Search results for: disaster prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2837

Search results for: disaster prediction

1757 A Hybrid Model of Structural Equation Modelling-Artificial Neural Networks: Prediction of Influential Factors on Eating Behaviors

Authors: Maryam Kheirollahpour, Mahmoud Danaee, Amir Faisal Merican, Asma Ahmad Shariff

Abstract:

Background: The presence of nonlinearity among the risk factors of eating behavior causes a bias in the prediction models. The accuracy of estimation of eating behaviors risk factors in the primary prevention of obesity has been established. Objective: The aim of this study was to explore the potential of a hybrid model of structural equation modeling (SEM) and Artificial Neural Networks (ANN) to predict eating behaviors. Methods: The Partial Least Square-SEM (PLS-SEM) and a hybrid model (SEM-Artificial Neural Networks (SEM-ANN)) were applied to evaluate the factors affecting eating behavior patterns among university students. 340 university students participated in this study. The PLS-SEM analysis was used to check the effect of emotional eating scale (EES), body shape concern (BSC), and body appreciation scale (BAS) on different categories of eating behavior patterns (EBP). Then, the hybrid model was conducted using multilayer perceptron (MLP) with feedforward network topology. Moreover, Levenberg-Marquardt, which is a supervised learning model, was applied as a learning method for MLP training. The Tangent/sigmoid function was used for the input layer while the linear function applied for the output layer. The coefficient of determination (R²) and mean square error (MSE) was calculated. Results: It was proved that the hybrid model was superior to PLS-SEM methods. Using hybrid model, the optimal network happened at MPLP 3-17-8, while the R² of the model was increased by 27%, while, the MSE was decreased by 9.6%. Moreover, it was found that which one of these factors have significantly affected on healthy and unhealthy eating behavior patterns. The p-value was reported to be less than 0.01 for most of the paths. Conclusion/Importance: Thus, a hybrid approach could be suggested as a significant methodological contribution from a statistical standpoint, and it can be implemented as software to be able to predict models with the highest accuracy.

Keywords: hybrid model, structural equation modeling, artificial neural networks, eating behavior patterns

Procedia PDF Downloads 153
1756 An Overview of Bioinformatics Methods to Detect Novel Riboswitches Highlighting the Importance of Structure Consideration

Authors: Danny Barash

Abstract:

Riboswitches are RNA genetic control elements that were originally discovered in bacteria and provide a unique mechanism of gene regulation. They work without the participation of proteins and are believed to represent ancient regulatory systems in the evolutionary timescale. One of the biggest challenges in riboswitch research is that many are found in prokaryotes but only a small percentage of known riboswitches have been found in certain eukaryotic organisms. The few examples of eukaryotic riboswitches were identified using sequence-based bioinformatics search methods that include some slight structural considerations. These pattern-matching methods were the first ones to be applied for the purpose of riboswitch detection and they can also be programmed very efficiently using a data structure called affix arrays, making them suitable for genome-wide searches of riboswitch patterns. However, they are limited by their ability to detect harder to find riboswitches that deviate from the known patterns. Several methods have been developed since then to tackle this problem. The most commonly used by practitioners is Infernal that relies on Hidden Markov Models (HMMs) and Covariance Models (CMs). Profile Hidden Markov Models were also carried out in the pHMM Riboswitch Scanner web application, independently from Infernal. Other computational approaches that have been developed include RMDetect by the use of 3D structural modules and RNAbor that utilizes Boltzmann probability of structural neighbors. We have tried to incorporate more sophisticated secondary structure considerations based on RNA folding prediction using several strategies. The first idea was to utilize window-based methods in conjunction with folding predictions by energy minimization. The moving window approach is heavily geared towards secondary structure consideration relative to sequence that is treated as a constraint. However, the method cannot be used genome-wide due to its high cost because each folding prediction by energy minimization in the moving window is computationally expensive, enabling to scan only at the vicinity of genes of interest. The second idea was to remedy the inefficiency of the previous approach by constructing a pipeline that consists of inverse RNA folding considering RNA secondary structure, followed by a BLAST search that is sequence-based and highly efficient. This approach, which relies on inverse RNA folding in general and our own in-house fragment-based inverse RNA folding program called RNAfbinv in particular, shows capability to find attractive candidates that are missed by Infernal and other standard methods being used for riboswitch detection. We demonstrate attractive candidates found by both the moving-window approach and the inverse RNA folding approach performed together with BLAST. We conclude that structure-based methods like the two strategies outlined above hold considerable promise in detecting riboswitches and other conserved RNAs of functional importance in a variety of organisms.

Keywords: riboswitches, RNA folding prediction, RNA structure, structure-based methods

Procedia PDF Downloads 234
1755 Urban Seismic Risk Reduction in Algeria: Adaptation and Application of the RADIUS Methodology

Authors: Mehdi Boukri, Mohammed Naboussi Farsi, Mounir Naili, Omar Amellal, Mohamed Belazougui, Ahmed Mebarki, Nabila Guessoum, Brahim Mezazigh, Mounir Ait-Belkacem, Nacim Yousfi, Mohamed Bouaoud, Ikram Boukal, Aboubakr Fettar, Asma Souki

Abstract:

The seismic risk to which the urban centres are more and more exposed became a world concern. A co-operation on an international scale is necessary for an exchange of information and experiments for the prevention and the installation of action plans in the countries prone to this phenomenon. For that, the 1990s was designated as 'International Decade for Natural Disaster Reduction (IDNDR)' by the United Nations, whose interest was to promote the capacity to resist the various natural, industrial and environmental disasters. Within this framework, it was launched in 1996, the RADIUS project (Risk Assessment Tools for Diagnosis of Urban Areas Against Seismic Disaster), whose the main objective is to mitigate seismic risk in developing countries, through the development of a simple and fast methodological and operational approach, allowing to evaluate the vulnerability as well as the socio-economic losses, by probable earthquake scenarios in the exposed urban areas. In this paper, we will present the adaptation and application of this methodology to the Algerian context for the seismic risk evaluation in urban areas potentially exposed to earthquakes. This application consists to perform an earthquake scenario in the urban centre of Constantine city, located at the North-East of Algeria, which will allow the building seismic damage estimation of this city. For that, an inventory of 30706 building units was carried out by the National Earthquake Engineering Research Centre (CGS). These buildings were digitized in a data base which comprises their technical information by using a Geographical Information system (GIS), and then they were classified according to the RADIUS methodology. The study area was subdivided into 228 meshes of 500m on side and Ten (10) sectors of which each one contains a group of meshes. The results of this earthquake scenario highlights that the ratio of likely damage is about 23%. This severe damage results from the high concentration of old buildings and unfavourable soil conditions. This simulation of the probable seismic damage of the building and the GIS damage maps generated provide a predictive evaluation of the damage which can occur by a potential earthquake near to Constantine city. These theoretical forecasts are important for decision makers in order to take the adequate preventive measures and to develop suitable strategies, prevention and emergency management plans to reduce these losses. They can also help to take the adequate emergency measures in the most impacted areas in the early hours and days after an earthquake occurrence.

Keywords: seismic risk, mitigation, RADIUS, urban areas, Algeria, earthquake scenario, Constantine

Procedia PDF Downloads 260
1754 Understanding the Impact of Out-of-Sequence Thrust Dynamics on Earthquake Mitigation: Implications for Hazard Assessment and Disaster Planning

Authors: Rajkumar Ghosh

Abstract:

Earthquakes pose significant risks to human life and infrastructure, highlighting the importance of effective earthquake mitigation strategies. Traditional earthquake modelling and mitigation efforts have largely focused on the primary fault segments and their slip behaviour. However, earthquakes can exhibit complex rupture dynamics, including out-of-sequence thrust (OOST) events, which occur on secondary or subsidiary faults. This abstract examines the impact of OOST dynamics on earthquake mitigation strategies and their implications for hazard assessment and disaster planning. OOST events challenge conventional seismic hazard assessments by introducing additional fault segments and potential rupture scenarios that were previously unrecognized or underestimated. Consequently, these events may increase the overall seismic hazard in affected regions. The study reviews recent case studies and research findings that illustrate the occurrence and characteristics of OOST events. It explores the factors contributing to OOST dynamics, such as stress interactions between fault segments, fault geometry, and mechanical properties of fault materials. Moreover, it investigates the potential triggers and precursory signals associated with OOST events to enhance early warning systems and emergency response preparedness. The abstract also highlights the significance of incorporating OOST dynamics into seismic hazard assessment methodologies. It discusses the challenges associated with accurately modelling OOST events, including the need for improved understanding of fault interactions, stress transfer mechanisms, and rupture propagation patterns. Additionally, the abstract explores the potential for advanced geophysical techniques, such as high-resolution imaging and seismic monitoring networks, to detect and characterize OOST events. Furthermore, the abstract emphasizes the practical implications of OOST dynamics for earthquake mitigation strategies and urban planning. It addresses the need for revising building codes, land-use regulations, and infrastructure designs to account for the increased seismic hazard associated with OOST events. It also underscores the importance of public awareness campaigns to educate communities about the potential risks and safety measures specific to OOST-induced earthquakes. This sheds light on the impact of out-of-sequence thrust dynamics in earthquake mitigation. By recognizing and understanding OOST events, researchers, engineers, and policymakers can improve hazard assessment methodologies, enhance early warning systems, and implement effective mitigation measures. By integrating knowledge of OOST dynamics into urban planning and infrastructure development, societies can strive for greater resilience in the face of earthquakes, ultimately minimizing the potential for loss of life and infrastructure damage.

Keywords: earthquake mitigation, out-of-sequence thrust, seismic, satellite imagery

Procedia PDF Downloads 87
1753 Reinforcement Learning for Classification of Low-Resolution Satellite Images

Authors: Khadija Bouzaachane, El Mahdi El Guarmah

Abstract:

The classification of low-resolution satellite images has been a worthwhile and fertile field that attracts plenty of researchers due to its importance in monitoring geographical areas. It could be used for several purposes such as disaster management, military surveillance, agricultural monitoring. The main objective of this work is to classify efficiently and accurately low-resolution satellite images by using novel technics of deep learning and reinforcement learning. The images include roads, residential areas, industrial areas, rivers, sea lakes, and vegetation. To achieve that goal, we carried out experiments on the sentinel-2 images considering both high accuracy and efficiency classification. Our proposed model achieved a 91% accuracy on the testing dataset besides a good classification for land cover. Focus on the parameter precision; we have obtained 93% for the river, 92% for residential, 97% for residential, 96% for the forest, 87% for annual crop, 84% for herbaceous vegetation, 85% for pasture, 78% highway and 100% for Sea Lake.

Keywords: classification, deep learning, reinforcement learning, satellite imagery

Procedia PDF Downloads 211
1752 A Convolution Neural Network Approach to Predict Pes-Planus Using Plantar Pressure Mapping Images

Authors: Adel Khorramrouz, Monireh Ahmadi Bani, Ehsan Norouzi, Morvarid Lalenoor

Abstract:

Background: Plantar pressure distribution measurement has been used for a long time to assess foot disorders. Plantar pressure is an important component affecting the foot and ankle function and Changes in plantar pressure distribution could indicate various foot and ankle disorders. Morphologic and mechanical properties of the foot may be important factors affecting the plantar pressure distribution. Accurate and early measurement may help to reduce the prevalence of pes planus. With recent developments in technology, new techniques such as machine learning have been used to assist clinicians in predicting patients with foot disorders. Significance of the study: This study proposes a neural network learning-based flat foot classification methodology using static foot pressure distribution. Methodologies: Data were collected from 895 patients who were referred to a foot clinic due to foot disorders. Patients with pes planus were labeled by an experienced physician based on clinical examination. Then all subjects (with and without pes planus) were evaluated for static plantar pressures distribution. Patients who were diagnosed with the flat foot in both feet were included in the study. In the next step, the leg length was normalized and the network was trained for plantar pressure mapping images. Findings: From a total of 895 image data, 581 were labeled as pes planus. A computational neural network (CNN) ran to evaluate the performance of the proposed model. The prediction accuracy of the basic CNN-based model was performed and the prediction model was derived through the proposed methodology. In the basic CNN model, the training accuracy was 79.14%, and the test accuracy was 72.09%. Conclusion: This model can be easily and simply used by patients with pes planus and doctors to predict the classification of pes planus and prescreen for possible musculoskeletal disorders related to this condition. However, more models need to be considered and compared for higher accuracy.

Keywords: foot disorder, machine learning, neural network, pes planus

Procedia PDF Downloads 358
1751 A Comprehensive Survey of Artificial Intelligence and Machine Learning Approaches across Distinct Phases of Wildland Fire Management

Authors: Ursula Das, Manavjit Singh Dhindsa, Kshirasagar Naik, Marzia Zaman, Richard Purcell, Srinivas Sampalli, Abdul Mutakabbir, Chung-Horng Lung, Thambirajah Ravichandran

Abstract:

Wildland fires, also known as forest fires or wildfires, are exhibiting an alarming surge in frequency in recent times, further adding to its perennial global concern. Forest fires often lead to devastating consequences ranging from loss of healthy forest foliage and wildlife to substantial economic losses and the tragic loss of human lives. Despite the existence of substantial literature on the detection of active forest fires, numerous potential research avenues in forest fire management, such as preventative measures and ancillary effects of forest fires, remain largely underexplored. This paper undertakes a systematic review of these underexplored areas in forest fire research, meticulously categorizing them into distinct phases, namely pre-fire, during-fire, and post-fire stages. The pre-fire phase encompasses the assessment of fire risk, analysis of fuel properties, and other activities aimed at preventing or reducing the risk of forest fires. The during-fire phase includes activities aimed at reducing the impact of active forest fires, such as the detection and localization of active fires, optimization of wildfire suppression methods, and prediction of the behavior of active fires. The post-fire phase involves analyzing the impact of forest fires on various aspects, such as the extent of damage in forest areas, post-fire regeneration of forests, impact on wildlife, economic losses, and health impacts from byproducts produced during burning. A comprehensive understanding of the three stages is imperative for effective forest fire management and mitigation of the impact of forest fires on both ecological systems and human well-being. Artificial intelligence and machine learning (AI/ML) methods have garnered much attention in the cyber-physical systems domain in recent times leading to their adoption in decision-making in diverse applications including disaster management. This paper explores the current state of AI/ML applications for managing the activities in the aforementioned phases of forest fire. While conventional machine learning and deep learning methods have been extensively explored for the prevention, detection, and management of forest fires, a systematic classification of these methods into distinct AI research domains is conspicuously absent. This paper gives a comprehensive overview of the state of forest fire research across more recent and prominent AI/ML disciplines, including big data, classical machine learning, computer vision, explainable AI, generative AI, natural language processing, optimization algorithms, and time series forecasting. By providing a detailed overview of the potential areas of research and identifying the diverse ways AI/ML can be employed in forest fire research, this paper aims to serve as a roadmap for future investigations in this domain.

Keywords: artificial intelligence, computer vision, deep learning, during-fire activities, forest fire management, machine learning, pre-fire activities, post-fire activities

Procedia PDF Downloads 70
1750 The Role of Public Education in Increasing Public Awareness through Mass Media with Emphasis on Newspapers and TV: Coping with Possible Earthquake in Tehran

Authors: Naser Charkhsaz, Ashraf Sadat Mousavi, Navvab Shamspour

Abstract:

This study aimed to evaluate the role of state education in increasing public awareness through mass media (with emphasis on newspapers and TV) coping with possible earthquake in Tehran. All residents aged 15 to 65 who live in the five regions of Tehran (North, South, East, West and Center) during the plan implementation were selected and studied. The required sample size in each region was calculated based on the Cochran formula (n=380). In order to collect and analyze the data, a questionnaire with reliability (82%) and a one-sample t-test has been used, respectively. The results showed that warnings related to the Tehran earthquake affected people in the pre-contemplation stage, while public education through mass media did not promote public awareness about prevention, preparedness and rehabilitation.

Keywords: media, disaster, knowledge, Iranian Red Crescent society

Procedia PDF Downloads 314
1749 Fault Prognostic and Prediction Based on the Importance Degree of Test Point

Authors: Junfeng Yan, Wenkui Hou

Abstract:

Prognostics and Health Management (PHM) is a technology to monitor the equipment status and predict impending faults. It is used to predict the potential fault and provide fault information and track trends of system degradation by capturing characteristics signals. So how to detect characteristics signals is very important. The select of test point plays a very important role in detecting characteristics signal. Traditionally, we use dependency model to select the test point containing the most detecting information. But, facing the large complicated system, the dependency model is not built so easily sometimes and the greater trouble is how to calculate the matrix. Rely on this premise, the paper provide a highly effective method to select test point without dependency model. Because signal flow model is a diagnosis model based on failure mode, which focuses on system’s failure mode and the dependency relationship between the test points and faults. In the signal flow model, a fault information can flow from the beginning to the end. According to the signal flow model, we can find out location and structure information of every test point and module. We break the signal flow model up into serial and parallel parts to obtain the final relationship function between the system’s testability or prediction metrics and test points. Further, through the partial derivatives operation, we can obtain every test point’s importance degree in determining the testability metrics, such as undetected rate, false alarm rate, untrusted rate. This contributes to installing the test point according to the real requirement and also provides a solid foundation for the Prognostics and Health Management. According to the real effect of the practical engineering application, the method is very efficient.

Keywords: false alarm rate, importance degree, signal flow model, undetected rate, untrusted rate

Procedia PDF Downloads 377
1748 Artificial Neural Network Approach for GIS-Based Soil Macro-Nutrients Mapping

Authors: Shahrzad Zolfagharnassab, Abdul Rashid Mohamed Shariff, Siti Khairunniza Bejo

Abstract:

Conventional methods for nutrient soil mapping are based on laboratory tests of samples that are obtained from surveys. The time and cost involved in gathering and analyzing soil samples are the reasons that researchers use Predictive Soil Mapping (PSM). PSM can be defined as the development of a numerical or statistical model of the relationship among environmental variables and soil properties, which is then applied to a geographic database to create a predictive map. Kriging is a group of geostatistical techniques to spatially interpolate point values at an unobserved location from observations of values at nearby locations. The main problem with using kriging as an interpolator is that it is excessively data-dependent and requires a large number of closely spaced data points. Hence, there is a need to minimize the number of data points without sacrificing the accuracy of the results. In this paper, an Artificial Neural Networks (ANN) scheme was used to predict macronutrient values at un-sampled points. ANN has become a popular tool for prediction as it eliminates certain difficulties in soil property prediction, such as non-linear relationships and non-normality. Back-propagation multilayer feed-forward network structures were used to predict nitrogen, phosphorous and potassium values in the soil of the study area. A limited number of samples were used in the training, validation and testing phases of ANN (pattern reconstruction structures) to classify soil properties and the trained network was used for prediction. The soil analysis results of samples collected from the soil survey of block C of Sawah Sempadan, Tanjung Karang rice irrigation project at Selangor of Malaysia were used. Soil maps were produced by the Kriging method using 236 samples (or values) that were a combination of actual values (obtained from real samples) and virtual values (neural network predicted values). For each macronutrient element, three types of maps were generated with 118 actual and 118 virtual values, 59 actual and 177 virtual values, and 30 actual and 206 virtual values, respectively. To evaluate the performance of the proposed method, for each macronutrient element, a base map using 236 actual samples and test maps using 118, 59 and 30 actual samples respectively produced by the Kriging method. A set of parameters was defined to measure the similarity of the maps that were generated with the proposed method, termed the sample reduction method. The results show that the maps that were generated through the sample reduction method were more accurate than the corresponding base maps produced through a smaller number of real samples. For example, nitrogen maps that were produced from 118, 59 and 30 real samples have 78%, 62%, 41% similarity, respectively with the base map (236 samples) and the sample reduction method increased similarity to 87%, 77%, 71%, respectively. Hence, this method can reduce the number of real samples and substitute ANN predictive samples to achieve the specified level of accuracy.

Keywords: artificial neural network, kriging, macro nutrient, pattern recognition, precision farming, soil mapping

Procedia PDF Downloads 70
1747 Optimal Site Selection for Temporary Housing regarding Disaster Management Case Study: Tehran Municipality (No.6)

Authors: Ghazaleh Monazami Tehrani, Zhamak Monazami Tehrani, Raziyeh Hadavand

Abstract:

Optimal site selection for temporary housing is one of the most important issues in crisis management. In this research, district six of Tehran city with high frequency and geographical distribution of earthquakes has been selected as a case study for positioning temporary housing after a probable earthquake. For achieving this goal this study tries to identify and evaluate distribution of location according to some standards such as compatible and incompatible urban land uses with utility of GIS and AHP. The results of this study show the most susceptible parts of this region in the center. According to the maps, north eastern part of Kordestan, Shaheed Gomnam intersection possesses the highest pixels value in terms of areal extent, therefore these places are recommended as an optimum site location for construction of emergency evacuation base.

Keywords: optimal site selection, temporary housing , crisis management, AHP, GIS

Procedia PDF Downloads 253
1746 Modification of Rk Equation of State for Liquid and Vapor of Ammonia by Genetic Algorithm

Authors: S. Mousavian, F. Mousavian, V. Nikkhah Rashidabad

Abstract:

Cubic equations of state like Redlich–Kwong (RK) EOS have been proved to be very reliable tools in the prediction of phase behavior. Despite their good performance in compositional calculations, they usually suffer from weaknesses in the predictions of saturated liquid density. In this research, RK equation was modified. The result of this study shows that modified equation has good agreement with experimental data.

Keywords: equation of state, modification, ammonia, genetic algorithm

Procedia PDF Downloads 379
1745 Deep Learning Prediction of Residential Radon Health Risk in Canada and Sweden to Prevent Lung Cancer Among Non-Smokers

Authors: Selim M. Khan, Aaron A. Goodarzi, Joshua M. Taron, Tryggve Rönnqvist

Abstract:

Indoor air quality, a prime determinant of health, is strongly influenced by the presence of hazardous radon gas within the built environment. As a health issue, dangerously high indoor radon arose within the 20th century to become the 2nd leading cause of lung cancer. While the 21st century building metrics and human behaviors have captured, contained, and concentrated radon to yet higher and more hazardous levels, the issue is rapidly worsening in Canada. It is established that Canadians in the Prairies are the 2nd highest radon-exposed population in the world, with 1 in 6 residences experiencing 0.2-6.5 millisieverts (mSv) radiation per week, whereas the Canadian Nuclear Safety Commission sets maximum 5-year occupational limits for atomic workplace exposure at only 20 mSv. This situation is also deteriorating over time within newer housing stocks containing higher levels of radon. Deep machine learning (LSTM) algorithms were applied to analyze multiple quantitative and qualitative features, determine the most important contributory factors, and predicted radon levels in the known past (1990-2020) and projected future (2021-2050). The findings showed gradual downwards patterns in Sweden, whereas it would continue to go from high to higher levels in Canada over time. The contributory factors found to be the basement porosity, roof insulation depthness, R-factor, and air dynamics of the indoor environment related to human window opening behaviour. Building codes must consider including these factors to ensure adequate indoor ventilation and healthy living that can prevent lung cancer in non-smokers.

Keywords: radon, building metrics, deep learning, LSTM prediction model, lung cancer, canada, sweden

Procedia PDF Downloads 110
1744 Earthquake Identification to Predict Tsunami in Andalas Island, Indonesia Using Back Propagation Method and Fuzzy TOPSIS Decision Seconder

Authors: Muhamad Aris Burhanudin, Angga Firmansyas, Bagus Jaya Santosa

Abstract:

Earthquakes are natural hazard that can trigger the most dangerous hazard, tsunami. 26 December 2004, a giant earthquake occurred in north-west Andalas Island. It made giant tsunami which crushed Sumatra, Bangladesh, India, Sri Lanka, Malaysia and Singapore. More than twenty thousand people dead. The occurrence of earthquake and tsunami can not be avoided. But this hazard can be mitigated by earthquake forecasting. Early preparation is the key factor to reduce its damages and consequences. We aim to investigate quantitatively on pattern of earthquake. Then, we can know the trend. We study about earthquake which has happened in Andalas island, Indonesia one last decade. Andalas is island which has high seismicity, more than a thousand event occur in a year. It is because Andalas island is in tectonic subduction zone of Hindia sea plate and Eurasia plate. A tsunami forecasting is needed to mitigation action. Thus, a Tsunami Forecasting Method is presented in this work. Neutral Network has used widely in many research to estimate earthquake and it is convinced that by using Backpropagation Method, earthquake can be predicted. At first, ANN is trained to predict Tsunami 26 December 2004 by using earthquake data before it. Then after we get trained ANN, we apply to predict the next earthquake. Not all earthquake will trigger Tsunami, there are some characteristics of earthquake that can cause Tsunami. Wrong decision can cause other problem in the society. Then, we need a method to reduce possibility of wrong decision. Fuzzy TOPSIS is a statistical method that is widely used to be decision seconder referring to given parameters. Fuzzy TOPSIS method can make the best decision whether it cause Tsunami or not. This work combines earthquake prediction using neural network method and using Fuzzy TOPSIS to determine the decision that the earthquake triggers Tsunami wave or not. Neural Network model is capable to capture non-linear relationship and Fuzzy TOPSIS is capable to determine the best decision better than other statistical method in tsunami prediction.

Keywords: earthquake, fuzzy TOPSIS, neural network, tsunami

Procedia PDF Downloads 489
1743 The Importance of Functioning and Disability Status Follow-Up in People with Multiple Sclerosis

Authors: Sanela Slavkovic, Congor Nad, Spela Golubovic

Abstract:

Background: The diagnosis of multiple sclerosis (MS) is a major life challenge and has repercussions on all aspects of the daily functioning of those attained by it – personal activities, social participation, and quality of life. Regular follow-up of only the neurological status is not informative enough so that it could provide data on the sort of support and rehabilitation that is required. Objective: The aim of this study was to establish the current level of functioning of persons attained by MS and the factors that influence it. Methods: The study was conducted in Serbia, on a sample of 108 persons with relapse-remitting form of MS, aged 20 to 53 (mean 39.86 years; SD 8.20 years). All participants were fully ambulatory. Methods applied in the study include Expanded Disability Status Scale-EDSS and World Health Organization Disability Assessment Schedule, WHODAS 2.0 (36-item version, self-administered). Results: Participants were found to experience the most problems in the domains of Participation, Mobility, Life activities and Cognition. The least difficulties were found in the domain of Self-care. Symptom duration was the only control variable with a significant partial contribution to the prediction of the WHODAS scale score (β=0.30, p < 0.05). The total EDSS score correlated with the total WHODAS 2.0 score (r=0.34, p=0.00). Statistically significant differences in the domain of EDSS 0-5.5 were found within categories (0-1.5; 2-3.5; 4-5.5). The more pronounced a participant’s EDSS score was, although not indicative of large changes in the neurological status, the more apparent the changes in the functional domain, i.e. in all areas covered by WHODAS 2.0. Pyramidal (β=0.34, p < 0.05) and Bowel and bladder (β=0.24, p < 0.05) functional systems were found to have a significant partial contribution to the prediction of the WHODAS score. Conclusion: Measuring functioning and disability is important in the follow-up of persons suffering from MS in order to plan rehabilitation and define areas in which additional support is needed.

Keywords: disability, functionality, multiple sclerosis, rehabilitation

Procedia PDF Downloads 117
1742 Improvement of Environment and Climate Change Canada’s Gem-Hydro Streamflow Forecasting System

Authors: Etienne Gaborit, Dorothy Durnford, Daniel Deacu, Marco Carrera, Nathalie Gauthier, Camille Garnaud, Vincent Fortin

Abstract:

A new experimental streamflow forecasting system was recently implemented at the Environment and Climate Change Canada’s (ECCC) Canadian Centre for Meteorological and Environmental Prediction (CCMEP). It relies on CaLDAS (Canadian Land Data Assimilation System) for the assimilation of surface variables, and on a surface prediction system that feeds a routing component. The surface energy and water budgets are simulated with the SVS (Soil, Vegetation, and Snow) Land-Surface Scheme (LSS) at 2.5-km grid spacing over Canada. The routing component is based on the Watroute routing scheme at 1-km grid spacing for the Great Lakes and Nelson River watersheds. The system is run in two distinct phases: an analysis part and a forecast part. During the analysis part, CaLDAS outputs are used to force the routing system, which performs streamflow assimilation. In forecast mode, the surface component is forced with the Canadian GEM atmospheric forecasts and is initialized with a CaLDAS analysis. Streamflow performances of this new system are presented over 2019. Performances are compared to the current ECCC’s operational streamflow forecasting system, which is different from the new experimental system in many aspects. These new streamflow forecasts are also compared to persistence. Overall, the new streamflow forecasting system presents promising results, highlighting the need for an elaborated assimilation phase before performing the forecasts. However, the system is still experimental and is continuously being improved. Some major recent improvements are presented here and include, for example, the assimilation of snow cover data from remote sensing, a backward propagation of assimilated flow observations, a new numerical scheme for the routing component, and a new reservoir model.

Keywords: assimilation system, distributed physical model, offline hydro-meteorological chain, short-term streamflow forecasts

Procedia PDF Downloads 129
1741 The Impact of COVID-19 on Antibiotic Prescribing in Primary Care in England: Evaluation and Risk Prediction of the Appropriateness of Type and Repeat Prescribing

Authors: Xiaomin Zhong, Alexander Pate, Ya-Ting Yang, Ali Fahmi, Darren M. Ashcroft, Ben Goldacre, Brian Mackenna, Amir Mehrkar, Sebastian C. J. Bacon, Jon Massey, Louis Fisher, Peter Inglesby, Kieran Hand, Tjeerd van Staa, Victoria Palin

Abstract:

Background: This study aimed to predict risks of potentially inappropriate antibiotic type and repeat prescribing and assess changes during COVID-19. Methods: With the approval of NHS England, we used the OpenSAFELY platform to access the TPP SystmOne electronic health record (EHR) system and selected patients prescribed antibiotics from 2019 to 2021. Multinomial logistic regression models predicted the patient’s probability of receiving an inappropriate antibiotic type or repeating the antibiotic course for each common infection. Findings: The population included 9.1 million patients with 29.2 million antibiotic prescriptions. 29.1% of prescriptions were identified as repeat prescribing. Those with same-day incident infection coded in the EHR had considerably lower rates of repeat prescribing (18.0%), and 8.6% had a potentially inappropriate type. No major changes in the rates of repeat antibiotic prescribing during COVID-19 were found. In the ten risk prediction models, good levels of calibration and moderate levels of discrimination were found. Important predictors included age, prior antibiotic prescribing, and region. Patients varied in their predicted risks. For sore throat, the range from 2.5 to 97.5th percentile was 2.7 to 23.5% (inappropriate type) and 6.0 to 27.2% (repeat prescription). For otitis externa, these numbers were 25.9 to 63.9% and 8.5 to 37.1%, respectively. Interpretation: Our study found no evidence of changes in the level of inappropriate or repeat antibiotic prescribing after the start of COVID-19. Repeat antibiotic prescribing was frequent and varied according to regional and patient characteristics. There is a need for treatment guidelines to be developed around antibiotic failure and clinicians provided with individualised patient information.

Keywords: antibiotics, infection, COVID-19 pandemic, antibiotic stewardship, primary care

Procedia PDF Downloads 118
1740 The Challenge of Navigating Long Tunnels

Authors: Ali Mohammadi

Abstract:

One of the concerns that employers and contractors have in creating long tunnels is that when the excavation is completed, the tunnel will be exited in the correct position according to designed, the deviation of the tunnel from its path can have many costs for the employer and the contractor, lack of correct calculations by the surveying engineer or the employer and contractors lack of importance to the surveying team in guiding the tunnel can cause the tunnel to deviate from its path and this deviation becomes a disaster. But employers are able to make the right decisions so that the tunnel is guided with the highest precision if they consider some points. We are investigating two tunnels with lengths of 12 and 18 kilometers that were dug by Tunnel boring machine machines to transfer water, how the contractor’s decision to control the 12 kilometer tunnel caused the most accuracy of one centimeter to the next part of the tunnel will be connected. We will also investigate the reasons for the deviation of axis in the 18 km tunnel about 20 meters. Also we review the calculations of surveyor engineers in both tunnels and what challenges there will be in the calculations and teach how to solve these challenges. Surveying calculations are the most important part in controlling long tunnels.

Keywords: UTM, localization, scale factor, traverse

Procedia PDF Downloads 73
1739 Interpretable Deep Learning Models for Medical Condition Identification

Authors: Dongping Fang, Lian Duan, Xiaojing Yuan, Mike Xu, Allyn Klunder, Kevin Tan, Suiting Cao, Yeqing Ji

Abstract:

Accurate prediction of a medical condition with straight clinical evidence is a long-sought topic in the medical management and health insurance field. Although great progress has been made with machine learning algorithms, the medical community is still, to a certain degree, suspicious about the model's accuracy and interpretability. This paper presents an innovative hierarchical attention deep learning model to achieve good prediction and clear interpretability that can be easily understood by medical professionals. This deep learning model uses a hierarchical attention structure that matches naturally with the medical history data structure and reflects the member’s encounter (date of service) sequence. The model attention structure consists of 3 levels: (1) attention on the medical code types (diagnosis codes, procedure codes, lab test results, and prescription drugs), (2) attention on the sequential medical encounters within a type, (3) attention on the medical codes within an encounter and type. This model is applied to predict the occurrence of stage 3 chronic kidney disease (CKD3), using three years’ medical history of Medicare Advantage (MA) members from a top health insurance company. The model takes members’ medical events, both claims and electronic medical record (EMR) data, as input, makes a prediction of CKD3 and calculates the contribution from individual events to the predicted outcome. The model outcome can be easily explained with the clinical evidence identified by the model algorithm. Here are examples: Member A had 36 medical encounters in the past three years: multiple office visits, lab tests and medications. The model predicts member A has a high risk of CKD3 with the following well-contributed clinical events - multiple high ‘Creatinine in Serum or Plasma’ tests and multiple low kidneys functioning ‘Glomerular filtration rate’ tests. Among the abnormal lab tests, more recent results contributed more to the prediction. The model also indicates regular office visits, no abnormal findings of medical examinations, and taking proper medications decreased the CKD3 risk. Member B had 104 medical encounters in the past 3 years and was predicted to have a low risk of CKD3, because the model didn’t identify diagnoses, procedures, or medications related to kidney disease, and many lab test results, including ‘Glomerular filtration rate’ were within the normal range. The model accurately predicts members A and B and provides interpretable clinical evidence that is validated by clinicians. Without extra effort, the interpretation is generated directly from the model and presented together with the occurrence date. Our model uses the medical data in its most raw format without any further data aggregation, transformation, or mapping. This greatly simplifies the data preparation process, mitigates the chance for error and eliminates post-modeling work needed for traditional model explanation. To our knowledge, this is the first paper on an interpretable deep-learning model using a 3-level attention structure, sourcing both EMR and claim data, including all 4 types of medical data, on the entire Medicare population of a big insurance company, and more importantly, directly generating model interpretation to support user decision. In the future, we plan to enrich the model input by adding patients’ demographics and information from free-texted physician notes.

Keywords: deep learning, interpretability, attention, big data, medical conditions

Procedia PDF Downloads 89
1738 Determination of Heavy Metal Concentration in Soil from Flood Affected Area

Authors: Nor Sayzwani Sukri, Siti Hajar Ya’acob, Musfiroh Jani, Farah Khaliz Kedri, Noor Syuhadah Subki, Zulhazman Hamzah

Abstract:

In mid-December 2014, the biggest flood event occurred in East Coast of Peninsular Malaysia especially at Dabong area, Kelantan. As a consequent of flood disaster, the heavy metals concentration in soil may changes and become harmful to the environment due to the pollution that deposited in soil. This study was carried out to determine the heavy metal concentration from flood affected area. Sample have been collected and analysed by using Atomic Absorption Spectroscopy (AAS). Lead (Pb), Cadmium (Cd), Mercury (Hg), and Arsenic (As) were chosen for the heavy metals concentration. The result indicated that the heavy metal concentration did not exceed the limit. In-situ parameters also were carried out, were the results showed the range of soil pH (6.5-6.8), temperature (25°C – 26.5°C), and moisture content (1-2), respectively. The results from this study can be used as a base data to improve the soil quality and for consideration of future land use activities.

Keywords: flood, soil, heavy metal, AAS

Procedia PDF Downloads 419
1737 Machine Learning Approaches Based on Recency, Frequency, Monetary (RFM) and K-Means for Predicting Electrical Failures and Voltage Reliability in Smart Cities

Authors: Panaya Sudta, Wanchalerm Patanacharoenwong, Prachya Bumrungkun

Abstract:

As With the evolution of smart grids, ensuring the reliability and efficiency of electrical systems in smart cities has become crucial. This paper proposes a distinct approach that combines advanced machine learning techniques to accurately predict electrical failures and address voltage reliability issues. This approach aims to improve the accuracy and efficiency of reliability evaluations in smart cities. The aim of this research is to develop a comprehensive predictive model that accurately predicts electrical failures and voltage reliability in smart cities. This model integrates RFM analysis, K-means clustering, and LSTM networks to achieve this objective. The research utilizes RFM analysis, traditionally used in customer value assessment, to categorize and analyze electrical components based on their failure recency, frequency, and monetary impact. K-means clustering is employed to segment electrical components into distinct groups with similar characteristics and failure patterns. LSTM networks are used to capture the temporal dependencies and patterns in customer data. This integration of RFM, K-means, and LSTM results in a robust predictive tool for electrical failures and voltage reliability. The proposed model has been tested and validated on diverse electrical utility datasets. The results show a significant improvement in prediction accuracy and reliability compared to traditional methods, achieving an accuracy of 92.78% and an F1-score of 0.83. This research contributes to the proactive maintenance and optimization of electrical infrastructures in smart cities. It also enhances overall energy management and sustainability. The integration of advanced machine learning techniques in the predictive model demonstrates the potential for transforming the landscape of electrical system management within smart cities. The research utilizes diverse electrical utility datasets to develop and validate the predictive model. RFM analysis, K-means clustering, and LSTM networks are applied to these datasets to analyze and predict electrical failures and voltage reliability. The research addresses the question of how accurately electrical failures and voltage reliability can be predicted in smart cities. It also investigates the effectiveness of integrating RFM analysis, K-means clustering, and LSTM networks in achieving this goal. The proposed approach presents a distinct, efficient, and effective solution for predicting and mitigating electrical failures and voltage issues in smart cities. It significantly improves prediction accuracy and reliability compared to traditional methods. This advancement contributes to the proactive maintenance and optimization of electrical infrastructures, overall energy management, and sustainability in smart cities.

Keywords: electrical state prediction, smart grids, data-driven method, long short-term memory, RFM, k-means, machine learning

Procedia PDF Downloads 55
1736 Heart Rate Variability Analysis for Early Stage Prediction of Sudden Cardiac Death

Authors: Reeta Devi, Hitender Kumar Tyagi, Dinesh Kumar

Abstract:

In present scenario, cardiovascular problems are growing challenge for researchers and physiologists. As heart disease have no geographic, gender or socioeconomic specific reasons; detecting cardiac irregularities at early stage followed by quick and correct treatment is very important. Electrocardiogram is the finest tool for continuous monitoring of heart activity. Heart rate variability (HRV) is used to measure naturally occurring oscillations between consecutive cardiac cycles. Analysis of this variability is carried out using time domain, frequency domain and non-linear parameters. This paper presents HRV analysis of the online dataset for normal sinus rhythm (taken as healthy subject) and sudden cardiac death (SCD subject) using all three methods computing values for parameters like standard deviation of node to node intervals (SDNN), square root of mean of the sequences of difference between adjacent RR intervals (RMSSD), mean of R to R intervals (mean RR) in time domain, very low-frequency (VLF), low-frequency (LF), high frequency (HF) and ratio of low to high frequency (LF/HF ratio) in frequency domain and Poincare plot for non linear analysis. To differentiate HRV of healthy subject from subject died with SCD, k –nearest neighbor (k-NN) classifier has been used because of its high accuracy. Results show highly reduced values for all stated parameters for SCD subjects as compared to healthy ones. As the dataset used for SCD patients is recording of their ECG signal one hour prior to their death, it is therefore, verified with an accuracy of 95% that proposed algorithm can identify mortality risk of a patient one hour before its death. The identification of a patient’s mortality risk at such an early stage may prevent him/her meeting sudden death if in-time and right treatment is given by the doctor.

Keywords: early stage prediction, heart rate variability, linear and non-linear analysis, sudden cardiac death

Procedia PDF Downloads 338
1735 Socio-Economic Transformation of Barpak Post-Earthquake Reconstruction

Authors: Sudikshya Bhandari, Jonathan K. London

Abstract:

The earthquake of April 2015 was one of the biggest disasters in the history of Nepal. The epicenter was located near Barpak, north of the Gorkha district. Before the disaster, this settlement was a compact and homogeneous settlement manifesting its uniqueness through the social and cultural activities, and a distinct vernacular architecture. Narrow alleys with stone paved streets, buildings with slate roofs, and common spaces between the houses made this settlement socially, culturally, and environmentally cohesive. With the presence of micro hydro power plants, local economic activities enabled the local community to exist and thrive. Agriculture and animal rearing are the sources of livelihood for the majority of families, along with the booming homestays (where local people welcome guests to their home, as a business) and local shops. Most of these activities are difficult to find as the houses have been destroyed with the earthquake and the process of reconstruction has been transforming the outlook of the settlement. This study characterized the drastic transformation in Barpak post-earthquake, and analyzed the consequences of the reconstruction process. In addition, it contributes to comprehending a broader representation about unsustainability created by the lack of contextual post-disaster development. Since the research is based in a specific area, a case study approach was used. Sample houses were selected on the basis of ethnicity and house typology. Mixed methods such as key informant and semi structured interviews, focus groups, observations and photographs are used for the collection of data. The research focus is predominantly on the physical change of the house typology from vernacular to externally adopted designs. This transformation of the house entails socio-cultural changes such as social fragmentation with differences among the rich and the poor and decreases in the social connectivity within families and neighborhood. Families have found that new houses require more maintenance and resources that have increased their economic expenses. The study also found that the reconstructed houses are not thermally comfortable in the cold climate of Barpak, leading to the increased use of different sources of heating like electric heaters and more firewood. Lack of storage spaces for crops and livestock have discouraged them to pursue traditional means of livelihood and depend more on buying food from stores, ultimately making it less economical for most of the families. The transformation of space leading to the economic, social and cultural changes demonstrates the unsustainability of Barpak. Conclusions from the study suggest place based and inclusive planning and policy formations that include locals as partners, identifying the possible ways to minimize the impact and implement these recommendations into the future policy and planning scenarios.

Keywords: earthquake, Nepal, reconstruction, settlement, transformation

Procedia PDF Downloads 117
1734 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences, Individual, and Community Resilience of Residents From a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well. As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth

Procedia PDF Downloads 81
1733 Implementation of Deep Neural Networks for Pavement Condition Index Prediction

Authors: M. Sirhan, S. Bekhor, A. Sidess

Abstract:

In-service pavements deteriorate with time due to traffic wheel loads, environment, and climate conditions. Pavement deterioration leads to a reduction in their serviceability and structural behavior. Consequently, proper maintenance and rehabilitation (M&R) are necessary actions to keep the in-service pavement network at the desired level of serviceability. Due to resource and financial constraints, the pavement management system (PMS) prioritizes roads most in need of maintenance and rehabilitation action. It recommends a suitable action for each pavement based on the performance and surface condition of each road in the network. The pavement performance and condition are usually quantified and evaluated by different types of roughness-based and stress-based indices. Examples of such indices are Pavement Serviceability Index (PSI), Pavement Serviceability Ratio (PSR), Mean Panel Rating (MPR), Pavement Condition Rating (PCR), Ride Number (RN), Profile Index (PI), International Roughness Index (IRI), and Pavement Condition Index (PCI). PCI is commonly used in PMS as an indicator of the extent of the distresses on the pavement surface. PCI values range between 0 and 100; where 0 and 100 represent a highly deteriorated pavement and a newly constructed pavement, respectively. The PCI value is a function of distress type, severity, and density (measured as a percentage of the total pavement area). PCI is usually calculated iteratively using the 'Paver' program developed by the US Army Corps. The use of soft computing techniques, especially Artificial Neural Network (ANN), has become increasingly popular in the modeling of engineering problems. ANN techniques have successfully modeled the performance of the in-service pavements, due to its efficiency in predicting and solving non-linear relationships and dealing with an uncertain large amount of data. Typical regression models, which require a pre-defined relationship, can be replaced by ANN, which was found to be an appropriate tool for predicting the different pavement performance indices versus different factors as well. Subsequently, the objective of the presented study is to develop and train an ANN model that predicts the PCI values. The model’s input consists of percentage areas of 11 different damage types; alligator cracking, swelling, rutting, block cracking, longitudinal/transverse cracking, edge cracking, shoving, raveling, potholes, patching, and lane drop off, at three severity levels (low, medium, high) for each. The developed model was trained using 536,000 samples and tested on 134,000 samples. The samples were collected and prepared by The National Transport Infrastructure Company. The predicted results yielded satisfactory compliance with field measurements. The proposed model predicted PCI values with relatively low standard deviations, suggesting that it could be incorporated into the PMS for PCI determination. It is worth mentioning that the most influencing variables for PCI prediction are damages related to alligator cracking, swelling, rutting, and potholes.

Keywords: artificial neural networks, computer programming, pavement condition index, pavement management, performance prediction

Procedia PDF Downloads 137
1732 The Transformation of Hot Spring Destinations in Taiwan in a Post-pandemic Future: Exploring the COVID-19 Impacts on Hot Spring Experiences and Resilience of Local Residents from a Posttraumatic Growth Perspective

Authors: Hsin-Hung Lin, Janet Chang, Te-Yi Chang, You-Sheng Huang

Abstract:

The natural and men-made disasters have become huge challenges for tourism destinations as well as emphasizing the fragility of the industry. Hot springs, among all destinations, are prone to disasters due to their dependence on natural resources and locations. After the COVID-19 outbreak, hot spring destinations have experienced not only the loss of businesses but also the psychological trauma. However, evidence has also shown that the impacts may not necessarily reduce the resilience for people but may be converted into posttraumatic growth. In Taiwan, a large proportion of hot springs are located in rural or indigenous areas. As a result, hot spring resources are associated with community cohesion for local residents. Yet prior research on hot spring destinations has mainly focused on visitors, whereas residents have been overlooked. More specifically, the relationship between hot springs resources and resident resilience in the face of the COVID-19 impacts remains unclear. To fulfill this knowledge gap, this paper aims to explore the COVID-19 impacts on residents’ hot spring experiences as well as individual and community resilience from the perspective of posttraumatic growth. A total of 315 residents of 13 hot spring destinations that are most popular in Taiwan were recruited. Online questionnaires were distributed over travel forums and social networks after the COVID-19. This paper subsequently used Partial Least Squares Structural Equation Modeling for data analysis as the technique offers significant advantages in addressing nonnormal data and small sample sizes. A preliminary test was conducted, and the results showed acceptable internal consistency and no serious common method variance. The path analysis demonstrated that the COVID-19 impacts strengthened residents’ perceptions of hot spring resources and experiences, implying that the pandemic had propelled the residents to visit hot springs for the healing benefits. In addition, the COVID-19 impacts significantly enhanced residents’ individual and community resilience, which indicates that the residents at hot springs are more resilient thanks to their awareness of external risks. Thirdly, residents’ individual resilience was positively associated with hot spring experiences, while community resilience was not affected by hot spring experiences. Such findings may suggest that hot spring experiences are more related to individual-level experiences and, consequently, have insignificant influence on community resilience. Finally, individual resilience was proved to be the most relevant factor that help foster community resilience. To conclude, the authorities may consider exploiting the hot spring resources so as to increase individual resilience for local residents. Such implications can be used as a reference for other post-disaster tourist destinations as well.As for future research, longitudinal studies with qualitative methods are suggested to better understand how the hot spring experiences have changed individuals and communities over the long term. It should be noted that the main subjects of this paper were focused on the hot spring communities in Taiwan. Therefore, the results cannot be generalized for all types of tourism destinations. That is, more diverse tourism destinations may be investigated to provide a broader perspective of post-disaster recovery.

Keywords: community resilience, hot spring destinations, individual resilience, posttraumatic growth (PTG)

Procedia PDF Downloads 74
1731 Validation of Nutritional Assessment Scores in Prediction of Mortality and Duration of Admission in Elderly, Hospitalized Patients: A Cross-Sectional Study

Authors: Christos Lampropoulos, Maria Konsta, Vicky Dradaki, Irini Dri, Konstantina Panouria, Tamta Sirbilatze, Ifigenia Apostolou, Vaggelis Lambas, Christina Kordali, Georgios Mavras

Abstract:

Objectives: Malnutrition in hospitalized patients is related to increased morbidity and mortality. The purpose of our study was to compare various nutritional scores in order to detect the most suitable one for assessing the nutritional status of elderly, hospitalized patients and correlate them with mortality and extension of admission duration, due to patients’ critical condition. Methods: Sample population included 150 patients (78 men, 72 women, mean age 80±8.2). Nutritional status was assessed by Mini Nutritional Assessment (MNA full, short-form), Malnutrition Universal Screening Tool (MUST) and short Nutritional Appetite Questionnaire (sNAQ). Sensitivity, specificity, positive and negative predictive values and ROC curves were assessed after adjustment for the cause of current admission, a known prognostic factor according to previously applied multivariate models. Primary endpoints were mortality (from admission until 6 months afterwards) and duration of hospitalization, compared to national guidelines for closed consolidated medical expenses. Results: Concerning mortality, MNA (short-form and full) and SNAQ had similar, low sensitivity (25.8%, 25.8% and 35.5% respectively) while MUST had higher sensitivity (48.4%). In contrast, all the questionnaires had high specificity (94%-97.5%). Short-form MNA and sNAQ had the best positive predictive value (72.7% and 78.6% respectively) whereas all the questionnaires had similar negative predictive value (83.2%-87.5%). MUST had the highest ROC curve (0.83) in contrast to the rest questionnaires (0.73-0.77). With regard to extension of admission duration, all four scores had relatively low sensitivity (48.7%-56.7%), specificity (68.4%-77.6%), positive predictive value (63.1%-69.6%), negative predictive value (61%-63%) and ROC curve (0.67-0.69). Conclusion: MUST questionnaire is more advantageous in predicting mortality due to its higher sensitivity and ROC curve. None of the nutritional scores is suitable for prediction of extended hospitalization.

Keywords: duration of admission, malnutrition, nutritional assessment scores, prognostic factors for mortality

Procedia PDF Downloads 344
1730 Analytical Investigation of Replaceable Links with Reduced Web Section for Link-to-Column Connections in Eccentrically Braced Frames

Authors: Daniel Y. Abebe, Sijeong Jeong, Jaehyouk Choi

Abstract:

The use of eccentrically braced frame (EBF) is increasing day by day as EBF possesses high elastic stiffness, stable inelastic response under cyclic lateral loading, and excellent ductility and energy dissipation capacity. The ductility and energy dissipation capacity of EBF depends on the active link beams. Recently, there are two types EBFs; these are conventional EBFs and EBFs with replaceable links. The conventional EBF has a disadvantage during maintenance in post-earthquake. The concept of removable active link beam in EBF is developed to overcome the limitation of the conventional EBF in post-earthquake. In this study, a replaceable link with reduced web section is introduced and design equations are suggested. In addition, nonlinear finite element analysis was conducted in order to evaluate the proposed links.

Keywords: EBFs, replaceable link, earthquake disaster, reduced section

Procedia PDF Downloads 331
1729 Sustainability: Effect of Earthquake in Micro Hydro Sector, a Case Study of Micro Hydro Projects in Northern Part of Kavre District, Nepal

Authors: Ram Bikram Thapa, Ganesh Lama

Abstract:

The Micro Hydro is one of the successful technology in Rural Nepal. Kavre is one of the pioneer district of sustainability of Micro Hydro Projects. A total of 30 Micro Hydro projects have been constructed with producing 700 KW of energy in northern side of the Kavre district. This study shows that 67% of projects have been affected by devastating earthquake in April and May, 2015. Out of them 23% are completely damaged. Most of the structures are failure like Penstock 71%, forebay 21%, powerhouse 7% have been completely damaged and 91% Canal & 44% Intake structures have been partially damaged by the earthquake. This paper empathizes that the engineering design is the vital component for sustainability of Micro Hydro Projects. This paper recommended that technicians should be considered the safety factor of earthquake and provision of disaster recovery fund during design of Micro Hydro Projects.

Keywords: micro hydro, earthquake, structural failure, sustainability

Procedia PDF Downloads 346
1728 Mapping Vulnerabilities: A Social and Political Study of Disasters in Eastern Himalayas, Region of Darjeeling

Authors: Shailendra M. Pradhan, Upendra M. Pradhan

Abstract:

Disasters are perennial features of human civilization. The recurring earthquakes, floods, cyclones, among others, that result in massive loss of lives and devastation, is a grim reminder of the fact that, despite all our success stories of development, and progress in science and technology, human society is perennially at risk to disasters. The apparent threat of climate change and global warming only severe our disaster risks. Darjeeling hills, situated along Eastern Himalayan region of India, and famous for its three Ts – tea, tourism and toy-train – is also equally notorious for its disasters. The recurring landslides and earthquakes, the cyclone Aila, and the Ambootia landslides, considered as the largest landslide in Asia, are strong evidence of the vulnerability of Darjeeling hills to natural disasters. Given its geographical location along the Hindu-Kush Himalayas, the region is marked by rugged topography, geo-physically unstable structure, high-seismicity, and fragile landscape, making it prone to disasters of different kinds and magnitudes. Most of the studies on disasters in Darjeeling hills are, however, scientific and geographical in orientation that focuses on the underlying geological and physical processes to the neglect of social and political conditions. This has created a tendency among the researchers and policy-makers to endorse and promote a particular type of discourse that does not consider the social and political aspects of disasters in Darjeeling hills. Disaster, this paper argues, is a complex phenomenon, and a result of diverse factors, both physical and human. The hazards caused by the physical and geological agents, and the vulnerabilities produced and rooted in political, economic, social and cultural structures of a society, together result in disasters. In this sense, disasters are as much a result of political and economic conditions as it is of physical environment. The human aspect of disasters, therefore, compels us to address intricating social and political challenges that ultimately determine our resilience and vulnerability to disasters. Set within the above milieu, the aims of the paper are twofold: a) to provide a political and sociological account of disasters in Darjeeling hills; and, b) to identify and address the root causes of its vulnerabilities to disasters. In situating disasters in Darjeeling Hills, the paper adopts the Pressure and Release Model (PAR) that provides a theoretical insight into the study of social and political aspects of disasters, and to examine myriads of other related issues therein. The PAR model conceptualises risk as a complex combination of vulnerabilities, on the one hand, and hazards, on the other. Disasters, within the PAR framework, occur when hazards interact with vulnerabilities. The root causes of vulnerability, in turn, could be traced to social and political structures such as legal definitions of rights, gender relations, and other ideological structures and processes. In this way, the PAR model helps the present study to identify and unpack the root causes of vulnerabilities and disasters in Darjeeling hills that have largely remained neglected in dominant discourses, thereby providing a more nuanced and sociologically sensitive understanding of disasters.

Keywords: Darjeeling, disasters, PAR, vulnerabilities

Procedia PDF Downloads 270