Min Kang

Abstract:

M-type Sr-hexaferrites (SrFe12O19) is one of the most utilized materials in permanent magnets due to their low price, outstanding chemical stability, and appropriate hard magnetic properties. For a M-type Sr-hexaferrite with a saturation magnetization (MS) of ~74.0 emu/g the practical limits of remanent flux density (Br) and maximum energy product (BH) max are ~4.6 kG and ~5.3 MGOe. Meanwhile, W-type hexaferrite (SrFe18O27) with higher MS ~81emu/g can be a good candidate for the development of enhanced ferrite magnet. However the W-type hexaferrite is stable at the temperature over 1350 ºC in air, and thus it is hard to control grain size and the coercivity. We report here high-MS M-W composite hexaferrites synthesized at 1250 ºC in air by doping Ca, Co, Mn, and Zn into the hexaferrite structures. The hexaferrites samples of stoichiometric SrFe12O19 (SrM) and Ca-Co-Mn-Zn doped hexaferrite (Sr0.7Ca0.3Fen-0.6Co0.2Mn0.2Zn0.2Oa) were prepared by conventional solid state reaction process with varying Fe content (10 ≤ n ≤ 17). Analysis by x-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM) were performed for phase identification and microstructural observation respectively. Magnetic hysteresis curves were measured using vibrating sample magnetometer (VSM) at room temperature (300 K). Single M-type phase could be obtained in the non-doped SrM sample after calcinations at the range of 1200 ºC ~ 1300 ºC, showing MS in the range of 72 ~ 72.6 emu/g. The Ca-Co-Mn-Zn doped SrM with Fe content, 10 ≤ n ≤ 13, showed both M and W-phases peaks in the XRD after respective calcinations at 1250 ºC. The sample with n=13 showed the MS of 70.7, 75.3, 78.0 emu/g, respectively, after calcination at 1200, 1250, 1300 ºC. The high MS over that of non-doped SrM (~72 emu/g) is attributed to the volume portion of W-phase. It is also revealed that the high MS W-phase could not formed if only one of the Ca, Co, Zn is missed in the substitution. These elements are critical to form the W-phase at the calcinations temperature of 1250 ºC, which is 100 ºC lower than the calcinations temperature for non-doped Sr-hexaferrites.

Keywords: M-type hexaferrite, W-type hexaferrite, saturation magnetization, low-temperature synthesis

Procedia PDF Downloads 166
21007 Lead Removal From Ex- Mining Pond Water by Electrocoagulation: Kinetics, Isotherm, and Dynamic Studies

Authors: Kalu Uka Orji, Nasiman Sapari, Khamaruzaman W. Yusof

Abstract:

Exposure of galena (PbS), tealite (PbSnS2), and other associated minerals during mining activities release lead (Pb) and other heavy metals into the mining water through oxidation and dissolution. Heavy metal pollution has become an environmental challenge. Lead, for instance, can cause toxic effects to human health, including brain damage. Ex-mining pond water was reported to contain lead as high as 69.46 mg/L. Conventional treatment does not easily remove lead from water. A promising and emerging treatment technology for lead removal is the application of the electrocoagulation (EC) process. However, some of the problems associated with EC are systematic reactor design, selection of maximum EC operating parameters, scale-up, among others. This study investigated an EC process for the removal of lead from synthetic ex-mining pond water using a batch reactor and Fe electrodes. The effects of various operating parameters on lead removal efficiency were examined. The results obtained indicated that the maximum removal efficiency of 98.6% was achieved at an initial PH of 9, the current density of 15mA/cm2, electrode spacing of 0.3cm, treatment time of 60 minutes, Liquid Motion of Magnetic Stirring (LM-MS), and electrode arrangement = BP-S. The above experimental data were further modeled and optimized using a 2-Level 4-Factor Full Factorial design, a Response Surface Methodology (RSM). The four factors optimized were the current density, electrode spacing, electrode arrangements, and Liquid Motion Driving Mode (LM). Based on the regression model and the analysis of variance (ANOVA) at 0.01%, the results showed that an increase in current density and LM-MS increased the removal efficiency while the reverse was the case for electrode spacing. The model predicted the optimal lead removal efficiency of 99.962% with an electrode spacing of 0.38 cm alongside others. Applying the predicted parameters, the lead removal efficiency of 100% was actualized. The electrode and energy consumptions were 0.192kg/m3 and 2.56 kWh/m3 respectively. Meanwhile, the adsorption kinetic studies indicated that the overall lead adsorption system belongs to the pseudo-second-order kinetic model. The adsorption dynamics were also random, spontaneous, and endothermic. The higher temperature of the process enhances adsorption capacity. Furthermore, the adsorption isotherm fitted the Freundlish model more than the Langmuir model; describing the adsorption on a heterogeneous surface and showed good adsorption efficiency by the Fe electrodes. Adsorption of Pb2+ onto the Fe electrodes was a complex reaction, involving more than one mechanism. The overall results proved that EC is an efficient technique for lead removal from synthetic mining pond water. The findings of this study would have application in the scale-up of EC reactor and in the design of water treatment plants for feed-water sources that contain lead using the electrocoagulation method.

Keywords: ex-mining water, electrocoagulation, lead, adsorption kinetics

Procedia PDF Downloads 149
21006 Comparison of the Logistic and the Gompertz Growth Functions Considering a Periodic Perturbation in the Model Parameters

Authors: Avan Al-Saffar, Eun-Jin Kim

Abstract:

Both the logistic growth model and the gompertz growth model are used to describe growth processes. Both models driven by perturbations in different cases are investigated using information theory as a useful measure of sustainability and the variability. Specifically, we study the effect of different oscillatory modulations in the system's parameters on the evolution of the system and Probability Density Function (PDF). We show the maintenance of the initial conditions for a long time. We offer Fisher information analysis in positive and/or negative feedback and explain its implications for the sustainability of population dynamics. We also display a finite amplitude solution due to the purely fluctuating growth rate whereas the periodic fluctuations in negative feedback can lead to break down the system's self-regulation with an exponentially growing solution. In the cases tested, the gompertz and logistic systems show similar behaviour in terms of information and sustainability although they develop differently in time.

Keywords: dynamical systems, fisher information, probability density function (pdf), sustainability

Procedia PDF Downloads 432
21005 Effect Different Moisture States of Surface-treated Recycled Concrete Aggregate on Properties of Fresh and Hardened Concrete

Authors: Sallehan Ismail, Mahyuddin Ramli

Abstract:

This study examined the properties of fresh and hardened concretes as influenced by the moisture state of the coarse recycled concrete aggregates (RCA) after surface treatment. Surface treatment was performed by immersing the coarse RCA in a calcium metasilicate (CM) solution. The treated coarse RCA was maintained in three controlled moisture states, namely, air-dried, oven-dried, and saturated surface-dried (SSD), prior to its use in a concrete mix. The physical properties of coarse RCA were evaluated after surface treatment during the first phase of the experiment to determine the density and the water absorption characteristics of the RCA. The second phase involved the evaluation of the slump, slump loss, density, and compressive strength of the concretes that were prepared with different proportions of natural and treated coarse RCA. Controlling the moisture state of the coarse RCA after surface treatment was found to significantly influence the properties of the fresh and hardened concretes.

Keywords: moisture state, recycled concrete aggregate, surface treatment

Procedia PDF Downloads 263
21004 Analysis of Correlation Between Manufacturing Parameters and Mechanical Strength Followed by Uncertainty Propagation of Geometric Defects in Lattice Structures

Authors: Chetra Mang, Ahmadali Tahmasebimoradi, Xavier Lorang

Abstract:

Lattice structures are widely used in various applications, especially in aeronautic, aerospace, and medical applications because of their high performance properties. Thanks to advancement of the additive manufacturing technology, the lattice structures can be manufactured by different methods such as laser beam melting technology. However, the presence of geometric defects in the lattice structures is inevitable due to the manufacturing process. The geometric defects may have high impact on the mechanical strength of the structures. This work analyzes the correlation between the manufacturing parameters and the mechanical strengths of the lattice structures. To do that, two types of the lattice structures; body-centered cubic with z-struts (BCCZ) structures made of Inconel718, and body-centered cubic (BCC) structures made of Scalmalloy, are manufactured by laser melting beam machine using Taguchi design of experiment. Each structure is placed on the substrate with a specific position and orientation regarding the roller direction of deposed metal powder. The position and orientation are considered as the manufacturing parameters. The geometric defects of each beam in the lattice are characterized and used to build the geometric model in order to perform simulations. Then, the mechanical strengths are defined by the homogeneous response as Young's modulus and yield strength. The distribution of mechanical strengths is observed as a function of manufacturing parameters. The mechanical response of the BCCZ structure is stretch-dominated, i.e., the mechanical strengths are directly dependent on the strengths of the vertical beams. As the geometric defects of vertical beams are slightly changed based on their position/orientation on the manufacturing substrate, the mechanical strengths are less dispersed. The manufacturing parameters are less influenced on the mechanical strengths of the structure BCCZ. The mechanical response of the BCC structure is bending-dominated. The geometric defects of inclined beam are highly dispersed within a structure and also based on their position/orientation on the manufacturing substrate. For different position/orientation on the substrate, the mechanical responses are highly dispersed as well. This shows that the mechanical strengths are directly impacted by manufacturing parameters. In addition, this work is carried out to study the uncertainty propagation of the geometric defects on the mechanical strength of the BCC lattice structure made of Scalmalloy. To do that, we observe the distribution of mechanical strengths of the lattice according to the distribution of the geometric defects. A probability density law is determined based on a statistical hypothesis corresponding to the geometric defects of the inclined beams. The samples of inclined beams are then randomly drawn from the density law to build the lattice structure samples. The lattice samples are then used for simulation to characterize the mechanical strengths. The results reveal that the distribution of mechanical strengths of the structures with the same manufacturing parameters is less dispersed than one of the structures with different manufacturing parameters. Nevertheless, the dispersion of mechanical strengths due to the structures with the same manufacturing parameters are unneglectable.

Keywords: geometric defects, lattice structure, mechanical strength, uncertainty propagation

Procedia PDF Downloads 123
21003 Load-Settlement Behaviour of Geogrid-Reinforced Sand Bed over Granular Piles

Authors: Sateesh Kumar Pisini, Swetha Priya Darshini Thammadi, Sanjay Kumar Shukla

Abstract:

Granular piles are a popular ground improvement technique in soft cohesive soils as well as for loose non-cohesive soils. The present experimental study has been carried out on granular piles in loose (Relative density = 30%) and medium dense (Relative density = 60%) sands with geogrid reinforcement within the sand bed over the granular piles. A group of five piles were installed in the sand at different spacing, s = 2d, 3d and 4d, d being the diameter of the pile. The length (L = 0.4 m) and diameter (d = 50 mm) of the piles were kept constant for all the series of experiments. The load-settlement behavior of reinforced sand bed and granular piles system was studied by applying the load on a square footing. The results show that the effect of reinforcement increases the load bearing capacity of the piles. It is also found that an increase in spacing between piles decreases the settlement for both loose and medium dense soil.

Keywords: granular pile, load-carrying capacity, settlement, geogrid reinforcement, sand

Procedia PDF Downloads 391
21002 Assessing Relationships between Glandularity and Gray Level by Using Breast Phantoms

Authors: Yun-Xuan Tang, Pei-Yuan Liu, Kun-Mu Lu, Min-Tsung Tseng, Liang-Kuang Chen, Yuh-Feng Tsai, Ching-Wen Lee, Jay Wu

Abstract:

Breast cancer is predominant of malignant tumors in females. The increase in the glandular density increases the risk of breast cancer. BI-RADS is a frequently used density indicator in mammography; however, it significantly overestimates the glandularity. Therefore, it is very important to accurately and quantitatively assess the glandularity by mammography. In this study, 20%, 30% and 50% glandularity phantoms were exposed using a mammography machine at 28, 30 and 31 kVp, and 30, 55, 80 and 105 mAs, respectively. The regions of interest (ROIs) were drawn to assess the gray level. The relationship between the glandularity and gray level under various compression thicknesses, kVp, and mAs was established by the multivariable linear regression. A phantom verification was performed with automatic exposure control (AEC). The regression equation was obtained with an R-square value of 0.928. The average gray levels of the verification phantom were 8708, 8660 and 8434 for 0.952, 0.963 and 0.985 g/cm3, respectively. The percent differences of glandularity to the regression equation were 3.24%, 2.75% and 13.7%. We concluded that the proposed method could be clinically applied in mammography to improve the glandularity estimation and further increase the importance of breast cancer screening.

Keywords: mammography, glandularity, gray value, BI-RADS

Procedia PDF Downloads 494
21001 High Arousal and Athletic Performance

Authors: Turki Mohammed Al Mohaid

Abstract:

High arousal may lead to inhibited athletic performance, or high positive arousal may enhance performance is controversial. To evaluate and review this issue, 31 athletes (all male) were induced into high pre-determined goal arousal and high arousal without pre-determined goal motivational states and tested on a standard grip strength task. Paced breathing was used to change psychological and physiological arousal. It was noted that significant increases in grip strength performance occurred when arousal was high and experienced as delighted, happy, and pleasant excitement in those with no pre-determined goal motivational states. Blood pressure, heart rate, and other indicators of physiological activity were not found to mediate between psychological arousal and performance. In a situation where athletic performance necessitates maximal motor strength over a short period, performance benefits of high arousal may be enhanced by designing a specific motivational state.

Keywords: high arousal, athletic, performance, physiological

Procedia PDF Downloads 116
21000 An Investigation of Raw Material Effects on Nano SiC Based Foam Glass Production

Authors: Aylin Sahin, Yasemin Kilic, Abdulkadir Sari, Burcu Duymaz, Mustafa Kara

Abstract:

Foam glass is an innovative material which composed of glass and carbon/carbonate based minerals; and has incomparable properties like light weight, high thermal insulation and cellular structure with sufficient rigidity. In the present study, the effects of the glass type and mineral addition on the foam glass properties were investigated. Nano sized SiC was fixed as foaming agent at the whole of the samples, mixed glass waste and sheet glass were selectively used as glass sources; finally Al₂O₃ was optionally used as mineral additive. These raw material powders were mixed homogenously, pressed at same pressure and sintered at same schedule. Finally, obtained samples were characterized based on the required properties of foam glass material, and optimum results were determined. At the end of the study, 0.049 W/mK thermal conductivity, 72 % porosity, and 0.21 kg/cm² apparent density with 2.41 MPa compressive strength values were achieved with using nano sized SiC, sheet glass and Al₂O₃ mineral additive. It can be said that the foam glass materials can be preferred as an alternative insulation material rather than polymeric based conventional insulation materials because of supplying high thermal insulation properties without containing unhealthy chemicals and burn risks.

Keywords: foam glass, foaming, silicon carbide, waste glass

Procedia PDF Downloads 369
20999 Effects of Kenaf and Rice Husk on Water Absorption and Flexural Properties of Kenaf/CaCO3/HDPE and Rice Husk/CaCO3/HDPE Hybrid Composites

Authors: Noor Zuhaira Abd Aziz

Abstract:

Rice husk and kenaf filled with calcium carbonate (CaCO3) and high density polyethylene (HDPE) composite were prepared separately using twin-screw extruder at 50rpm. Different filler loading up to 30 parts of rice husk particulate and kenaf fiber were mixed with the fixed 30% amount of CaCO3 mineral filler to produce rice husk/CaCO3/HDPE and kenaf/CaCO3/HDPE hybrid composites. In this study, the effects of natural fiber for both rice husk and kenaf in CaCO3/HDPE composite on physical and mechanical properties were investigated. The property analyses showed that water absorption increased with the presence of kenaf and rice husk fillers. Natural fibers in composite significantly influence water absorption properties due to natural characters of fibers which contain cellulose, hemicellulose and lignin structures. The result showed that 10% of additional natural fibers into hybrid composite had caused decreased flexural strength, however additional of high natural fiber (>10%) filler loading has proved to increase its flexural strength.

Keywords: Hybrid composites, Water absorption, Mechanical properties

Procedia PDF Downloads 463
20998 Superconducting Properties of Fe Doped in Cu-Site of Bi1.6Pb0.4Sr2Ca2Cu3-xFexOy

Authors: M. A. Suazlina, H. Azhan, S. A. Syamsyir, S. Y. S. Yusainee

Abstract:

Fe2O3 was doped to Bi-2223 superconductor prepared in bulk form using high purity oxide powders via solid state reaction technique with intermediate grinding. A stiochiometric of x=0.00, 0.02, 0.04, 0.06, 0.08 and 0.10 Fe are systematically added to the well balanced Bi1.6Pb0.4Sr2Ca2Cu3-xFexOy in order to trace the effect of Fe doping to the system. Microstructure, resistive transitions, phase volume, and cell parameters were hence investigated. Substitution of Fe is found to slowly decrease the Bi-2223 phase volume and the resistive transitions for x=0.00 – 0.10 samples whereas accelerated formation of the Bi-2212 phase is detected for further substitutions. Changes in superconducting properties of Fe-doping Bi-2223 system were discussed and the findings were further compared with available literature.

Keywords: BSCCO, critical temperature, critical current density, XRD, flux pinning

Procedia PDF Downloads 390
20997 Hysteresis Behaviour of Mass Concrete Mixed with Plastic Fibre under Compression

Authors: A. A. Okeola, T. I. Sijuade

Abstract:

Unreinforced concrete is a comparatively brittle substance when exposed to tensile stresses, the required tensile strength is provided by the introduction of steel which is used as reinforcement. The strength of concrete may be improved tremendously by the addition of fibre. This study focused on investigating the compressive strength of mass concrete mixed with different percentage of plastic fibre. Twelve samples of concrete cubes with varied percentage of plastic fibre at 7, 14 and 28 days of water submerged curing were tested under compression loading. The result shows that the compressive strength of plastic fibre reinforced concrete increased with rise in curing age. The strength increases for all percentage dosage of fibre used for the concrete. The density of the Plastic Fibre Reinforced Concrete (PFRC) also increases with curing age, which implies that during curing, concrete absorbs water which aids its hydration. The least compressive strength obtained with the introduction of plastic fibre is more than the targeted 20 N/mm2 recommended for construction work showing that PFRC can be used where significant loading is expected.

Keywords: compressive strength, concrete, curing, density, plastic fibre

Procedia PDF Downloads 410
20996 Radiation Emission from Ultra-Relativistic Plasma Electrons in Short-Pulse Laser Light Interactions

Authors: R. Ondarza-Rovira, T. J. M. Boyd

Abstract:

Intense femtosecond laser light incident on over-critical density plasmas has shown to emit a prolific number of high-order harmonics of the driver frequency, with spectra characterized by power-law decays Pm ~ m-p, where m denotes the harmonic order and p the spectral decay index. When the laser pulse is p-polarized, plasma effects do modify the harmonic spectrum, weakening the so-called universal decay with p=8/3 to p=5/3, or below. In this work, appeal is made to a single particle radiation model in support of the predictions from particle-in-cell (PIC) simulations. Using this numerical technique we further show that the emission radiated by electrons -that are relativistically accelerated by the laser field inside the plasma, after being expelled into vacuum, the so-called Brunel electrons is characterized not only by the plasma line but also by ultraviolet harmonic orders described by the 5/3 decay index. Results obtained from these simulations suggest that for ultra-relativistic light intensities, the spectral decay index is further reduced, with p now in the range 2/3 ≤ p ≤ 4/3. This reduction is indicative of a transition from the regime where Brunel-induced plasma radiation influences the spectrum to one dominated by bremsstrahlung emission from the Brunel electrons.

Keywords: ultra-relativistic, laser-plasma interactions, high-order harmonic emission, radiation, spectrum

Procedia PDF Downloads 467
20995 Estimating the Effect of Fluid in Pressing Process

Authors: A. Movaghar, R. A. Mahdavinejad

Abstract:

To analyze the effect of various parameters of fluid on the material properties such as surface and depth defects and/or cracks, it is possible to determine the affection of pressure field on these specifications. Stress tensor analysis is also able to determine the points in which the probability of defection creation is more. Besides, from pressure field, it is possible to analyze the affection of various fluid specifications such as viscosity and density on defect created in the material. In this research, the concerned boundary conditions are analyzed first. Then the solution network and stencil used are mentioned. With the determination of relevant equation on the fluid flow between notch and matrix and their discretion according to the governed boundary conditions, these equations can be solved. Finally, with the variation creations on fluid parameters such as density and viscosity, the affection of these variations can be determined on pressure field. In this direction, the flowchart and solution algorithm with their results as vortex and current function contours for two conditions with most applications in pressing process are introduced and discussed.

Keywords: pressing, notch, matrix, flow function, vortex

Procedia PDF Downloads 290
20994 Origin of Hydrogen Bonding: Natural Bond Orbital Electron Donor-Acceptor Interactions

Authors: Mohamed Ayoub

Abstract:

We perform computational investigation using density functional theory, B3LYP with aug-cc-pVTZ basis set followed by natural bond orbital analysis (NBO), which provides best single “natural Lewis structure” (NLS) representation of chosen wavefunction (Ψ) with natural resonance theory (NRT) to provide an analysis of molecular electron density in terms of resonance structures (RS) and weights (w). We selected for the study a wide range of gas phase dimers (B…HA), with hydrogen bond dissociation energies (ΔEB…H) that span more than two orders of magnitude. We demonstrate that charge transfer from a donor Lewis-type NBO (nB:) to an acceptor non-Lewis-type NBO (σHA*) is the primary cause for H-bonding not classical electrostatic (dipole-dipole or ionic). We provide a variety of structure, and spectroscopic descriptors to support the conclusion, such as IR frequency shift (ΔνHA), H-bond penetration distance (ΔRB..H), bond order (bB..H), charge-transfer (CTB→HA) and the corresponding donor-acceptor stabilization energy (ΔE(2)).

Keywords: natural bond orbital, hydrogen bonding, electron donor, electron acceptor

Procedia PDF Downloads 439
20993 Drug Delivery of Cyclophosphamide Functionalized Zigzag (8,0) CNT, Armchair (4,4) CNT, and Nanocone Complexes in Water

Authors: Morteza Keshavarz

Abstract:

In this work, using density functional theory (DFT) thermodynamic stability and quantum molecular descriptors of cyclophoshphamide (an anticancer drug)-functionalized zigzag (8,0) CNT, armchair (4,4) CNT and nanocone complexes in water, for two attachment namely the sidewall and tip, is considered. Calculation of the total electronic energy (Et) and binding energy (Eb) of all complexes indicates that the most thermodynamic stability belongs to the sidewall-attachment of cyclophosphamide into functional nanocone. On the other hand, results from chemical hardness show that drug-functionalized zigzag (8,0) and armchair (4,4) complexes in the tip-attachment configuration possess the smallest and greatest chemical hardness, respectively. By computing the solvation energy, it is found that the solution of the drug and all complexes are spontaneous in water. Furthermore, chirality, type of nanovector (nanotube or nanocone), or attachment configuration have no effects on solvation energy of complexes.

Keywords: carbon nanotube, drug delivery, cyclophosphamide drug, density functional theory (DFT)

Procedia PDF Downloads 371
20992 Design and Development of Mucoadhesive Buccal Film Bearing Itraconazole

Authors: Yuvraj Singh Dangi, Kamta Prasad Namdeo, Surendra Bodhake

Abstract:

The purpose of this research was to develop and evaluate mucoadhesive films for buccal administration of itraconazole using film-forming and mucoashesive polymers. Buccal films of chitosan bearing Itraconazole were prepared by solvent casting technique. The films have been evaluated in terms of film weight, thickness, density, surface pH, FTIR, X-ray diffraction analysis, bioadhesion, swelling properties, and in vitro drug release studies. It was found that film formulations of 2 cm2 size having weight in the range of 204 ± 0.76 to 223 ± 2.09 mg and film thickness were in the range of 0.44 ± 0.11 to 0.57 ± 0.19 mm. Density of the films was found to be 0.102 to 0.126 g/ml. Drug content was found to be uniform in the range of 8.23 ± 0.07 to 8.73 ± 0.09 mg/cm2 for formulation A1 to A4. Maximum bioadhesion force was recorded for HPMC buccal films (A2) i.e. 0.57 ± 0.47 as compared to other films. In vitro residence time was in range of 1.7 ± 0.12 to 7.65 ± 0.15 h. The drug release studies show that formulations follow non-fickian diffusion. These mucoadhesive formulations could offer many advantages in comparison to traditional treatments.

Keywords: biovariability, buccal patches, itraconazole, Mucoadhesion

Procedia PDF Downloads 513
20991 Grain Structure Evolution during Friction-Stir Welding of 6061-T6 Aluminum Alloy

Authors: Aleksandr Kalinenko, Igor Vysotskiy, Sergey Malopheyev, Sergey Mironov, Rustam Kaibyshev

Abstract:

From a thermo-mechanical standpoint, friction-stir welding (FSW) represents a unique combination of very large strains, high temperature and relatively high strain rate. The material behavior under such extreme deformation conditions is not studied well and thus, the microstructural examinations of the friction-stir welded materials represent an essential academic interest. Moreover, a clear understanding of the microstructural mechanisms operating during FSW should improve our understanding of the microstructure-properties relationship in the FSWed materials and thus enables us to optimize their service characteristics. Despite extensive research in this field, the microstructural behavior of some important structural materials remains not completely clear. In order to contribute to this important work, the present study was undertaken to examine the grain structure evolution during the FSW of 6061-T6 aluminum alloy. To provide an in-depth insight into this process, the electron backscatter diffraction (EBSD) technique was employed for this purpose. Microstructural observations were conducted by using an FEI Quanta 450 Nova field-emission-gun scanning electron microscope equipped with TSL OIMTM software. A suitable surface finish for EBSD was obtained by electro-polishing in a solution of 25% nitric acid in methanol. A 15° criterion was employed to differentiate low-angle boundaries (LABs) from high-angle boundaries (HABs). In the entire range of the studied FSW regimes, the grain structure evolved in the stir zone was found to be dominated by nearly-equiaxed grains with a relatively high fraction of low-angle boundaries and the moderate-strength B/-B {112}<110> simple-shear texture. In all cases, the grain-structure development was found to be dictated by an extensive formation of deformation-induced boundaries, their gradual transformation to the high-angle grain boundaries. Accordingly, the grain subdivision was concluded to the key microstructural mechanism. Remarkably, a gradual suppression of this mechanism has been observed at relatively high welding temperatures. This surprising result has been attributed to the reduction of dislocation density due to the annihilation phenomena.

Keywords: electron backscatter diffraction, friction-stir welding, heat-treatable aluminum alloys, microstructure

Procedia PDF Downloads 237
20990 Modeling and Stability Analysis of Viral Propagation in Wireless Mesh Networking

Authors: Haowei Chen, Kaiqi Xiong

Abstract:

This paper aims to answer how malware will propagate in Wireless Mesh Networks (WMNs) and how communication radius and distributed density of nodes affects the process of spreading. The above analysis is essential for devising network-wide strategies to counter malware. We answer these questions by developing an improved dynamical system that models malware propagation in the area where nodes were uniformly distributed. The proposed model captures both the spatial and temporal dynamics regarding the malware spreading process. Equilibrium and stability are also discussed based on the threshold of the system. If the threshold is less than one, the infected nodes disappear, and if the threshold is greater than one, the infected nodes asymptotically stabilize at the endemic equilibrium. Numerical simulations are investigated about communication radius and distributed density of nodes in WMNs, which allows us to draw various insights that can be used to guide security defense.

Keywords: Bluetooth security, malware propagation, wireless mesh networks, stability analysis

Procedia PDF Downloads 100
20989 Study of the Relationship between the Civil Engineering Parameters and the Floating of Buoy Model Which Made from Expanded Polystyrene-Mortar

Authors: Panarat Saengpanya

Abstract:

There were five objectives in this study including the study of housing type with water environment, the physical and mechanical properties of the buoy material, the mechanical properties of the buoy models, the floating of the buoy models and the relationship between the civil engineering parameters and the floating of the buoy. The buoy examples made from Expanded Polystyrene (EPS) covered by 5 mm thickness of mortar with the equal thickness on each side. Specimens are 0.05 m cubes tested at a displacement rate of 0.005 m/min. The existing test method used to assess the parameters relationship is ASTM C 109 to provide comparative results. The results found that the three type of housing with water environment were Stilt Houses, Boat House, and Floating House. EPS is a lightweight material that has been used in engineering applications since at least the 1950s. Its density is about a hundredth of that of mortar, while the mortar strength was found 72 times of EPS. One of the advantage of composite is that two or more materials could be combined to take advantage of the good characteristics of each of the material. The strength of the buoy influenced by mortar while the floating influenced by EPS. Results showed the buoy example compressed under loading. The Stress-Strain curve showed the high secant modulus before reached the peak value. The failure occurred within 10% strain then the strength reduces while the strain was continuing. It was observed that the failure strength reduced by increasing the total volume of examples. For the buoy examples with same area, an increase of the failure strength is found when the high dimension is increased. The results showed the relationship between five parameters including the floating level, the bearing capacity, the volume, the high dimension and the unit weight. The study found increases in high of buoy lead to corresponding decreases in both modulus and compressive strength. The total volume and the unit weight had relationship with the bearing capacity of the buoy.

Keywords: floating house, buoy, floating structure, EPS

Procedia PDF Downloads 146
20988 Evolution and Merging of Double-Diffusive Layers in a Vertically Stable Compositional Field

Authors: Ila Thakur, Atul Srivastava, Shyamprasad Karagadde

Abstract:

The phenomenon of double-diffusive convection is driven by density gradients created by two different components (e.g., temperature and concentration) having different molecular diffusivities. The evolution of horizontal double-diffusive layers (DDLs) is one of the outcomes of double-diffusive convection occurring in a laterally/vertically cooled rectangular cavity having a pre-existing vertically stable composition field. The present work mainly focuses on different characteristics of the formation and merging of double-diffusive layers by imposing lateral/vertical thermal gradients in a vertically stable compositional field. A CFD-based twodimensional fluent model has been developed for the investigation of the aforesaid phenomena. The configuration containing vertical thermal gradients shows the evolution and merging of DDLs, where, elements from the same horizontal plane move vertically and mix with surroundings, creating a horizontal layer. In the configuration of lateral thermal gradients, a specially oriented convective roll was found inside each DDL and each roll was driven by the competing density change due to the already existing composition field and imposed thermal field. When the thermal boundary layer near the vertical wall penetrates the salinity interface, it can disrupt the compositional interface and can lead to layer merging. Different analytical scales were quantified and compared for both configurations. Various combinations of solutal and thermal Rayleigh numbers were investigated to get three different regimes, namely; stagnant regime, layered regime and unicellular regime. For a particular solutal Rayleigh number, a layered structure can originate only for a range of thermal Rayleigh numbers. Lower thermal Rayleigh numbers correspond to a diffusion-dominated stagnant regime. Very high thermal Rayleigh corresponds to a unicellular regime with high convective mixing. Different plots identifying these three regimes, number, thickness and time of existence of DDLs have been studied and plotted. For a given solutal Rayleigh number, an increase in thermal Rayleigh number increases the width but decreases both the number and time of existence of DDLs in the fluid domain. Sudden peaks in the velocity and heat transfer coefficient have also been observed and discussed at the time of merging. The present study is expected to be useful in correlating the double-diffusive convection in many large-scale applications including oceanography, metallurgy, geology, etc. The model has also been developed for three-dimensional geometry, but the results were quite similar to that of 2-D simulations.

Keywords: double diffusive layers, natural convection, Rayleigh number, thermal gradients, compositional gradients

Procedia PDF Downloads 85
20987 Elevated Temperature Shot Peening for M50 Steel

Authors: Xinxin Ma, Guangze Tang, Shuxin Yang, Jinguang He, Fan Zhang, Peiling Sun, Ming Liu, Minyu Sun, Liqin Wang

Abstract:

As a traditional surface hardening technique, shot peening is widely used in industry. By using shot peening, a residual compressive stress is formed in the surface which is beneficial for improving the fatigue life of metal materials. At the same time, very fine grains and high density defects are generated in the surface layer which enhances the surface hardness, either. However, most of the processes are carried out at room temperature. For high strength steel, such as M50, the thickness of the strengthen layer is limited. In order to obtain a thick strengthen surface layer, elevated temperature shot peening was carried out in this work by using Φ1mm cast ion balls with a speed of 80m/s. Considering the tempering temperature of M50 steel is about 550 oC, the processing temperature was in the range from 300 to 500 oC. The effect of processing temperature and processing time of shot peening on distribution of residual stress and surface hardness was investigated. As we known, the working temperature of M50 steel can be as high as 315 oC. Because the defects formed by shot peening are unstable when the working temperature goes higher, it is worthy to understand what happens during the shot peening process, and what happens when the strengthen samples were kept at a certain temperature. In our work, the shot peening time was selected from 2 to 10 min. And after the strengthening process, the samples were annealed at various temperatures from 200 to 500 oC up to 60 h. The results show that the maximum residual compressive stress is near 900 MPa. Compared with room temperature shot peening, the strengthening depth of 500 oC shot peening sample is about 2 times deep. The surface hardness increased with the processing temperature, and the saturation peening time decreases. After annealing, the residual compressive stress decreases, however, for 500 oC peening sample, even annealing at 500 oC for 20 h, the residual compressive stress is still over 600 MPa. However, it is clean to see from SEM that the grain size of surface layers is still very small.

Keywords: shot peening, M50 steel, residual compressive stress, elevated temperature

Procedia PDF Downloads 457
20986 Microstructure Analysis and Multiple Photoluminescence in High Temperature Electronic Conducting InZrZnO Thin Films

Authors: P. Jayaram, Prasoon Prasannan, N. K. Deepak, P. P. Pradyumnan

Abstract:

Indium and Zirconium co doped zinc oxide (InZrZnO) thin films are prepared by chemical spray pyrolysis method on pre-heated quartz substrates. The films are subjected to vacuum annealing at 400ᵒC for three hours in an appropriate air (10-5mbar) ambience after deposition. X-ray diffraction, Scanning electron microscopy, energy dispersive spectra and photoluminescence are used to characterize the films. Temperature dependent electrical measurements are conducted on the films and the films exhibit exceptional conductivity at higher temperatures. XRD analysis shows that all the films prepared in this work have hexagonal wurtzite structure. The average crystallite sizes of the films were calculated using Scherrer’s formula, and uniform deformation model (UDM) of Williamson-Hall method is used to establish the micro-strain values. The dislocation density is determined from the Williamson and Smallman’s formula. Intense, broad and strongly coupled multiple photoluminescence were observed from photoluminescence spectra. PL indicated relatively high concentration defective oxygen and Zn vacancies in the film composition. Strongly coupled ultraviolet near blue emissions authenticate that the dopants are capable of inducing modulated free excitonic (FX), donor accepter pair (DAP) and longitudinal optical phonon emissions in thin films.

Keywords: PL, SEM, TCOs, thin films, XRD

Procedia PDF Downloads 239
20985 Effect of Coal on Engineering Properties in Building Materials: Opportunity to Manufacturing Insulating Bricks

Authors: Bachir Chemani, Halima Chemani

Abstract:

The objective of this study is to investigate the effect of adding coal to obtain insulating ceramic product. The preparation of mixtures is achieved with 04 types of different masse compositions, consisting of gray and yellow clay, and coal. Analyses are performed on local raw materials by adding coal as additive. The coal content varies from 5 to 20 % in weight by varying the size of coal particles ranging from 0.25 mm to 1.60 mm. Initially, each natural moisture content of a raw material has been determined at the temperature of 105°C in a laboratory oven. The Influence of low-coal content on absorption, the apparent density, the contraction and the resistance during compression have been evaluated. The experimental results showed that the optimized composition could be obtained by adding 10% by weight of coal leading thus to insulating ceramic products with water absorption, a density and resistance to compression of 9.40 %, 1.88 g/cm3, 35.46 MPa, respectively. The results show that coal, when mixed with traditional raw materials, offers the conditions to be used as an additive in the production of lightweight ceramic products.

Keywords: clay, coal, resistance to compression, insulating bricks

Procedia PDF Downloads 329
20984 Spin-Polarized Structural, Electronic, and Magnetic Properties of Co and Mn-Doped CdTe in Zinc-Blende Phase

Authors: A.Zitouni, S.Bentata, B.Bouadjemi, T.Lantri, W. Benstaali, Z.Aziz, S.Cherid, A. Sefir

Abstract:

Structural, electronic, and magnetic properties of Co and Mn-doped CdTe have been studied by employing the full potential linear augmented plane waves (FP-LAPW) method within the spin-polarized density functional theory (DFT). The electronic exchange-correlation energy is described by generalized gradient approximation (GGA) as exchange–correlation (XC) potential. We have calculated the lattice parameters, bulk modulii and the first pressure derivatives of the bulk modulii, spin-polarized band structures, and total and local densities of states. The value of calculated magnetic moment per Co and Mn impurity atoms is found to be 2.21 µB for CdCoTe and 3.20 µB for CdMnTe. The calculated densities of states presented in this study identify the half-metallic of Co and Mn-doped CdTe.

Keywords: electronic structure, density functional theory, band structures, half-metallic, magnetic moment

Procedia PDF Downloads 466
20983 The Use of Additives to Prevent Fouling in Polyethylene and Polypropylene Gas and Slurry Phase Processes

Authors: L. Shafiq, A. Rigby

Abstract:

All polyethylene processes are highly exothermic, and the safe removal of the heat of reaction is a fundamental issue in the process design. In slurry and gas processes, the velocity of the polymer particles in the reactor and external coolers can be very high, and under certain conditions, this can lead to static charging of these particles. Such static charged polymer particles may start building up on the reactor wall, limiting heat transfer, and ultimately leading to severe reactor fouling and forced reactor shut down. Statsafe™ is an FDA approved anti-fouling additive currently used around the world for polyolefin production as an anti-fouling additive. The unique polymer chemistry aids static discharge, which prevents the build-up of charged polyolefin particles, which could lead to fouling. Statsafe™ is being used and trailed in gas, slurry, and a combination of these technologies around the world. We will share data to demonstrate how the use of Statsafe™ allows more stable operation at higher solids level by eliminating static, which would otherwise prevent closer packing of particles in the hydrocarbon slurry. Because static charge generation depends also on the concentration of polymer particles in the slurry, the maximum slurry concentration can be higher when using Statsafe™, leading to higher production rates. The elimination of fouling also leads to less downtime. Special focus will be made on the impact anti-static additives have on catalyst performance within the polymerization process and how this has been measured. Lab-scale studies have investigated the effect on the activity of Ziegler Natta catalysts when anti-static additives are used at various concentrations in gas and slurry, polyethylene and polypropylene processes. An in-depth gas phase study investigated the effect of additives on the final polyethylene properties such as particle size, morphology, fines, bulk density, melt flow index, gradient density, and melting point.

Keywords: anti-static additives, catalyst performance, FDA approved anti-fouling additive, polymerisation

Procedia PDF Downloads 206