Search results for: data exchange
25175 Political Communication in Twitter Interactions between Government, News Media and Citizens in Mexico
Authors: Jorge Cortés, Alejandra Martínez, Carlos Pérez, Anaid Simón
Abstract:
The presence of government, news media, and general citizenry in social media allows considering interactions between them as a form of political communication (i.e. the public exchange of contradictory discourses about politics). Twitter’s asymmetrical following model (users can follow, mention or reply to other users that do not follow them) could foster alternative democratic practices and have an impact on Mexican political culture, which has been marked by a lack of direct communication channels between these actors. The research aim is to assess Twitter’s role in political communication practices through the analysis of interaction dynamics between government, news media, and citizens by extracting and visualizing data from Twitter’s API to observe general behavior patterns. The hypothesis is that regardless the fact that Twitter’s features enable direct and horizontal interactions between actors, users repeat traditional dynamics of interaction, without taking full advantage of the possibilities of this medium. Through an interdisciplinary team including Communication Strategies, Information Design, and Interaction Systems, the activity on Twitter generated by the controversy over the presence of Uber in Mexico City was analysed; an issue of public interest, involving aspects such as public opinion, economic interests and a legal dimension. This research includes techniques from social network analysis (SNA), a methodological approach focused on the comprehension of the relationships between actors through the visual representation and measurement of network characteristics. The analysis of the Uber event comprised data extraction, data categorization, corpus construction, corpus visualization and analysis. On the recovery stage TAGS, a Google Sheet template, was used to extract tweets that included the hashtags #UberSeQueda and #UberSeVa, posts containing the string Uber and tweets directed to @uber_mx. Using scripts written in Python, the data was filtered, discarding tweets with no interaction (replies, retweets or mentions) and locations outside of México. Considerations regarding bots and the omission of anecdotal posts were also taken into account. The utility of graphs to observe interactions of political communication in general was confirmed by the analysis of visualizations generated with programs such as Gephi and NodeXL. However, some aspects require improvements to obtain more useful visual representations for this type of research. For example, link¬crossings complicates following the direction of an interaction forcing users to manipulate the graph to see it clearly. It was concluded that some practices prevalent in political communication in Mexico are replicated in Twitter. Media actors tend to group together instead of interact with others. The political system tends to tweet as an advertising strategy rather than to generate dialogue. However, some actors were identified as bridges establishing communication between the three spheres, generating a more democratic exercise and taking advantage of Twitter’s possibilities. Although interactions in Twitter could become an alternative to political communication, this potential depends on the intentions of the participants and to what extent they are aiming for collaborative and direct communications. Further research is needed to get a deeper understanding on the political behavior of Twitter users and the possibilities of SNA for its analysis.Keywords: interaction, political communication, social network analysis, Twitter
Procedia PDF Downloads 22225174 Determination of the Risks of Heart Attack at the First Stage as Well as Their Control and Resource Planning with the Method of Data Mining
Authors: İbrahi̇m Kara, Seher Arslankaya
Abstract:
Frequently preferred in the field of engineering in particular, data mining has now begun to be used in the field of health as well since the data in the health sector have reached great dimensions. With data mining, it is aimed to reveal models from the great amounts of raw data in agreement with the purpose and to search for the rules and relationships which will enable one to make predictions about the future from the large amount of data set. It helps the decision-maker to find the relationships among the data which form at the stage of decision-making. In this study, it is aimed to determine the risk of heart attack at the first stage, to control it, and to make its resource planning with the method of data mining. Through the early and correct diagnosis of heart attacks, it is aimed to reveal the factors which affect the diseases, to protect health and choose the right treatment methods, to reduce the costs in health expenditures, and to shorten the durations of patients’ stay at hospitals. In this way, the diagnosis and treatment costs of a heart attack will be scrutinized, which will be useful to determine the risk of the disease at the first stage, to control it, and to make its resource planning.Keywords: data mining, decision support systems, heart attack, health sector
Procedia PDF Downloads 35825173 Bayesian Borrowing Methods for Count Data: Analysis of Incontinence Episodes in Patients with Overactive Bladder
Authors: Akalu Banbeta, Emmanuel Lesaffre, Reynaldo Martina, Joost Van Rosmalen
Abstract:
Including data from previous studies (historical data) in the analysis of the current study may reduce the sample size requirement and/or increase the power of analysis. The most common example is incorporating historical control data in the analysis of a current clinical trial. However, this only applies when the historical control dataare similar enough to the current control data. Recently, several Bayesian approaches for incorporating historical data have been proposed, such as the meta-analytic-predictive (MAP) prior and the modified power prior (MPP) both for single control as well as for multiple historical control arms. Here, we examine the performance of the MAP and the MPP approaches for the analysis of (over-dispersed) count data. To this end, we propose a computational method for the MPP approach for the Poisson and the negative binomial models. We conducted an extensive simulation study to assess the performance of Bayesian approaches. Additionally, we illustrate our approaches on an overactive bladder data set. For similar data across the control arms, the MPP approach outperformed the MAP approach with respect to thestatistical power. When the means across the control arms are different, the MPP yielded a slightly inflated type I error (TIE) rate, whereas the MAP did not. In contrast, when the dispersion parameters are different, the MAP gave an inflated TIE rate, whereas the MPP did not.We conclude that the MPP approach is more promising than the MAP approach for incorporating historical count data.Keywords: count data, meta-analytic prior, negative binomial, poisson
