Search results for: automated fraud detection
3216 Advancements in Autonomous Drones for Enhanced Healthcare Logistics
Authors: Bhaargav Gupta P., Vignesh N., Nithish Kumar R., Rahul J., Nivetha Ruvah D.
Abstract:
Delivering essential medical supplies to rural and underserved areas is challenging due to infrastructure limitations and logistical barriers, often resulting in inefficiencies and delays. Traditional delivery methods are hindered by poor road networks, long distances, and difficult terrains, compromising timely access to vital resources, especially in emergencies. This paper introduces an autonomous drone system engineered to optimize last-mile delivery. By utilizing advanced navigation and object-detection algorithms, such as region-based convolutional neural networks (R-CNN), our drones efficiently avoid obstacles, identify safe landing zones, and adapt dynamically to varying environments. Equipped with high-precision GPS and autonomous capabilities, the drones effectively navigate complex, remote areas with minimal dependence on established infrastructure. The system includes a dedicated mobile application for secure order placement and real-time tracking, and a secure payload box with OTP verification ensures tamper-resistant delivery to authorized recipients. This project demonstrates the potential of automated drone technology in healthcare logistics, offering a scalable and eco-friendly approach to enhance accessibility and service delivery in underserved regions. By addressing logistical gaps through advanced automation, this system represents a significant advancement toward sustainable, accessible healthcare in remote areas.Keywords: region-based convolutional neural network, one time password, global positioning system, autonomous drones, healthcare logistics
Procedia PDF Downloads 163215 Predicting Loss of Containment in Surface Pipeline using Computational Fluid Dynamics and Supervised Machine Learning Model to Improve Process Safety in Oil and Gas Operations
Authors: Muhammmad Riandhy Anindika Yudhy, Harry Patria, Ramadhani Santoso
Abstract:
Loss of containment is the primary hazard that process safety management is concerned within the oil and gas industry. Escalation to more serious consequences all begins with the loss of containment, starting with oil and gas release from leakage or spillage from primary containment resulting in pool fire, jet fire and even explosion when reacted with various ignition sources in the operations. Therefore, the heart of process safety management is avoiding loss of containment and mitigating its impact through the implementation of safeguards. The most effective safeguard for the case is an early detection system to alert Operations to take action prior to a potential case of loss of containment. The detection system value increases when applied to a long surface pipeline that is naturally difficult to monitor at all times and is exposed to multiple causes of loss of containment, from natural corrosion to illegal tapping. Based on prior researches and studies, detecting loss of containment accurately in the surface pipeline is difficult. The trade-off between cost-effectiveness and high accuracy has been the main issue when selecting the traditional detection method. The current best-performing method, Real-Time Transient Model (RTTM), requires analysis of closely positioned pressure, flow and temperature (PVT) points in the pipeline to be accurate. Having multiple adjacent PVT sensors along the pipeline is expensive, hence generally not a viable alternative from an economic standpoint.A conceptual approach to combine mathematical modeling using computational fluid dynamics and a supervised machine learning model has shown promising results to predict leakage in the pipeline. Mathematical modeling is used to generate simulation data where this data is used to train the leak detection and localization models. Mathematical models and simulation software have also been shown to provide comparable results with experimental data with very high levels of accuracy. While the supervised machine learning model requires a large training dataset for the development of accurate models, mathematical modeling has been shown to be able to generate the required datasets to justify the application of data analytics for the development of model-based leak detection systems for petroleum pipelines. This paper presents a review of key leak detection strategies for oil and gas pipelines, with a specific focus on crude oil applications, and presents the opportunities for the use of data analytics tools and mathematical modeling for the development of robust real-time leak detection and localization system for surface pipelines. A case study is also presented.Keywords: pipeline, leakage, detection, AI
Procedia PDF Downloads 1933214 Predicting the Diagnosis of Alzheimer’s Disease: Development and Validation of Machine Learning Models
Authors: Jay L. Fu
Abstract:
Patients with Alzheimer's disease progressively lose their memory and thinking skills and, eventually, the ability to carry out simple daily tasks. The disease is irreversible, but early detection and treatment can slow down the disease progression. In this research, publicly available MRI data and demographic data from 373 MRI imaging sessions were utilized to build models to predict dementia. Various machine learning models, including logistic regression, k-nearest neighbor, support vector machine, random forest, and neural network, were developed. Data were divided into training and testing sets, where training sets were used to build the predictive model, and testing sets were used to assess the accuracy of prediction. Key risk factors were identified, and various models were compared to come forward with the best prediction model. Among these models, the random forest model appeared to be the best model with an accuracy of 90.34%. MMSE, nWBV, and gender were the three most important contributing factors to the detection of Alzheimer’s. Among all the models used, the percent in which at least 4 of the 5 models shared the same diagnosis for a testing input was 90.42%. These machine learning models allow early detection of Alzheimer’s with good accuracy, which ultimately leads to early treatment of these patients.Keywords: Alzheimer's disease, clinical diagnosis, magnetic resonance imaging, machine learning prediction
Procedia PDF Downloads 1433213 Emotion Detection in a General Human-Robot Interaction System Optimized for Embedded Platforms
Authors: Julio Vega
Abstract:
Expression recognition is a field of Artificial Intelligence whose main objectives are to recognize basic forms of affective expression that appear on people’s faces and contributing to behavioral studies. In this work, a ROS node has been developed that, based on Deep Learning techniques, is capable of detecting the facial expressions of the people that appear in the image. These algorithms were optimized so that they can be executed in real time on an embedded platform. The experiments were carried out in a PC with a USB camera and in a Raspberry Pi 4 with a PiCamera. The final results shows a plausible system, which is capable to work in real time even in an embedded platform.Keywords: python, low-cost, raspberry pi, emotion detection, human-robot interaction, ROS node
Procedia PDF Downloads 1303212 Conceptual Model for Massive Open Online Blended Courses Based on Disciplines’ Concepts Capitalization and Obstacles’ Detection
Authors: N. Hammid, F. Bouarab-Dahmani, T. Berkane
Abstract:
Since its appearance, the MOOC (massive open online course) is gaining more and more intention of the educational communities over the world. Apart from the current MOOCs design and purposes, the creators of MOOC focused on the importance of the connection and knowledge exchange between individuals in learning. In this paper, we present a conceptual model for massive open online blended courses where teachers over the world can collaborate and exchange their experience to get a common efficient content designed as a MOOC opened to their students to live a better learning experience. This model is based on disciplines’ concepts capitalization and the detection of the obstacles met by their students when faced with problem situations (exercises, projects, case studies, etc.). This detection is possible by analyzing the frequently of semantic errors committed by the students. The participation of teachers in the design of the course and the attendance by their students can guarantee an efficient and extensive participation (an important number of participants) in the course, the learners’ motivation and the evaluation issues, in the way that the teachers designing the course assess their students. Thus, the teachers review, together with their knowledge, offer a better assessment and efficient connections to their students.Keywords: massive open online course, MOOC, online learning, e-learning
Procedia PDF Downloads 2683211 Obstacle Detection and Path Tracking Application for Disables
Authors: Aliya Ashraf, Mehreen Sirshar, Fatima Akhtar, Farwa Kazmi, Jawaria Wazir
Abstract:
Vision, the basis for performing navigational tasks, is absent or greatly reduced in visually impaired people due to which they face many hurdles. For increasing the navigational capabilities of visually impaired people a desktop application ODAPTA is presented in this paper. The application uses camera to capture video from surroundings, apply various image processing algorithms to get information about path and obstacles, tracks them and delivers that information to user through voice commands. Experimental results show that the application works effectively for straight paths in daylight.Keywords: visually impaired, ODAPTA, Region of Interest (ROI), driver fatigue, face detection, expression recognition, CCD camera, artificial intelligence
Procedia PDF Downloads 5523210 The Power of the Proper Orthogonal Decomposition Method
Authors: Charles Lee
Abstract:
The Principal Orthogonal Decomposition (POD) technique has been used as a model reduction tool for many applications in engineering and science. In principle, one begins with an ensemble of data, called snapshots, collected from an experiment or laboratory results. The beauty of the POD technique is that when applied, the entire data set can be represented by the smallest number of orthogonal basis elements. It is the such capability that allows us to reduce the complexity and dimensions of many physical applications. Mathematical formulations and numerical schemes for the POD method will be discussed along with applications in NASA’s Deep Space Large Antenna Arrays, Satellite Image Reconstruction, Cancer Detection with DNA Microarray Data, Maximizing Stock Return, and Medical Imaging.Keywords: reduced-order methods, principal component analysis, cancer detection, image reconstruction, stock portfolios
Procedia PDF Downloads 863209 Averting a Financial Crisis through Regulation, Including Legislation
Authors: Maria Krambia-Kapardis, