Search results for: fiber modified asphalt
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3731

Search results for: fiber modified asphalt

2651 Transesterification of Waste Cooking Oil for Biodiesel Production Using Modified Clinoptilolite Zeolite as a Heterogeneous Catalyst

Authors: D. Mowla, N. Rasti, P. Keshavarz

Abstract:

Reduction of fossil fuels sources, increasing of pollution gases emission, and global warming effects increase the demand of renewable fuels. One of the main candidates of alternative fuels is biodiesel. Biodiesel limits greenhouse gas effects due to the closed CO2 cycle. Biodiesel has more biodegradability, lower combustion emissions such as CO, SOx, HC, PM and lower toxicity than petro diesel. However, biodiesel has high production cost due to high price of plant oils as raw material. So, the utilization of waste cooking oils (WCOs) as feedstock, due to their low price and disposal problems reduce biodiesel production cost. In this study, production of biodiesel by transesterification of methanol and WCO using modified sodic potassic (SP) clinoptilolite zeolite and sodic potassic calcic (SPC) clinoptilolite zeolite as heterogeneous catalysts have been investigated. These natural clinoptilolite zeolites were modified by KOH solution to increase the site activity. The optimum biodiesel yields for SP clinoptilolite and SPC clinoptilolite were 95.8% and 94.8%, respectively. Produced biodiesel were analyzed and compared with petro diesel and ASTM limits. The properties of produced biodiesel confirm well with ASTM limits. The density, kinematic viscosity, cetane index, flash point, cloud point, and pour point of produced biodiesel were all higher than petro diesel but its acid value was lower than petro diesel. Finally, the reusability and regeneration of catalysts were investigated. The results indicated that the spent zeolites cannot be reused directly for the transesterification, but they can be regenerated easily and can obtain high activity.

Keywords: biodiesel, renewable fuel, transesterification, waste cooking oil

Procedia PDF Downloads 234
2650 Effect of Sodium Alginate-based Edible Coating with Natural Essential Oils and Modified Atmosphere Packaging on Quality of Fresh-cut Pineapple

Authors: Muhammad Rafi Ullah Khan, Yaodong Guo, Vanee Chonhenchob, Jinjin Pei, Chongxing Huang

Abstract:

The effect of sodium alginate (1%) based edible coating incorporated natural essential oils; thymol, carvone and carvacrol as antimicrobial agents at different concentrations (0.1, 0.5 and 1.0 %) on the quality changes of fresh-cut pineapple were investigated. Pineapple dipped in distilled water was served as control. After coating, fruit were sealed in a modified atmosphere package (MAP) using high permeable film; and stored at 5 °C. Gas composition in package headspace, color values (L*, a*, b*, C*), TSS, pH, ethanol, browning, and microbial decay were monitored during storage. Oxygen concentration continuously decreased while carbon dioxide concentration inside all packages continuously increased over time. Color parameters (L*, b*, c*) decreased and a* values increased during storage. All essential oils significantly (p ≤ 0.05) prevented microbial growth than control. A significantly higher (p ≤ 0.05) ethanol content was found in the control than in all other treatments. Visible microbial growth, high ethanol, and low color values limited the shelf life to 6 days in control as compared to 9 days in all other treatments. Among all essential oils, thymol at all concentrations maintained the overall quality of the pineapple and could potentially be used commercially in fresh fruit industries for longer storage.

Keywords: essential oils, antibrowning agents, antimicrobial agents, modified atmosphere packaging, microbial decay, pineapple

Procedia PDF Downloads 54
2649 Influence of AAR-Induced Expansion Level on Confinement Efficiency of CFRP Wrapping Applied to Damaged Circular Concrete Columns

Authors: Thamer Kubat, Riadh Al Mahiadi, Ahmad Shayan

Abstract:

The alkali-aggregate reaction (AAR) in concrete has a negative influence on the mechanical properties and durability of concrete. Confinement by carbon fiber reinforced polymer (CFRP) is an effective method of treatment for some AAR-affected elements. Eighteen reinforced columns affected by different levels of expansion due to AAR were confined using CFRP to evaluate the effect of expansion level on confinement efficiency. Strength and strain capacities (axial and circumferential) were measured using photogrammetry under uniaxial compressive loading to evaluate the efficiency of CFRP wrapping for the rehabilitation of affected columns. In relation to uniaxial compression capacity, the results indicated that the confinement of AAR-affected columns by one layer of CFRP is sufficient to reach and exceed the load capacity of unaffected sound columns. Parallel to the experimental study, finite element (FE) modeling using ATENA software was employed to predict the behavior of CFRP-confined damaged concrete and determine the possibility of using the model in a parametric study by simulating the number of CFRP layers. A comparison of the experimental results with the results of the theoretical models showed that FE modeling could be used for the prediction of the behavior of confined AAR-damaged concrete.

Keywords: ATENA, carbon fiber reinforced polymer (CFRP), confinement efficiency, finite element (FE)

Procedia PDF Downloads 70
2648 Biosensors for Parathion Based on Au-Pd Nanoparticles Modified Electrodes

Authors: Tian-Fang Kang, Chao-Nan Ge, Rui Li

Abstract:

An electrochemical biosensor for the determination of organophosphorus pesticides was developed based on electrochemical co-deposition of Au and Pd nanoparticles on glassy carbon electrode (GCE). Energy disperse spectroscopy (EDS) analysis was used for characterization of the surface structure. Scanning electron micrograph (SEM) demonstrates that the films are uniform and the nanoclusters are homogeneously distributed on the GCE surface. Acetylcholinesterase (AChE) was immobilized on the Au and Pd nanoparticle modified electrode (Au-Pd/GCE) by cross-linking with glutaraldehyde. The electrochemical behavior of thiocholine at the biosensor (AChE/Au-Pd/GCE) was studied. The biosensors exhibited substantial electrocatalytic effect on the oxidation of thiocholine. The peak current of linear scan voltammetry (LSV) of thiocholine at the biosensor is proportional to the concentration of acetylthiocholine chloride (ATCl) over the range of 2.5 × 10-6 to 2.5 × 10-4 M in 0.1 M phosphate buffer solution (pH 7.0). The percent inhibition of acetylcholinesterase was proportional to the logarithm of parathion concentration in the range of 4.0 × 10-9 to 1.0 × 10-6 M. The detection limit of parathion was 2.6 × 10-9 M. The proposed method exhibited high sensitivity and good reproducibility.

Keywords: acetylcholinesterase, Au-Pd nanoparticles, electrochemical biosensors, parathion

Procedia PDF Downloads 404
2647 Urea Amperometric Biosensor Based on Entrapment Immobilization of Urease onto a Nanostructured Polypyrrol and Multi-Walled Carbon Nanotube

Authors: Hamide Amani, Afshin FarahBakhsh, Iman Farahbakhsh

Abstract:

In this paper, an amprometric biosensor based on surface modified polypyrrole (PPy) has been developed for the quantitative estimation of urea in aqueous solutions. The incorporation of urease (Urs) into a bipolymeric substrate consisting of PPy was performed by entrapment to the polymeric matrix, PPy acts as amperometric transducer in these biosensors. To increase the membrane conductivity, multi-walled carbon nanotubes (MWCNT) were added to the PPy solution. The entrapped MWCNT in PPy film and the bipolymer layers were prepared for construction of Pt/PPy/MWCNT/Urs. Two different configurations of working electrodes were evaluated to investigate the potential use of the modified membranes in biosensors. The evaluation of two different configurations of working electrodes suggested that the second configuration, which was composed of an electrode-mediator-(pyrrole and multi-walled carbon nanotube) structure and enzyme, is the best candidate for biosensor applications.

Keywords: urea biosensor, polypyrrole, multi-walled carbon nanotube, urease

Procedia PDF Downloads 324
2646 Evolution of Bioactive Components of Prickly Pear Juice (Opuntia ficus indica) and Cocktails with Orange Juice

Authors: T. Hadj Sadok, R. Hattab Bey, K. Rebiha

Abstract:

The valuation of juice from prickly pear of Opuntia ficus indica inermis as cocktails appears an attractive alternative because of their nutritional intake and functional compound has anti-radical activity (polyphenols, vitamin C, carotenoids, Betalaines, fiber and minerals). The juice from the fruit pulp is characterized by a high pH 5.85 which makes it difficult for its conservation and preservation requires a thermal treatment at high temperatures (over 100 °C) harmful for bioactive constituents compared to juice orange more acidic and processed at temperatures < 100 °C. The valuation as fig cocktails-orange is particularly interesting thanks to the contribution of polyph2nols, fiber, vitamin C, reducing sugar (sweetener) and betalaine, minerals while allowing lower temperature processing to decrease pH. The heat treatment of these juices: orange alone or in cocktails showed that the antioxidant power decreases by 12% in presence of 30% of juice treated by the heat and of 28 and 32% in the presence of 10 and 20% juice which shows the effect prickly pear juice of Opuntia. During storage for 4 weeks the loss of vitamin C is 40 and 38% in the presence of 10 and 20% juice and 33% in the presence of 30% pear juice parallel, a treatment of stabilization by heat affects relatively the polyphenols rate which decreases from 10.5% to 30% in the cocktail, and 6.11-6.71pour cocktails at 10% and 20%. Vitamin C decreases to 12 to 24 % after a heat treatment at 85°C for 30 minutes respectively for the orange juice and pear juice; this reduction is higher when the juice is in the form of cocktails composed of 10 to 30 % pear juice.

Keywords: prickly pear juice, orange cocktail, polyphenol, Opuntia ficus indica, vitamin

Procedia PDF Downloads 376
2645 Entropy Production in Mixed Convection in a Horizontal Porous Channel Using Darcy-Brinkman Formulation

Authors: Amel Tayari, Atef Eljerry, Mourad Magherbi

Abstract:

The paper reports a numerical investigation of the entropy generation analysis due to mixed convection in laminar flow through a channel filled with porous media. The second law of thermodynamics is applied to investigate the entropy generation rate. The Darcy-Brinkman Model is employed. The entropy generation due to heat transfer and friction dissipations has been determined in mixed convection by solving numerically the continuity, momentum and energy equations, using a control volume finite element method. The effects of Darcy number, modified Brinkman number and the Rayleigh number on averaged entropy generation and averaged Nusselt number are investigated. The Rayleigh number varied between 103 ≤ Ra ≤ 105 and the modified Brinkman number ranges between 10-5 ≤ Br≤ 10-1 with fixed values of porosity and Reynolds number at 0.5 and 10 respectively. The Darcy number varied between 10-6 ≤ Da ≤10.

Keywords: entropy generation, porous media, heat transfer, mixed convection, numerical methods, darcy, brinkman

Procedia PDF Downloads 401
2644 Development of a Sensitive Electrochemical Sensor Based on Carbon Dots and Graphitic Carbon Nitride for the Detection of 2-Chlorophenol and Arsenic

Authors: Theo H. G. Moundzounga

Abstract:

Arsenic and 2-chlorophenol are priority pollutants that pose serious health threats to humans and ecology. An electrochemical sensor, based on graphitic carbon nitride (g-C₃N₄) and carbon dots (CDs), was fabricated and used for the determination of arsenic and 2-chlorophenol. The g-C₃N₄/CDs nanocomposite was prepared via microwave irradiation heating method and was dropped-dried on the surface of the glassy carbon electrode (GCE). Transmission electron microscopy (TEM), X-ray diffraction (XRD), photoluminescence (PL), Fourier transform infrared spectroscopy (FTIR), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS) were used for the characterization of structure and morphology of the nanocomposite. Electrochemical characterization was done by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The electrochemical behaviors of arsenic and 2-chlorophenol on different electrodes (GCE, CDs/GCE, and g-C₃N₄/CDs/GCE) was investigated by differential pulse voltammetry (DPV). The results demonstrated that the g-C₃N₄/CDs/GCE significantly enhanced the oxidation peak current of both analytes. The analytes detection sensitivity was greatly improved, suggesting that this new modified electrode has great potential in the determination of trace level of arsenic and 2-chlorophenol. Experimental conditions which affect the electrochemical response of arsenic and 2-chlorophenol were studied, the oxidation peak currents displayed a good linear relationship to concentration for 2-chlorophenol (R²=0.948, n=5) and arsenic (R²=0.9524, n=5), with a linear range from 0.5 to 2.5μM for 2-CP and arsenic and a detection limit of 2.15μM and 0.39μM respectively. The modified electrode was used to determine arsenic and 2-chlorophenol in spiked tap and effluent water samples by the standard addition method, and the results were satisfying. According to the measurement, the new modified electrode is a good alternative as chemical sensor for determination of other phenols.

Keywords: electrochemistry, electrode, limit of detection, sensor

Procedia PDF Downloads 141
2643 The Effect of Hydroxyl Ethyl Cellulose (HEC) and Hydrophobically-Modified Alkali Soluble Emulsions (HASE) on the Properties and Quality of Water Based Paints

Authors: Haleden Chiririwa, Sandile S. Gwebu

Abstract:

The coatings industry is a million dollar business, and it is easy and inexpensive to set-up but it is growing very slowly in developing countries, and this study developed a paint formulation which gives better quality and good application properties. The effect of rheology modifiers, i.e. non-ionic polymers hydrophobically-modified ethoxylated urethanes (HEUR), anionic polymers hydrophobically-modified alkali soluble emulsions (HASE) and hydroxyl ethyl cellulose (HEC) on the quality and properties of water-based paints have been investigated. HEC provides the in-can viscosity and increases open working time while HASE improves application properties like spatter resistance and brush loading and HEUR provides excellent scrub resistance. Four paint recipes were prepared using four different thickeners HEC, HASE (carbopol) and Cellulose nitrate. The fourth formulation was thickened with a combination of HASE and HEC, this aimed at improving quality and at the same time reducing cost. The four samples were tested for quality tests such viscosity, sag resistance, volatile matter, tinter effect, drying times, hiding power, scrub resistance and stability on storage. Environmental factors were incorporated in the attempt to formulate an economic and green product. Hydroxyl ethyl cellulose and cellulose nitrate gave high quality and good properties of the paint. HEC and Cellulose nitrate showed stability on storage whereas carbopol thickener was very unstable.

Keywords: properties, thickeners, rheology modifiers, water based paints

Procedia PDF Downloads 260
2642 The Impact of Liquid Glass-Infused Lignin Waste Particles on Performance of Polyurethane Foam for Building Industry

Authors: Agnė Kairyte, Saulius Vaitkus

Abstract:

The gradual depletion of fossil feedstock and growing environmental concerns attracted extensive attention to natural resources due to their low cost, high abundance, renewability, sustainability, and biodegradability. Lignin is a significant by-product of the pulp and paper industry, having unique functional groups. Recently it became interesting for the manufacturing of high value-added products such as polyurethane and polyisocyanurate foams. This study focuses on the development of high-performance polyurethane foams with various amounts of lignin as a filler. It is determined that the incorporation of lignin as a filler material results in brittle and hard products due to the low molecular mobility of isocyanates and the inherent stiffness of lignin. Therefore, the current study analyses new techniques and possibilities of liquid glass infusion onto the surface of lignin particles to reduce the negative aspects and improve the performance characteristics of the modified foams. The foams modified with sole lignin and liquid glass-infused lignin had an apparent density ranging from 35 kg/m3 to 45 kg/m3 and closed-cell content (80–90%). The incorporation of sole lignin reduced the compressive and tensile strengths and increased dimensional stability and water absorption, while the contrary results were observed for polyurethane foams with liquid glass-infused lignin particles. The effect on rheological parameters of lignin and liquid glass infused lignin modified polyurethane premixes and morphology of polyurethane foam products were monitored to optimize the conditions and reveal the significant influence of the interaction between particles and polymer matrix.

Keywords: filler, lignin waste, liquid glass, polymer matrix, polyurethane foam, sustainability

Procedia PDF Downloads 208
2641 Development of Nanoparticulate Based Chimeric Drug Delivery System Using Drug Bioconjugated Plant Virus Capsid on Biocompatible Nanoparticles

Authors: Indu Barwal, Shloka Thakur, Subhash C. Yadav

Abstract:

The plant virus capsid protein based nanoparticles are extensively studied for their application in biomedical research for development of nanomedicines and drug delivery systems. We have developed a chimeric drug delivery system by controlled in vitro assembly of separately bioconjugated fluorescent dye (as reporting molecule), folic acid (as receptor binding biomolecule for targeted delivery) and doxorubicin (as anticancer drug) using modified EDC NHS chemistry on heterologously overexpressed (E. coli) capsid proteins of cowpea chlorotic mottle virus (CCMV). This chimeric vehicle was further encapsidated on gold nanoparticles (20nm) coated with 5≠ thiolated DNA probe to neutralize the positive charge of capsid proteins. This facilitates the in vitro assembly of modified capsid subunits on the gold nanoparticles to develop chimeric GNPs encapsidated targeted drug delivery system. The bioconjugation of functionalities, number of functionality on capsid subunits as well as virus like nanoparticles, structural stability and in vitro assembly were confirmed by SDS PAGE, relative absorbance, MALDI TOF, ESI-MS, Circular dichroism, intrinsic tryptophan fluorescence, zeta particle size analyzer and TEM imaging. This vehicle was stable at pH 4.0 to 8.0 suitable for many organelles targeting. This in vitro assembled chimeric plant virus like particles could be suitable for ideal drug delivery vehicles for subcutaneous cancer treatment and could be further modified for other type of cancer treatment by conjugating other functionalities (targeting, drug) on capsids.

Keywords: chimeric drug delivery vehicles, bioconjugated plant, virus, capsid

Procedia PDF Downloads 490
2640 Characterization of Bio-Inspired Thermoelastoplastic Composites Filled with Modified Cellulose Fibers

Authors: S. Cichosz, A. Masek

Abstract:

A new cellulose hybrid modification approach, which is undoubtedly a scientific novelty, is introduced. The study reports the properties of cellulose (Arbocel UFC100 – Ultra Fine Cellulose) and characterizes cellulose filled polymer composites based on an ethylene-norbornene copolymer (TOPAS Elastomer E-140). Moreover, the approach of physicochemical two-stage cellulose treatment is introduced: solvent exchange (to ethanol or hexane) and further chemical modification with maleic anhydride (MA). Furthermore, the impact of the drying process on cellulose properties was investigated. Suitable measurements were carried out to characterize cellulose fibers: spectroscopic investigation (Fourier Transform Infrared Spektrofotometer-FTIR, Near InfraRed spectroscopy-NIR), thermal analysis (Differential scanning calorimetry, Thermal gravimetric analysis ) and Karl Fischer titration. It should be emphasized that for all UFC100 treatments carried out, a decrease in moisture content was evidenced. FT-IR reveals a drop in absorption band intensity at 3334 cm-1, the peak is associated with both –OH moieties and water. Similar results were obtained with Karl Fischer titration. Based on the results obtained, it may be claimed that the employment of ethanol contributes greatly to the lowering of cellulose water absorption ability (decrease of moisture content to approximately 1.65%). Additionally, regarding polymer composite properties, crucial data has been obtained from the mechanical and thermal analysis. The highest material performance was noted in the case of the composite sample that contained cellulose modified with MA after a solvent exchange with ethanol. This specimen exhibited sufficient tensile strength, which is almost the same as that of the neat polymer matrix – in the region of 40 MPa. Moreover, both the Payne effect and filler efficiency factor, calculated based on dynamic mechanical analysis (DMA), reveal the possibility of the filler having a reinforcing nature. What is also interesting is that, according to the Payne effect results, fibers dried before the further chemical modification are assumed to allow more regular filler structure development in the polymer matrix (Payne effect maximum at 1.60 MPa), compared with those not dried (Payne effect in the range 0.84-1.26 MPa). Furthermore, taking into consideration the data gathered from DSC and TGA, higher thermal stability is obtained in case of the materials filled with fibers that were dried before the carried out treatments (degradation activation energy in the region of 195 kJ/mol) in comparison with the polymer composite samples filled with unmodified cellulose (degradation activation energy of approximately 180 kJ/mol). To author’s best knowledge this work results in the introduction of a novel, new filler hybrid treatment approach. Moreover, valuable data regarding the properties of composites filled with cellulose fibers of various moisture contents have been provided. It should be emphasized that plant fiber-based polymer bio-materials described in this research might contribute significantly to polymer waste minimization because they are more readily degraded.

Keywords: cellulose fibers, solvent exchange, moisture content, ethylene-norbornene copolymer

Procedia PDF Downloads 110
2639 Enhancing Fracture Toughness of CF/PAEK Laminates for High-Velocity Impact Applications: An Experimental Investigation

Authors: Johannes Keil, Eric Mischorr, Veit Würfel, Jan Condé-Wolter, Alexander Liebsch, Maik Gude

Abstract:

In the aviation sector wastewater pipes are subjected to many different mechanical and medial loads. Worst-case scenarios include high-velocity impacts resulting from the introduction of foreign objects into the system. The industry is seeking to reduce the weight of these pipes, which are currently manufactured from titanium. A promising alternative is the use of fiber-reinforced polymers (FRP), specifically carbon fiber (CF) reinforced polyaryletherketone (PAEK) laminates. This study employs an experimental methodology to investigate the impact resistance of CF/PAEK laminates, with a particular focus on three configurations: crimp, non-crimp, and interleaved matrix rich films in cross-ply laminates. High-velocity impacts were performed using a gas gun resulting in three-dimensional damage patterns. Afterwards the damage behavior was qualitatively and quantitatively analyzed using ultrasonic scans and computed tomography (CT). Samples with an interleaved matrix-rich film led to a reduction of the damage area by around 40% compared to the non-interleaved, non-crimp samples, while the crimp architecture resulted in a reduction of more than 60%. Therefore, these findings contribute to understanding the influence of laminate architecture on impact resistance, paving the way for more efficient materials in aviation applications.

Keywords: fracture toughness, high-velocity-impact, textile architecture, thermoplastic composites

Procedia PDF Downloads 11
2638 Dynamics of Mach Zehnder Modulator in Open and Closed Loop Bias Condition

Authors: Ramonika Sengupta, Stuti Kachhwaha, Asha Adhiya, K. Satya Raja Sekhar, Rajwinder Kaur

Abstract:

Numerous efforts have been done in the past decade to develop the methods of secure communication that are free from interception and eavesdropping. In fiber optic communication, chaotic optical carrier signals are used for data encryption in secure data transmission. Mach-Zehnder Modulators (MZM) are the key components for generating the chaotic signals to be used as optical carriers. This paper presents the dynamics of a lithium niobate MZM modulator under various biasing conditions. The chaotic fluctuations of the intensity of a laser diode have been generated using the electro-optic MZM modulator operating in a highly nonlinear regime. The modulator is driven in closed loop by its own output at an earlier time. When used as an electro-optic oscillator employing delayed feedback, the MZM displays a wide range of output waveforms of varying complexity. The dynamical behavior of the system ranges from periodic to nonlinear oscillations. The nonlinearity displayed by the system is reproducible and is easily controllable. In this paper, we demonstrate a wide variety of optical signals generated by MZM using easily controllable device parameters in both open and close loop bias conditions.

Keywords: chaotic carrier, fiber optic communication, Mach-Zehnder modulator, secure data transmission

Procedia PDF Downloads 269
2637 Of an 80 Gbps Passive Optical Network Using Time and Wavelength Division Multiplexing

Authors: Malik Muhammad Arslan, Muneeb Ullah, Dai Shihan, Faizan Khan, Xiaodong Yang

Abstract:

Internet Service Providers are driving endless demands for higher bandwidth and data throughput as new services and applications require higher bandwidth. Users want immediate and accurate data delivery. This article focuses on converting old conventional networks into passive optical networks based on time division and wavelength division multiplexing. The main focus of this research is to use a hybrid of time-division multiplexing and wavelength-division multiplexing to improve network efficiency and performance. In this paper, we design an 80 Gbps Passive Optical Network (PON), which meets the need of the Next Generation PON Stage 2 (NGPON2) proposed in this paper. The hybrid of the Time and Wavelength division multiplexing (TWDM) is said to be the best solution for the implementation of NGPON2, according to Full-Service Access Network (FSAN). To co-exist with or replace the current PON technologies, many wavelengths of the TWDM can be implemented simultaneously. By utilizing 8 pairs of wavelengths that are multiplexed and then transmitted over optical fiber for 40 Kms and on the receiving side, they are distributed among 256 users, which shows that the solution is reliable for implementation with an acceptable data rate. From the results, it can be concluded that the overall performance, Quality Factor, and bandwidth of the network are increased, and the Bit Error rate is minimized by the integration of this approach.

Keywords: bit error rate, fiber to the home, passive optical network, time and wavelength division multiplexing

Procedia PDF Downloads 69
2636 In-Process Integration of Resistance-Based, Fiber Sensors during the Braiding Process for Strain Monitoring of Carbon Fiber Reinforced Composite Materials

Authors: Oscar Bareiro, Johannes Sackmann, Thomas Gries

Abstract:

Carbon fiber reinforced polymer composites (CFRP) are used in a wide variety of applications due to its advantageous properties and design versatility. The braiding process enables the manufacture of components with good toughness and fatigue strength. However, failure mechanisms of CFRPs are complex and still present challenges associated with their maintenance and repair. Within the broad scope of structural health monitoring (SHM), strain monitoring can be applied to composite materials to improve reliability, reduce maintenance costs and safely exhaust service life. Traditional SHM systems employ e.g. fiber optics, piezoelectrics as sensors, which are often expensive, time consuming and complicated to implement. A cost-efficient alternative can be the exploitation of the conductive properties of fiber-based sensors such as carbon, copper, or constantan - a copper-nickel alloy – that can be utilized as sensors within composite structures to achieve strain monitoring. This allows the structure to provide feedback via electrical signals to a user which are essential for evaluating the structural condition of the structure. This work presents a strategy for the in-process integration of resistance-based sensors (Elektrisola Feindraht AG, CuNi23Mn, Ø = 0.05 mm) into textile preforms during its manufacture via the braiding process (Herzog RF-64/120) to achieve strain monitoring of braided composites. For this, flat samples of instrumented composite laminates of carbon fibers (Toho Tenax HTS40 F13 24K, 1600 tex) and epoxy resin (Epikote RIMR 426) were manufactured via vacuum-assisted resin infusion. These flat samples were later cut out into test specimens and the integrated sensors were wired to the measurement equipment (National Instruments, VB-8012) for data acquisition during the execution of mechanical tests. Quasi-static tests were performed (tensile, 3-point bending tests) following standard protocols (DIN EN ISO 527-1 & 4, DIN EN ISO 14132); additionally, dynamic tensile tests were executed. These tests were executed to assess the sensor response under different loading conditions and to evaluate the influence of the sensor presence on the mechanical properties of the material. Several orientations of the sensor with regards to the applied loading and sensor placements inside the laminate were tested. Strain measurements from the integrated sensors were made by programming a data acquisition code (LabView) written for the measurement equipment. Strain measurements from the integrated sensors were then correlated to the strain/stress state for the tested samples. From the assessment of the sensor integration approach it can be concluded that it allows for a seamless sensor integration into the textile preform. No damage to the sensor or negative effect on its electrical properties was detected during inspection after integration. From the assessment of the mechanical tests of instrumented samples it can be concluded that the presence of the sensors does not alter significantly the mechanical properties of the material. It was found that there is a good correlation between resistance measurements from the integrated sensors and the applied strain. It can be concluded that the correlation is of sufficient accuracy to determinate the strain state of a composite laminate based solely on the resistance measurements from the integrated sensors.

Keywords: braiding process, in-process sensor integration, instrumented composite material, resistance-based sensor, strain monitoring

Procedia PDF Downloads 102
2635 Seismic Assessment of Passive Control Steel Structure with Modified Parameter of Oil Damper

Authors: Ahmad Naqi

Abstract:

Today, the passively controlled buildings are extensively becoming popular due to its excellent lateral load resistance circumstance. Typically, these buildings are enhanced with a damping device that has high market demand. Some manufacturer falsified the damping device parameter during the production to achieve the market demand. Therefore, this paper evaluates the seismic performance of buildings equipped with damping devices, which their parameter modified to simulate the falsified devices, intentionally. For this purpose, three benchmark buildings of 4-, 10-, and 20-story were selected from JSSI (Japan Society of Seismic Isolation) manual. The buildings are special moment resisting steel frame with oil damper in the longitudinal direction only. For each benchmark buildings, two types of structural elements are designed to resist the lateral load with and without damping devices (hereafter, known as Trimmed & Conventional Building). The target building was modeled using STERA-3D, a finite element based software coded for study purpose. Practicing the software one can develop either three-dimensional Model (3DM) or Lumped Mass model (LMM). Firstly, the seismic performance of 3DM and LMM models was evaluated and found excellent coincide for the target buildings. The simplified model of LMM used in this study to produce 66 cases for both of the buildings. Then, the device parameters were modified by ± 40% and ±20% to predict many possible conditions of falsification. It is verified that the building which is design to sustain the lateral load with support of damping device (Trimmed Building) are much more under threat as a result of device falsification than those building strengthen by damping device (Conventional Building).

Keywords: passive control system, oil damper, seismic assessment, lumped mass model

Procedia PDF Downloads 112
2634 Ion-Acoustic Double Layers in a Non-Thermal Electronegative Magnetized Plasma

Authors: J. K. Chawla, S. K. Jain, M. K. Mishra

Abstract:

Ion-acoustic double layers have been studied in magnetized plasma. The modified Korteweg-de Vries (m-KdV) equation using reductive perturbation method is derived. It is found that for the selected set of parameters, the system supports rarefactive double layers depending upon the value of nonthermal parameters. It is also found that the magnetization affects only the width of the double layer. For a given set of parameter values, increases in the magnetization and the obliqueness angle (θ) between wave vector and magnetic field, affect the width of the double layers, however the amplitude of the double layers have no effect. An increase in the values of nonthermal parameter decreases the amplitude of the rarefactive double layer. The effect of the ion temperature ratio on the amplitude and width of the double layers are also discussed in detail.

Keywords: ion-acoustic double layers, magnetized electronegative plasma, reductive perturbation method, the modified Korteweg-de Vries (KdV) equation

Procedia PDF Downloads 607
2633 Automatic API Regression Analyzer and Executor

Authors: Praveena Sridhar, Nihar Devathi, Parikshit Chakraborty

Abstract:

As the software product changes versions across releases, there are changes to the API’s and features and the upgrades become necessary. Hence, it becomes imperative to get the impact of upgrading the dependent components. This tool finds out API changes across two versions and their impact on other API’s followed by execution of the automated regression suites relevant to updates and their impacted areas. This tool has 4 layer architecture, each layer with its own unique pre-assigned capability which it does and sends the required information to next layer. This are the 4 layers. 1) Comparator: Compares the two versions of API. 2) Analyzer: Analyses the API doc and gives the modified class and its dependencies along with implemented interface details. 3) Impact Filter: Find the impact of the modified class on the other API methods. 4) Auto Executer: Based on the output given by Impact Filter, Executor will run the API regression Suite. Tool reads the java doc and extracts the required information of classes, interfaces and enumerations. The extracted information is saved into a data structure which shows the class details and its dependencies along with interfaces and enumerations that are listed in the java doc.

Keywords: automation impact regression, java doc, executor, analyzer, layers

Procedia PDF Downloads 484
2632 Experimental Work to Estimate the Strength of Ferrocement Slabs Incorporating Silica Fume and Steel Fibre

Authors: Mohammed Mashrei

Abstract:

Ferrocement is a type of thin reinforced concrete made of cement-sand matrix with closely spaced relatively small diameter wire meshes, with or without steel bars of small diameter called skeletal steel. This work concerns on the behavior of square ferrocement slabs of dimensions (500) mm x (500) mm and 30 mm subjected to a central load. This study includes testing thirteen ferrocement slabs. The main variables considered in the experimental work are the number of wire mesh layers, percentage of silica fume and the presence of steel fiber. The effects of these variables on the behavior and load carrying capacity of tested slabs under central load were investigated. From the experimental results, it is found that by increasing the percentage of silica fume from (0 to 1.5, 3, 4.5 and 6) of weight of cement the ultimate loads are affected. Also From this study, it is observed that the load carrying capacity increases with the presence of steel fiber reinforcement, the ductility is high in the case of steel fibers. The increasing wire mesh layer from six to ten layers increased the load capacity by 76%. Also, a reduction in width of crack with increasing in number of cracks in the samples that content on steel fibers comparing with samples without steel fibers was observed from the results.

Keywords: ferrocement, fibre, silica fume, slab, strength

Procedia PDF Downloads 232
2631 Thermal Analysis and Optimization of a High-Speed Permanent Magnet Synchronous Motor with Toroidal Windings

Authors: Yuan Wan, Shumei Cui, Shaopeng Wu

Abstract:

Toroidal windings were taken advantage of to reduce of axial length of the motor, so as to match the applications that have severe restrictions on the axial length. But slotting in the out edge of the stator will decrease the heat-dissipation capacity of the water cooling of the housing. Besides, the windings in the outer slots will increase the copper loss, which will further increase the difficult for heat dissipation of the motor. At present, carbon-fiber composite retaining sleeve are increasingly used to be mounted over the magnets to ensure the rotor strength at high speeds. Due to the poor thermal conductivity of carbon-fiber sleeve, the cooling of the rotor becomes very difficult, which may result in the irreversible demagnetization of magnets for the excessively high temperature. So it is necessary to analyze the temperature rise of such motor. This paper builds a computational fluid dynamic (CFD) model of a toroidal-winding high-speed permanent magnet synchronous motor (PMSM) with water cooling of housing and forced air cooling of rotor. Thermal analysis was carried out based on the model and the factors that affects the temperature rise were investigated. Then thermal optimization for the prototype was achieved. Finally, a small-size prototype was manufactured and the thermal analysis results were verified.

Keywords: thermal analysis, temperature rise, toroidal windings, high-speed PMSM, CFD

Procedia PDF Downloads 487
2630 Dependence of Dielectric Properties on Sintering Conditions of Lead Free KNN Ceramics Modified With Li-Sb

Authors: Roopam Gaur, K. Chandramani Singh, Radhapiyari Laishram

Abstract:

In order to produce lead free piezoceramics with optimum piezoelectric and dielectric properties, KNN modified with Li+ (as an A site dopant) and Sb5+ (as a B site dopant) (K0.49Na0.49Li0.02) (Nb0.96Sb0.04) O3 (referred as KNLNS in this paper) have been synthesized using solid state reaction method and conventional sintering technique. The ceramics were sintered in the narrow range of 10500C-10900C for 2-3 hours to get precise information about sintering parameters. Detailed study of dependence of microstructural, dielectric and piezoelectric properties on sintering conditions was then carried out. The study suggests that the volatility of the highly hygroscopic KNN ceramics is not only sensitive to sintering temperatures but also to sintering durations. By merely reducing the sintering duration for a given sintering temperature we saw an increase in the density of the samples which was supported by the increase in dielectric constants of the ceramics. And since density directly or indirectly affects almost all the associated properties, other dielectric and piezoelectric properties were also enhanced as we approached towards the most suitable sintering temperature and duration combination.

Keywords: piezoelectric, dielectric, Li, Sb, KNN, conventional sintering

Procedia PDF Downloads 437
2629 The Two Layers of Food Safety and GMOs in the Hungarian Agricultural Law

Authors: Gergely Horváth

Abstract:

The study presents the complexity of food safety dividing it into two layers. Beyond the basic layer of requirements, there is a more demanding higher level linked with quality and purity aspects. It would be important to give special prominence to both layers, given that massive illnesses are caused by foods even though officially licensed. Then the study discusses an exciting safety challenge stemming from the risks of genetically modified organisms (GMOs). Furthermore, it features legal case examples that illustrate how certain liability questions are solved or not yet decided in connection with the production of genetically modified crops. In addition, a special kind of land grabbing, more precisely land grabbing from non-GMO farming systems can also be noticed as well as a new phenomenon eroding food sovereignty. Coexistence, the state where organic, conventional, and GM farming systems are standing alongside each other is an unsuitable experiment that cannot be successful, because of biophysical reasons (such as cross-pollination). Agricultural and environmental lawyers both try to find the optimal solution. Agri-environmental measures are introduced as a special subfield of law maintaining also food safety. The important steps of agri-environmental legislation are aiming at the protection of natural values, the environmental media and strengthening food safety as well, practically the quality of agricultural products intended for human consumption. The major findings of the study focus on searching for the appropriate approach capable of solving the security and safety problems of food production. The most interesting concepts of the Hungarian national and EU food law legislation are analyzed in more detail with descriptive, analytic and comparative methods.

Keywords: food law, food safety, food security, GMO, Genetically Modified Organisms, agri-environmental measures

Procedia PDF Downloads 436
2628 A Sector-Wise Study on Detecting Earnings Management in India

Authors: Raghuveer Kaur, Kartikay Sharma, Ashu Khanna

Abstract:

Earnings management has been present from times immemorial. The recent downfall of giant enterprises like Enron, Satyam and WorldCom has brought a lot of focus on the study and detection of earnings management. The present study is an attempt to study earnings management in one of the fastest emerging economy - India. The study makes an attempt to understand earnings management in different sectors of the economy. The paper first tests a hypothesis to check whether different sectors of India are engaged in earnings management or not. In the later section the paper aims to study the level of earnings management in 6 popular sectors of India: IT&BPO, Retail, Telecom, Biotech, Hotels and coffee. To measure earnings management two popular techniques of detecting earnings management has been employed: Modified Jones Model and Beniesh M Score. A total of 332 companies were studied. Publicly available data from Capitaline database has been used. The paper also classifies the top and bottom five performers on the basis of sales turnover in each sector and identifies whether they manage their earnings or not.

Keywords: earnings management, India, modified Jones model, Beneish M score

Procedia PDF Downloads 514
2627 Defect Classification of Hydrogen Fuel Pressure Vessels using Deep Learning

Authors: Dongju Kim, Youngjoo Suh, Hyojin Kim, Gyeongyeong Kim

Abstract:

Acoustic Emission Testing (AET) is widely used to test the structural integrity of an operational hydrogen storage container, and clustering algorithms are frequently used in pattern recognition methods to interpret AET results. However, the interpretation of AET results can vary from user to user as the tuning of the relevant parameters relies on the user's experience and knowledge of AET. Therefore, it is necessary to use a deep learning model to identify patterns in acoustic emission (AE) signal data that can be used to classify defects instead. In this paper, a deep learning-based model for classifying the types of defects in hydrogen storage tanks, using AE sensor waveforms, is proposed. As hydrogen storage tanks are commonly constructed using carbon fiber reinforced polymer composite (CFRP), a defect classification dataset is collected through a tensile test on a specimen of CFRP with an AE sensor attached. The performance of the classification model, using one-dimensional convolutional neural network (1-D CNN) and synthetic minority oversampling technique (SMOTE) data augmentation, achieved 91.09% accuracy for each defect. It is expected that the deep learning classification model in this paper, used with AET, will help in evaluating the operational safety of hydrogen storage containers.

Keywords: acoustic emission testing, carbon fiber reinforced polymer composite, one-dimensional convolutional neural network, smote data augmentation

Procedia PDF Downloads 89
2626 Investigation of Crack Formation in Ordinary Reinforced Concrete Beams and in Beams Strengthened with Carbon Fiber Sheet: Theory and Experiment

Authors: Anton A. Bykov, Irina O. Glot, Igor N. Shardakov, Alexey P. Shestakov

Abstract:

This paper presents the results of experimental and theoretical investigations of the mechanisms of crack formation in reinforced concrete beams subjected to quasi-static bending. The boundary-value problem has been formulated in the framework of brittle fracture mechanics and has been solved by using the finite-element method. Numerical simulation of the vibrations of an uncracked beam and a beam with cracks of different size serves to determine the pattern of changes in the spectrum of eigenfrequencies observed during crack evolution. Experiments were performed on the sequential quasistatic four-point bending of the beam leading to the formation of cracks in concrete. At each loading stage, the beam was subjected to an impulse load to induce vibrations. Two stages of cracking were detected. At the first stage the conservative process of deformation is realized. The second stage is an active cracking, which is marked by a sharp change in eingenfrequencies. The boundary of a transition from one stage to another is well registered. The vibration behavior was examined for the beams strengthened by carbon-fiber sheet before loading and at the intermediate stage of loading after the grouting of initial cracks. The obtained results show that the vibrodiagnostic approach is an effective tool for monitoring of cracking and for assessing the quality of measures aimed at strengthening concrete structures.

Keywords: crack formation, experiment, mathematical modeling, reinforced concrete, vibrodiagnostics

Procedia PDF Downloads 302
2625 Characteristic of Taro (Colocasia esculenta), Seaweed (Gracilaria Sp.), and Fishes Bone Collagens Flour Based Analog Rice

Authors: Y. S. Darmanto, P. H. Riyadi, S. Susanti

Abstract:

Recently, approximately 9.1 million people of 237.56 million of Indonesian population suffer diabetes. Such condition was caused by high rice consumption of most Indonesian people. It has been known that rice contains low amylose, high calorie, and possesses hyperglycemic properties. Through this study, we tried to solve that problem by creating a super food in order to provide an alternative healthy and balanced diet. We formulated Taro and Seaweed flour based analog rice that fortified by various fishes bone collagens. Corms of Taro contain easily digestible starch and seaweed is rich in fiber, vitamin, and mineral. That mixture was fortified with collagen-containing unique amino acids such as glysine, lysine, alanine, arginine, proline, and hydroxyprolin. Subsequently, super analog rice was characterized about its nutritional composition such are proximate analyses, water, dietary fiber and amylose content. Furthermore, its morphological structure was analyzed by using scanning electron microscopy while the level of consumer preferences was performed by hedonic test. Results demonstrated that fortification by using various fishes bone collagen into analog rice were significantly different in nutritional composition, morphological structure as well as its preferences. Thus, this study was expected as new avenue in functional food discovery especially in the treatment and prevention of diabetic diseases.

Keywords: analogue rice, taro, seaweed, collagen

Procedia PDF Downloads 263
2624 Plasma Spraying of 316 Stainless Steel on Aluminum and Investigation of Coat/Substrate Interface

Authors: P. Abachi, T. W. Coyle, P. S. Musavi Gharavi

Abstract:

By applying coating onto a structural component, the corrosion and/or wear resistance requirements of the surface can be fulfilled. Since the layer adhesion of the coating influences the mechanical integrity of the coat/substrate interface during the service time, it should be examined accurately. At the present work, the tensile bonding strength of the 316 stainless steel plasma sprayed coating on aluminum substrate was determined by using tensile adhesion test, TAT, specimen. The interfacial fracture toughness was specified using four-point bend specimen containing a saw notch and modified chevron-notched short-bar (SB) specimen. The coating microstructure and fractured specimen surface were examined by using scanning electron- and optical-microscopy. The investigation of coated surface after tensile adhesion test indicates that the failure mechanism is mostly cohesive and rarely adhesive type. The calculated value of critical strain energy release rate proposes relatively good interface status. It seems that four-point bending test offers a potentially more sensitive means for evaluation of mechanical integrity of coating/substrate interfaces than is possible with the tensile test. The fracture toughness value reported for the modified chevron-notched short-bar specimen testing cannot be taken as absolute value because its calculation is based on the minimum stress intensity coefficient value which has been suggested for the fracture toughness determination of homogeneous parts in the ASTM E1304-97 standard. 

Keywords: bonding strength, four-point bend test, interfacial fracture toughness, modified chevron-notched short-bar specimen, plasma sprayed coating, tensile adhesion test

Procedia PDF Downloads 258
2623 Simple Modified Method for DNA Isolation from Lyophilised Cassava Storage Roots (Manihot esculenta Crantz.)

Authors: P. K. Telengech, K. Monjero, J. Maling’a, A. Nyende, S. Gichuki

Abstract:

There is need to identify an efficient protocol for use in extraction of high quality DNA for purposes of molecular work. Cassava roots are known for their high starch content, polyphenols and other secondary metabolites which interfere with the quality of the DNA. These factors have negative interference on the various methodologies for DNA extraction. There is need to develop a simple, fast and inexpensive protocol that yields high quality DNA. In this improved Dellaporta method, the storage roots are lyophilized to reduce the water content; the extraction buffer is modified to eliminate the high polyphenols, starch and wax. This simple protocol was compared to other protocols intended for plants with similar secondary metabolites. The method gave high yield (300-950ng) and pure DNA for use in PCR analysis. This improved Dellaporta protocol allows isolation of pure DNA from starchy cassava storage roots.

Keywords: cassava storage roots, dellaporta, DNA extraction, lyophilisation, polyphenols secondary metabolites

Procedia PDF Downloads 359
2622 Use of Shipping Containers as Office Buildings in Brazil: Thermal and Energy Performance for Different Constructive Options and Climate Zones

Authors: Lucas Caldas, Pablo Paulse, Karla Hora

Abstract:

Shipping containers are present in different Brazilian cities, firstly used for transportation purposes, but which become waste materials and an environmental burden in their end-of-life cycle. In the last decade, in Brazil, some buildings made partly or totally from shipping containers started to appear, most of them for commercial and office uses. Although the use of a reused container for buildings seems a sustainable solution, it is very important to measure the thermal and energy aspects when they are used as such. In this context, this study aims to evaluate the thermal and energy performance of an office building totally made from a 12-meter-long, High Cube 40’ shipping container in different Brazilian Bioclimatic Zones. Four different constructive solutions, mostly used in Brazil were chosen: (1) container without any covering; (2) with internally insulated drywall; (3) with external fiber cement boards; (4) with both drywall and fiber cement boards. For this, the DesignBuilder with EnergyPlus was used for the computational simulation in 8760 hours. The EnergyPlus Weather File (EPW) data of six Brazilian capital cities were considered: Curitiba, Sao Paulo, Brasilia, Campo Grande, Teresina and Rio de Janeiro. Air conditioning appliance (split) was adopted for the conditioned area and the cooling setpoint was fixed at 25°C. The coefficient of performance (CoP) of air conditioning equipment was set as 3.3. Three kinds of solar absorptances were verified: 0.3, 0.6 and 0.9 of exterior layer. The building in Teresina presented the highest level of energy consumption, while the one in Curitiba presented the lowest, with a wide range of differences in results. The constructive option of external fiber cement and drywall presented the best results, although the differences were not significant compared to the solution using just drywall. The choice of absorptance showed a great impact in energy consumption, mainly compared to the case of containers without any covering and for use in the hottest cities: Teresina, Rio de Janeiro, and Campo Grande. This study brings as the main contribution the discussion of constructive aspects for design guidelines for more energy-efficient container buildings, considering local climate differences, and helps the dissemination of this cleaner constructive practice in the Brazilian building sector.

Keywords: bioclimatic zones, Brazil, shipping containers, thermal and energy performance

Procedia PDF Downloads 170