Procedia PDF Downloads 11825172 Strategic Citizen Participation in Applied Planning Investigations: How Planners Use Etic and Emic Community Input Perspectives to Fill-in the Gaps in Their Analysis
Authors: John Gaber
Abstract:
Planners regularly use citizen input as empirical data to help them better understand community issues they know very little about. This type of community data is based on the lived experiences of local residents and is known as "emic" data. What is becoming more common practice for planners is their use of data from local experts and stakeholders (known as "etic" data or the outsider perspective) to help them fill in the gaps in their analysis of applied planning research projects. Utilizing international Health Impact Assessment (HIA) data, I look at who planners invite to their citizen input investigations. Research presented in this paper shows that planners access a wide range of emic and etic community perspectives in their search for the “community’s view.” The paper concludes with how planners can chart out a new empirical path in their execution of emic/etic citizen participation strategies in their applied planning research projects.Keywords: citizen participation, emic data, etic data, Health Impact Assessment (HIA)
Procedia PDF Downloads 48425171 Half Metallic Antiferromagnetic of Doped TiO2 Rutile with Doubles Impurities (Os, Mo) from Ab Initio Calculations
Authors: M. Fakhim Lamrani, M. Ouchri, M. Belaiche, El Kenz, M. Loulidi, A. Benyoussef
Abstract:
Electronic and magnetic calculations based on density functional theory within the generalized gradient approximation for II-VI compound semiconductor TiO2 doped with single impurity Os and Mo; these compounds are a half metallic ferromagnet in their ground state with a total magnetic moment of 2 μB for both systems. Then, TiO2 doped with double impurities Os and Mo have been performed. As result, Ti1-2xOsxMoxO2 with x=0.065 is half-metallic antiferromagnets with 100% spin polarization of the conduction electrons crossing the Fermi level, without showing a net magnetization. Moreover, Ti14OsMoO32 compound is stable energetically than Ti1-xMoxO2 and Ti1-xOsxO2. The antiferromagnetic interaction in Ti1-2xOsxMoxO2 system is attributed to the double exchange mechanism, and the latter could also be the origin of their half metallic.Keywords: diluted magnetic semiconductor, half-metallic antiferromagnetic, augmented spherical wave method
Procedia PDF Downloads 42225170 Data Augmentation for Automatic Graphical User Interface Generation Based on Generative Adversarial Network
Authors: Xulu Yao, Moi Hoon Yap, Yanlong Zhang
Abstract:
As a branch of artificial neural network, deep learning is widely used in the field of image recognition, but the lack of its dataset leads to imperfect model learning. By analysing the data scale requirements of deep learning and aiming at the application in GUI generation, it is found that the collection of GUI dataset is a time-consuming and labor-consuming project, which is difficult to meet the needs of current deep learning network. To solve this problem, this paper proposes a semi-supervised deep learning model that relies on the original small-scale datasets to produce a large number of reliable data sets. By combining the cyclic neural network with the generated countermeasure network, the cyclic neural network can learn the sequence relationship and characteristics of data, make the generated countermeasure network generate reasonable data, and then expand the Rico dataset. Relying on the network structure, the characteristics of collected data can be well analysed, and a large number of reasonable data can be generated according to these characteristics. After data processing, a reliable dataset for model training can be formed, which alleviates the problem of dataset shortage in deep learning.Keywords: GUI, deep learning, GAN, data augmentation
Procedia PDF Downloads 18525169 Modelling Rainfall-Induced Shallow Landslides in the Northern New South Wales
Authors: S. Ravindran, Y.Liu, I. Gratchev, D.Jeng
Abstract:
Rainfall-induced shallow landslides are more common in the northern New South Wales (NSW), Australia. From 2009 to 2017, around 105 rainfall-induced landslides occurred along the road corridors and caused temporary road closures in the northern NSW. Rainfall causing shallow landslides has different distributions of rainfall varying from uniform, normal, decreasing to increasing rainfall intensity. The duration of rainfall varied from one day to 18 days according to historical data. The objective of this research is to analyse slope instability of some of the sites in the northern NSW by varying cumulative rainfall using SLOPE/W and SEEP/W and compare with field data of rainfall causing shallow landslides. The rainfall data and topographical data from public authorities and soil data obtained from laboratory tests will be used for this modelling. There is a likelihood of shallow landslides if the cumulative rainfall is between 100 mm to 400 mm in accordance with field data.Keywords: landslides, modelling, rainfall, suction
Procedia PDF Downloads 18425168 Machine Learning-Enabled Classification of Climbing Using Small Data
Authors: Nicholas Milburn, Yu Liang, Dalei Wu
Abstract:
Athlete performance scoring within the climbing do-main presents interesting challenges as the sport does not have an objective way to assign skill. Assessing skill levels within any sport is valuable as it can be used to mark progress while training, and it can help an athlete choose appropriate climbs to attempt. Machine learning-based methods are popular for complex problems like this. The dataset available was composed of dynamic force data recorded during climbing; however, this dataset came with challenges such as data scarcity, imbalance, and it was temporally heterogeneous. Investigated solutions to these challenges include data augmentation, temporal normalization, conversion of time series to the spectral domain, and cross validation strategies. The investigated solutions to the classification problem included light weight machine classifiers KNN and SVM as well as the deep learning with CNN. The best performing model had an 80% accuracy. In conclusion, there seems to be enough information within climbing force data to accurately categorize climbers by skill.Keywords: classification, climbing, data imbalance, data scarcity, machine learning, time sequence
Procedia PDF Downloads 14325167 Analysis of Expression Data Using Unsupervised Techniques
Authors: M. A. I Perera, C. R. Wijesinghe, A. R. Weerasinghe
Abstract:
his study was conducted to review and identify the unsupervised techniques that can be employed to analyze gene expression data in order to identify better subtypes of tumors. Identifying subtypes of cancer help in improving the efficacy and reducing the toxicity of the treatments by identifying clues to find target therapeutics. Process of gene expression data analysis described under three steps as preprocessing, clustering, and cluster validation. Feature selection is important since the genomic data are high dimensional with a large number of features compared to samples. Hierarchical clustering and K Means are often used in the analysis of gene expression data. There are several cluster validation techniques used in validating the clusters. Heatmaps are an effective external validation method that allows comparing the identified classes with clinical variables and visual analysis of the classes.Keywords: cancer subtypes, gene expression data analysis, clustering, cluster validation
Procedia PDF Downloads 14925166 Modeling a Feedback Concept in a Spherical Thundercloud Cell
Authors: Zemlianskaya Daria, Egor Stadnichuk, Ekaterina Svechnikova
Abstract:
Relativistic runaway electron avalanches (RREAs) are generally accepted as a source of thunderstorms gamma-ray radiation. Avalanches' dynamics in the electric fields can lead to their multiplication via gamma-rays and positrons, which is called relativistic feedback. This report shows that a non-uniform electric field geometry leads to the new RREAs multiplication mechanism - “geometric feedback”, which occurs due to the exchange of high-energy particles between different accelerating regions within a thundercloud. This report will present the results of the simulation in GEANT4 of feedback in a spherical cell. Necessary conditions for the occurrence of geometric feedback were obtained from it.Keywords: electric field, GEANT4, gamma-rays, relativistic runaway electron avalanches (RREAs), relativistic feedback, the thundercloud
Procedia PDF Downloads 17425165 Learning Analytics in a HiFlex Learning Environment
Authors: Matthew Montebello
Abstract:
Student engagement within a virtual learning environment generates masses of data points that can significantly contribute to the learning analytics that lead to decision support. Ideally, similar data is collected during student interaction with a physical learning space, and as a consequence, data is present at a large scale, even in relatively small classes. In this paper, we report of such an occurrence during classes held in a HiFlex modality as we investigate the advantages of adopting such a methodology. We plan to take full advantage of the learner-generated data in an attempt to further enhance the effectiveness of the adopted learning environment. This could shed crucial light on operating modalities that higher education institutions around the world will switch to in a post-COVID era.Keywords: HiFlex, big data in higher education, learning analytics, virtual learning environment
Procedia PDF Downloads 20125164 Li-Fi Technology: Data Transmission through Visible Light
Authors: Shahzad Hassan, Kamran Saeed
Abstract:
People are always in search of Wi-Fi hotspots because Internet is a major demand nowadays. But like all other technologies, there is still room for improvement in the Wi-Fi technology with regards to the speed and quality of connectivity. In order to address these aspects, Harald Haas, a professor at the University of Edinburgh, proposed what we know as the Li-Fi (Light Fidelity). Li-Fi is a new technology in the field of wireless communication to provide connectivity within a network environment. It is a two-way mode of wireless communication using light. Basically, the data is transmitted through Light Emitting Diodes which can vary the intensity of light very fast, even faster than the blink of an eye. From the research and experiments conducted so far, it can be said that Li-Fi can increase the speed and reliability of the transfer of data. This paper pays particular attention on the assessment of the performance of this technology. In other words, it is a 5G technology which uses LED as the medium of data transfer. For coverage within the buildings, Wi-Fi is good but Li-Fi can be considered favorable in situations where large amounts of data are to be transferred in areas with electromagnetic interferences. It brings a lot of data related qualities such as efficiency, security as well as large throughputs to the table of wireless communication. All in all, it can be said that Li-Fi is going to be a future phenomenon where the presence of light will mean access to the Internet as well as speedy data transfer.Keywords: communication, LED, Li-Fi, Wi-Fi
Procedia PDF Downloads 34725163 An Analysis of Humanitarian Data Management of Polish Non-Governmental Organizations in Ukraine Since February 2022 and Its Relevance for Ukrainian Humanitarian Data Ecosystem
Authors: Renata Kurpiewska-Korbut
Abstract:
Making an assumption that the use and sharing of data generated in humanitarian action constitute a core function of humanitarian organizations, the paper analyzes the position of the largest Polish humanitarian non-governmental organizations in the humanitarian data ecosystem in Ukraine and their approach to non-personal and personal data management since February of 2022. Both expert interviews and document analysis of non-profit organizations providing a direct response in the Ukrainian crisis context, i.e., the Polish Humanitarian Action, Caritas, Polish Medical Mission, Polish Red Cross, and the Polish Center for International Aid and the applicability of theoretical perspective of contingency theory – with its central point that the context or specific set of conditions determining the way of behavior and the choice of methods of action – help to examine the significance of data complexity and adaptive approach to data management by relief organizations in the humanitarian supply chain network. The purpose of this study is to determine how the existence of well-established and accurate internal procedures and good practices of using and sharing data (including safeguards for sensitive data) by the surveyed organizations with comparable human and technological capabilities are implemented and adjusted to Ukrainian humanitarian settings and data infrastructure. The study also poses a fundamental question of whether this crisis experience will have a determining effect on their future performance. The obtained finding indicate that Polish humanitarian organizations in Ukraine, which have their own unique code of conduct and effective managerial data practices determined by contingencies, have limited influence on improving the situational awareness of other assistance providers in the data ecosystem despite their attempts to undertake interagency work in the area of data sharing.Keywords: humanitarian data ecosystem, humanitarian data management, polish NGOs, Ukraine
Procedia PDF Downloads 9325162 An Approach for Estimation in Hierarchical Clustered Data Applicable to Rare Diseases
Authors: Daniel C. Bonzo
Abstract:
Practical considerations lead to the use of unit of analysis within subjects, e.g., bleeding episodes or treatment-related adverse events, in rare disease settings. This is coupled with data augmentation techniques such as extrapolation to enlarge the subject base. In general, one can think about extrapolation of data as extending information and conclusions from one estimand to another estimand. This approach induces hierarchichal clustered data with varying cluster sizes. Extrapolation of clinical trial data is being accepted increasingly by regulatory agencies as a means of generating data in diverse situations during drug development process. Under certain circumstances, data can be extrapolated to a different population, a different but related indication, and different but similar product. We consider here the problem of estimation (point and interval) using a mixed-models approach under an extrapolation. It is proposed that estimators (point and interval) be constructed using weighting schemes for the clusters, e.g., equally weighted and with weights proportional to cluster size. Simulated data generated under varying scenarios are then used to evaluate the performance of this approach. In conclusion, the evaluation result showed that the approach is a useful means for improving statistical inference in rare disease settings and thus aids not only signal detection but risk-benefit evaluation as well.Keywords: clustered data, estimand, extrapolation, mixed model
Procedia PDF Downloads 13725161 Interoperability Model Design of Smart Grid Power System
Authors: Seon-Hack Hong, Tae-Il Choi
Abstract:
Interoperability is defined as systems, components, and devices developed by different entities smoothly exchanging information and functioning organically without mutual consultation, being able to communicate with each other and computer systems of the same type or different types, and exchanging information or the ability of two or more systems to exchange information and use the information exchanged without extra effort. Insufficiencies such as duplication of functions when developing systems and applications due to lack of interoperability in the electric power system and low efficiency due to a lack of mutual information transmission system between the inside of the application program and the design is improved, and the seamless linkage of newly developed systems is improved. Since it is necessary to secure interoperability for this purpose, we designed the smart grid-based interoperability standard model in this paper.Keywords: interoperability, power system, common information model, SCADA, IEEE2030, Zephyr
Procedia PDF Downloads 12425160 Authorization of Commercial Communication Satellite Grounds for Promoting Turkish Data Relay System
Authors: Celal Dudak, Aslı Utku, Burak Yağlioğlu
Abstract:
Uninterrupted and continuous satellite communication through the whole orbit time is becoming more indispensable every day. Data relay systems are developed and built for various high/low data rate information exchanges like TDRSS of USA and EDRSS of Europe. In these missions, a couple of task-dedicated communication satellites exist. In this regard, for Turkey a data relay system is attempted to be defined exchanging low data rate information (i.e. TTC) for Earth-observing LEO satellites appointing commercial GEO communication satellites all over the world. First, justification of this attempt is given, demonstrating duration enhancements in the link. Discussion of preference of RF communication is, also, given instead of laser communication. Then, preferred communication GEOs – including TURKSAT4A already belonging to Turkey- are given, together with the coverage enhancements through STK simulations and the corresponding link budget. Also, a block diagram of the communication system is given on the LEO satellite.Keywords: communication, GEO satellite, data relay system, coverage
Procedia PDF Downloads 44225159 Estimation of Greenhouse Gas (GHG) Reductions from Solar Cell Technology Using Bottom-up Approach and Scenario Analysis in South Korea
Authors: Jaehyung Jung, Kiman Kim, Heesang Eum
Abstract:
Solar cell is one of the main technologies to reduce greenhouse gas (GHG). Thereby, accurate estimation of greenhouse gas reduction by solar cell technology is crucial to consider strategic applications of the solar cell. The bottom-up approach using operating data such as operation time and efficiency is one of the methodologies to improve the accuracy of the estimation. In this study, alternative GHG reductions from solar cell technology were estimated by a bottom-up approach to indirect emission source (scope 2) in Korea, 2015. In addition, the scenario-based analysis was conducted to assess the effect of technological change with respect to efficiency improvement and rate of operation. In order to estimate GHG reductions from solar cell activities in operating condition levels, methodologies were derived from 2006 IPCC guidelines for national greenhouse gas inventories and guidelines for local government greenhouse inventories published in Korea, 2016. Indirect emission factors for electricity were obtained from Korea Power Exchange (KPX) in 2011. As a result, the annual alternative GHG reductions were estimated as 21,504 tonCO2eq, and the annual average value was 1,536 tonCO2eq per each solar cell technology. Those results of estimation showed to be 91% levels versus design of capacity. Estimation of individual greenhouse gases (GHGs) showed that the largest gas was carbon dioxide (CO2), of which up to 99% of the total individual greenhouse gases. The annual average GHG reductions from solar cell per year and unit installed capacity (MW) were estimated as 556 tonCO2eq/yr•MW. Scenario analysis of efficiency improvement by 5%, 10%, 15% increased as much as approximately 30, 61, 91%, respectively, and rate of operation as 100% increased 4% of the annual GHG reductions.Keywords: bottom-up approach, greenhouse gas (GHG), reduction, scenario, solar cell
Procedia PDF Downloads 22125158 Relation of Consumer Satisfaction on Organization by Focusing on the Different Aspects of Buying Behavior
Abstract:
Introduction. Buyer conduct is a progression of practices or examples that buyers pursue before making a buy. It begins when the shopper ends up mindful of a need or wish for an item, at that point finishes up with the buying exchange. Business visionaries can't generally simply shake hands with their intended interest group people and become more acquainted with them. Research is often necessary, so every organization primarily involves doing continuous research to understand and satisfy consumer needs pattern. Aims and Objectives: The aim of the present study is to examine the different behaviors of the consumer, including pre-purchase, purchase, and post-purchase behavior. Materials and Methods: In order to get results, face to face interview held with 80 people which comprise a larger part of female individuals having upper as well as middle-class status. The prime source of data collection was primary. However, the study has also used the theoretical contribution of many researchers in their respective field. Results: Majority of the respondents were females (70%) from the age group of 20-50. The collected data was analyzed through hypothesis testing statistical techniques such as correlation analysis, single regression analysis, and ANOVA which has rejected the null hypothesis that there is no relation between researching the consumer behavior at different stages and organizational performance. The real finding of this study is that simply focusing on the buying part isn't enough to gain profits and fame, however, understanding the pre, buy and post-buy behavior of consumer performs a huge role in organization success. The outcomes demonstrated that the organization, which deals with the three phases of research of purchasing conduct is able to establish a great brand image as compare to their competitors. Alongside, enterprises can observe customer conduct in a considerably more proficient manner. Conclusion: The analyses of consumer behavior presented in this study is an attempt to understand the factors affecting consumer purchasing behavior. This study has revealed that those corporations are more successful, which work on understanding buying behavior instead to just focus on the selling products. As a result, organizations perform good and grow rapidly because consumers are the one who can make or break the company. The interviews that were conducted face to face, clearly revealed that those organizations become at top-notch whom consumers are satisfied, not just with product but also with services of the company. The study is not targeting the particular class of audience; however, it brings out benefits to the masses, in particular to business organizations.Keywords: consumer behavior, pre purchase, post purchase, consumer satisfaction
Procedia PDF Downloads 11225157 Data Hiding by Vector Quantization in Color Image
Authors: Yung Gi Wu
Abstract:
With the growing of computer and network, digital data can be spread to anywhere in the world quickly. In addition, digital data can also be copied or tampered easily so that the security issue becomes an important topic in the protection of digital data. Digital watermark is a method to protect the ownership of digital data. Embedding the watermark will influence the quality certainly. In this paper, Vector Quantization (VQ) is used to embed the watermark into the image to fulfill the goal of data hiding. This kind of watermarking is invisible which means that the users will not conscious the existing of embedded watermark even though the embedded image has tiny difference compared to the original image. Meanwhile, VQ needs a lot of computation burden so that we adopt a fast VQ encoding scheme by partial distortion searching (PDS) and mean approximation scheme to speed up the data hiding process. The watermarks we hide to the image could be gray, bi-level and color images. Texts are also can be regarded as watermark to embed. In order to test the robustness of the system, we adopt Photoshop to fulfill sharpen, cropping and altering to check if the extracted watermark is still recognizable. Experimental results demonstrate that the proposed system can resist the above three kinds of tampering in general cases.Keywords: data hiding, vector quantization, watermark, color image
Procedia PDF Downloads 36425156 A Numerical Model Simulation for an Updraft Gasifier Using High-Temperature Steam
Authors: T. M. Ismail, M. A. El-Salam
Abstract:
A mathematical model study was carried out to investigate gasification of biomass fuels using high-temperature air and steam as a gasifying agent using high-temperature air up to 1000°C. In this study, a 2D computational fluid dynamics model was developed to study the gasification process in an updraft gasifier, considering drying, pyrolysis, combustion, and gasification reactions. The gas and solid phases were resolved using a Euler−Euler multiphase approach, with exchange terms for the momentum, mass, and energy. The standard k−ε turbulence model was used in the gas phase, and the particle phase was modeled using the kinetic theory of granular flow. The results show that the present model giving a promising way in its capability and sensitivity for the parameter effects that influence the gasification process.Keywords: computational fluid dynamics, gasification, biomass fuel, fixed bed gasifier
Procedia PDF Downloads 40725155 Synthesis, Structure and Spectroscopic Properties of Oxo-centered Carboxylate-Bridged Triiron Complexes and a Deca Ferric Wheel
Authors: K. V. Ramanaiah, R. Jagan, N. N. Murthy
Abstract:
Trinuclear oxo-centered carboxylate-bridged iron complexes, [Fe3(µ3-O)(µ2-O2CR)L¬3]+/0 (where R = alkyl or aryl; L = H2O, ROH, Py, solvent) have attracted tremendous attention because of their interesting structural and magnetic properties, exhibit mixed-valent trapped and de-trapped states, and have bioinorganic relevance. The presence of a trinuclear iron binding center has been implicated in the formation of both bacterial and human iron storage protein, Ft. They are used as precursors for the synthesis of models for the active-site structures of non-heme proteins, hemerythrin (Hr), methane monooxygenase (MMO) and polyiron storage protein, ferritin (Ft). Used as important building blocks for the design and synthesis of supramolecules this can exhibit single molecular magnetism (SMM). Such studies have often employed simple and compact carboxylate ligands and the use of bulky carboxylates is scarce. In the present study, we employed two different type of sterically hindered carboxylates and synthesized a series of novel oxo-centered, carboxylate-bridged triiron complexes of general formula [Fe3(O)(O2CCPh3)6L3]X (L = H2O, 1; py, 2; 4-NMe2py, 3; X = ClO4; L = CH3CN, 4; X = FeCl4) and [Fe3(O)(O2C-anth)6L3]X (L = H2O, 5; X = ClO4; L = CH3OH, 6; X = Cl). Along with complex [Fe(OMe)2(O2CCPh3)]10, 7 was prepared by the self-assemble of anhydrous FeCl3, sodium triphenylacetate and sodium methoxide at ratio of 1:1:2 in CH3OH. The Electronic absorption spectra of these complexes 1-6, in CH2Cl2 display weak bands at near FTIR region (970-1135 nm, ε > 15M-1cm-1). For complex 7, one broad band centered at ~670nm and also an additional intense charge transfer (L→M or O→M) bands between 300 to 550nm observed for all the complexes. Paramagnetic 1H NMR is introduced as a good probe for the characterization of trinuclear oxo - cantered iron compounds in solution when the L ligand coordinated to iron varies as: H2O, py, 4-NMe2py, and CH3OH. The solution state magnetic moment values calculated by using Evans method for all the complexes and also solid state magnetic moment value of complex, 7 was calculated by VSM method, which is comparable with solution state value. These all magnetic moment values indicate there is a spin exchange process through oxo and carboxylate bridges in between two irons (d5). The ESI-mass data complement the data obtained from single crystal X-ray structure. Further purity of the compounds was confirmed by elemental analysis. Finally, structural determination of complexes 1, 3, 4, 5, 6 and 7 were unambiguously conformed by single crystal x-ray studies.Keywords: decanuclear, paramagnetic NMR, trinuclear, uv-visible
Procedia PDF Downloads 34825154 Anomaly Detection in a Data Center with a Reconstruction Method Using a Multi-Autoencoders Model
Authors: Victor Breux, Jérôme Boutet, Alain Goret, Viviane Cattin
Abstract:
Early detection of anomalies in data centers is important to reduce downtimes and the costs of periodic maintenance. However, there is little research on this topic and even fewer on the fusion of sensor data for the detection of abnormal events. The goal of this paper is to propose a method for anomaly detection in data centers by combining sensor data (temperature, humidity, power) and deep learning models. The model described in the paper uses one autoencoder per sensor to reconstruct the inputs. The auto-encoders contain Long-Short Term Memory (LSTM) layers and are trained using the normal samples of the relevant sensors selected by correlation analysis. The difference signal between the input and its reconstruction is then used to classify the samples using feature extraction and a random forest classifier. The data measured by the sensors of a data center between January 2019 and May 2020 are used to train the model, while the data between June 2020 and May 2021 are used to assess it. Performances of the model are assessed a posteriori through F1-score by comparing detected anomalies with the data center’s history. The proposed model outperforms the state-of-the-art reconstruction method, which uses only one autoencoder taking multivariate sequences and detects an anomaly with a threshold on the reconstruction error, with an F1-score of 83.60% compared to 24.16%.Keywords: anomaly detection, autoencoder, data centers, deep learning
Procedia PDF Downloads 19425153 Mapping of Risks and Opportunities for Adolescents Girls’ Sexual and Reproductive Health in Peri-Urban Setting in Mwanza, Tanzania
Authors: Soori Nnko, Zaina Mchome, John Dusabe, Angela Obasi
Abstract:
In sub-Saharan Africa, adolescent girls living in urban and periurban settings are among the groups at increased risk of getting sexually transmitted infections. One of the challenges to improve uptake of sexual and reproductive health (SRH) services among adolescents is linked to little appreciation about their vulnerability and the knowledge on availability of the SRH services. Objective: This study assesses adolescents’ perceptions on risks for SRH problems and the availability of services to prevent against SRH problems. Methodology: The study was conducted in March 2011 in Mwanza region, Tanzania. Data collection techniques included 18 Participatory Group Discussions and 17 In-depth Interviews with adolescents and young mothers aged 15-20 years. Results: Adolescents indicated that risk places included their homes, bushes, commercial centers, roadsides as well as school settings. Risk for having unprotected sex varied depending on where you are, and the time of the day. For example, collection of firewood in the bushes or water from the wells exposed girls to men who forced or lured them to have sex. The girls reported to encounter motorcyclists who offered the ride in exchange for sex. Girls also knew myriads places to seek SRH services, including public and private clinics, drug shops and traditional healers. Despite being aware of risky environment, and places to seek the services, access to SRH services were limited due to the stigma and negative attitude of community regarding adolescents’ utilization of SRH services. Conclusion: Adolescents are exposed to various risky environments, yet due to social stigma they have difficult to access the available SRH services.Keywords: adolescent girls, sexual and reproductive health, AIDS, risk, opportunities, interventions, sub Saharan africa
Procedia PDF Downloads 44525152 Integration Process and Analytic Interface of different Environmental Open Data Sets with Java/Oracle and R
Authors: Pavel H. Llamocca, Victoria Lopez
Abstract:
The main objective of our work is the comparative analysis of environmental data from Open Data bases, belonging to different governments. This means that you have to integrate data from various different sources. Nowadays, many governments have the intention of publishing thousands of data sets for people and organizations to use them. In this way, the quantity of applications based on Open Data is increasing. However each government has its own procedures to publish its data, and it causes a variety of formats of data sets because there are no international standards to specify the formats of the data sets from Open Data bases. Due to this variety of formats, we must build a data integration process that is able to put together all kind of formats. There are some software tools developed in order to give support to the integration process, e.g. Data Tamer, Data Wrangler. The problem with these tools is that they need data scientist interaction to take part in the integration process as a final step. In our case we don’t want to depend on a data scientist, because environmental data are usually similar and these processes can be automated by programming. The main idea of our tool is to build Hadoop procedures adapted to data sources per each government in order to achieve an automated integration. Our work focus in environment data like temperature, energy consumption, air quality, solar radiation, speeds of wind, etc. Since 2 years, the government of Madrid is publishing its Open Data bases relative to environment indicators in real time. In the same way, other governments have published Open Data sets relative to the environment (like Andalucia or Bilbao). But all of those data sets have different formats and our solution is able to integrate all of them, furthermore it allows the user to make and visualize some analysis over the real-time data. Once the integration task is done, all the data from any government has the same format and the analysis process can be initiated in a computational better way. So the tool presented in this work has two goals: 1. Integration process; and 2. Graphic and analytic interface. As a first approach, the integration process was developed using Java and Oracle and the graphic and analytic interface with Java (jsp). However, in order to open our software tool, as second approach, we also developed an implementation with R language as mature open source technology. R is a really powerful open source programming language that allows us to process and analyze a huge amount of data with high performance. There are also some R libraries for the building of a graphic interface like shiny. A performance comparison between both implementations was made and no significant differences were found. In addition, our work provides with an Official Real-Time Integrated Data Set about Environment Data in Spain to any developer in order that they can build their own applications.Keywords: open data, R language, data integration, environmental data
Procedia PDF Downloads 31525151 Magnitude of Transactional Sex and Its Determinant Factors Among Women in Sub-Saharan Africa: Systematic Review and Meat Analysis
Authors: Gedefaye Nibret Mihretie
Abstract:
Background: Transactional sex is casual sex between two people to receive material incentives in exchange for sexual favors. Transactional sex is associated with negative consequences, which increase the risk of sexually transmitted diseases, including HIV/AIDS, unintended pregnancy, unsafe abortion, and physiological trauma. Many primary studies in Sub-Saharan Africa have been conducted to assess the prevalence and associated factors of transactional sex among women. These studies had great discrepancies and inconsistent results. Hence, this systematic review and meta-analysis aimed to synthesize the pooled prevalence of the practice of transactional sex among women and its associated factors in Sub-Saharan Africa. Method: Cross-sectional studies were systematically searched from March 6, 2022, to April 24, 2022, using PubMed, Google Scholar, HINARI, Cochrane Library, and grey literature. The pooled prevalence of transactional sex and associated factors was estimated using DerSemonial-Laird Random Effect Model. Stata (version 16.0) was used to analyze the data. The I-squared statistic was used to assess the studies' heterogeneity. A funnel plot and Egger's test were used to check for publication bias. A subgroup analysis was performed to minimize the underline heterogeneity depending on the study years, source of data, sample sizes and geographical location. Results: Four thousand one hundred thirty articles were extracted from various databases. The final thirty-two studies were included in this systematic review, including 108,075 participants. The pooled prevalence of transactional sex among women in Sub-Saharan Africa was 12.55%, with a confidence interval of 9.59% to 15.52%. Educational status (OR = .48, 95%CI, 0.27, 0.69) was the protective factors of transactional sex whereas, alcohol use (OR = 1.85, 95% CI: 1.19, 2.52), early sex debut (OR = 2.57, 95%CI, 1.17, 3.98), substance abuse (OR = 4.21, 95% CI: 2.05, 6.37), having history of sexual experience abuse (OR = 4.08, 95% CI: 1.38, 6.78), physical violence abuse (OR = 6.59, 95% CI: 1.17, 12.02), and sexual violence abuse (OR = 3.56, 95% CI: 1.15, 8.27) were the risk factors of transactional sex. Conclusion: The prevalence of transactional sex among women in Sub-Saharan Africa was high. Educational status, alcohol use, substance abuse, early sex debut, having a history of sexual experiences, physical violence, and sexual violence were predictors of transaction sex. Governmental and other stakeholders are designed to reduce alcohol utilization, provide health information about the negative consequences of early sex debut, substance abuse, and reduce sexual violence, ensuring gender equality through mass media, which should be included in state policy.Keywords: women’s health, child health, reproductive health, midwifery
Procedia PDF Downloads 9425150 Transforming Data into Knowledge: Mathematical and Statistical Innovations in Data Analytics
Authors: Zahid Ullah, Atlas Khan
Abstract:
The rapid growth of data in various domains has created a pressing need for effective methods to transform this data into meaningful knowledge. In this era of big data, mathematical and statistical innovations play a crucial role in unlocking insights and facilitating informed decision-making in data analytics. This abstract aims to explore the transformative potential of these innovations and their impact on converting raw data into actionable knowledge. Drawing upon a comprehensive review of existing literature, this research investigates the cutting-edge mathematical and statistical techniques that enable the conversion of data into knowledge. By evaluating their underlying principles, strengths, and limitations, we aim to identify the most promising innovations in data analytics. To demonstrate the practical applications of these innovations, real-world datasets will be utilized through case studies or simulations. This empirical approach will showcase how mathematical and statistical innovations can extract patterns, trends, and insights from complex data, enabling evidence-based decision-making across diverse domains. Furthermore, a comparative analysis will be conducted to assess the performance, scalability, interpretability, and adaptability of different innovations. By benchmarking against established techniques, we aim to validate the effectiveness and superiority of the proposed mathematical and statistical innovations in data analytics. Ethical considerations surrounding data analytics, such as privacy, security, bias, and fairness, will be addressed throughout the research. Guidelines and best practices will be developed to ensure the responsible and ethical use of mathematical and statistical innovations in data analytics. The expected contributions of this research include advancements in mathematical and statistical sciences, improved data analysis techniques, enhanced decision-making processes, and practical implications for industries and policymakers. The outcomes will guide the adoption and implementation of mathematical and statistical innovations, empowering stakeholders to transform data into actionable knowledge and drive meaningful outcomes.Keywords: data analytics, mathematical innovations, knowledge extraction, decision-making
Procedia PDF Downloads 7525149 FCNN-MR: A Parallel Instance Selection Method Based on Fast Condensed Nearest Neighbor Rule
Authors: Lu Si, Jie Yu, Shasha Li, Jun Ma, Lei Luo, Qingbo Wu, Yongqi Ma, Zhengji Liu
Abstract:
Instance selection (IS) technique is used to reduce the data size to improve the performance of data mining methods. Recently, to process very large data set, several proposed methods divide the training set into some disjoint subsets and apply IS algorithms independently to each subset. In this paper, we analyze the limitation of these methods and give our viewpoint about how to divide and conquer in IS procedure. Then, based on fast condensed nearest neighbor (FCNN) rule, we propose a large data sets instance selection method with MapReduce framework. Besides ensuring the prediction accuracy and reduction rate, it has two desirable properties: First, it reduces the work load in the aggregation node; Second and most important, it produces the same result with the sequential version, which other parallel methods cannot achieve. We evaluate the performance of FCNN-MR on one small data set and two large data sets. The experimental results show that it is effective and practical.Keywords: instance selection, data reduction, MapReduce, kNN
Procedia PDF Downloads 25425148 Preparation and Characterization of Organic Silver Precursors for Conductive Ink
Authors: Wendong Yang, Changhai Wang, Valeria Arrighi
Abstract:
Low ink sintering temperature is desired for flexible electronics, as it would widen the application of the ink on temperature-sensitive substrates where the selection of silver precursor is very critical. In this paper, four types of organic silver precursors, silver carbonate, silver oxalate, silver tartrate and silver itaconate, were synthesized using an ion exchange method, firstly. Various characterization methods were employed to investigate their physical phase, chemical composition, morphologies and thermal decomposition behavior. It was found that silver oxalate had the ideal thermal property and showed the lowest decomposition temperature. An ink was then formulated by complexing the as-prepared silver oxalate with ethylenediamine in organic solvents. Results show that a favorable conductive film with a uniform surface structure consisting of silver nanoparticles and few voids could be produced from the ink at a sintering temperature of 150 °C.Keywords: conductive ink, electrical property, film, organic silver
Procedia PDF Downloads 33125147 A Design Framework for an Open Market Platform of Enriched Card-Based Transactional Data for Big Data Analytics and Open Banking
Authors: Trevor Toy, Josef Langerman
Abstract:
Around a quarter of the world’s data is generated by financial with an estimated 708.5 billion global non-cash transactions reached between 2018 and. And with Open Banking still a rapidly developing concept within the financial industry, there is an opportunity to create a secure mechanism for connecting its stakeholders to openly, legitimately and consensually share the data required to enable it. Integration and data sharing of anonymised transactional data are still operated in silos and centralised between the large corporate entities in the ecosystem that have the resources to do so. Smaller fintechs generating data and businesses looking to consume data are largely excluded from the process. Therefore there is a growing demand for accessible transactional data for analytical purposes and also to support the rapid global adoption of Open Banking. The following research has provided a solution framework that aims to provide a secure decentralised marketplace for 1.) data providers to list their transactional data, 2.) data consumers to find and access that data, and 3.) data subjects (the individuals making the transactions that generate the data) to manage and sell the data that relates to themselves. The platform also provides an integrated system for downstream transactional-related data from merchants, enriching the data product available to build a comprehensive view of a data subject’s spending habits. A robust and sustainable data market can be developed by providing a more accessible mechanism for data producers to monetise their data investments and encouraging data subjects to share their data through the same financial incentives. At the centre of the platform is the market mechanism that connects the data providers and their data subjects to the data consumers. This core component of the platform is developed on a decentralised blockchain contract with a market layer that manages transaction, user, pricing, payment, tagging, contract, control, and lineage features that pertain to the user interactions on the platform. One of the platform’s key features is enabling the participation and management of personal data by the individuals from whom the data is being generated. This framework developed a proof-of-concept on the Etheruem blockchain base where an individual can securely manage access to their own personal data and that individual’s identifiable relationship to the card-based transaction data provided by financial institutions. This gives data consumers access to a complete view of transactional spending behaviour in correlation to key demographic information. This platform solution can ultimately support the growth, prosperity, and development of economies, businesses, communities, and individuals by providing accessible and relevant transactional data for big data analytics and open banking.Keywords: big data markets, open banking, blockchain, personal data management
Procedia PDF Downloads 7425146 Determination Optimum Strike Price of FX Option Call Spread with USD/IDR Volatility and Garman–Kohlhagen Model Analysis
Authors: Bangkit Adhi Nugraha, Bambang Suripto
Abstract:
On September 2016 Bank Indonesia (BI) release regulation no.18/18/PBI/2016 that permit bank clients for using the FX option call spread USD/IDR. Basically, this product is a combination between clients buy FX call option (pay premium) and sell FX call option (receive premium) to protect against currency depreciation while also capping the potential upside with cheap premium cost. BI classifies this product as a structured product. The structured product is combination at least two financial instruments, either derivative or non-derivative instruments. The call spread is the first structured product against IDR permitted by BI since 2009 as response the demand increase from Indonesia firms on FX hedging through derivative for protecting market risk their foreign currency asset or liability. The composition of hedging products on Indonesian FX market increase from 35% on 2015 to 40% on 2016, the majority on swap product (FX forward, FX swap, cross currency swap). Swap is formulated by interest rate difference of the two currency pairs. The cost of swap product is 7% for USD/IDR with one year USD/IDR volatility 13%. That cost level makes swap products seem expensive for hedging buyers. Because call spread cost (around 1.5-3%) cheaper than swap, the most Indonesian firms are using NDF FX call spread USD/IDR on offshore with outstanding amount around 10 billion USD. The cheaper cost of call spread is the main advantage for hedging buyers. The problem arises because BI regulation requires the call spread buyer doing the dynamic hedging. That means, if call spread buyer choose strike price 1 and strike price 2 and volatility USD/IDR exchange rate surpass strike price 2, then the call spread buyer must buy another call spread with strike price 1’ (strike price 1’ = strike price 2) and strike price 2’ (strike price 2’ > strike price 1‘). It could make the premium cost of call spread doubled or even more and dismiss the purpose of hedging buyer to find the cheapest hedging cost. It is very crucial for the buyer to choose best optimum strike price before entering into the transaction. To help hedging buyer find the optimum strike price and avoid expensive multiple premium cost, we observe ten years 2005-2015 historical data of USD/IDR volatility to be compared with the price movement of the call spread USD/IDR using Garman–Kohlhagen Model (as a common formula on FX option pricing). We use statistical tools to analysis data correlation, understand nature of call spread price movement over ten years, and determine factors affecting price movement. We select some range of strike price and tenor and calculate the probability of dynamic hedging to occur and how much it’s cost. We found USD/IDR currency pairs is too uncertain and make dynamic hedging riskier and more expensive. We validated this result using one year data and shown small RMS. The study result could be used to understand nature of FX call spread and determine optimum strike price for hedging plan.Keywords: FX call spread USD/IDR, USD/IDR volatility statistical analysis, Garman–Kohlhagen Model on FX Option USD/IDR, Bank Indonesia Regulation no.18/18/PBI/2016
Procedia PDF Downloads 380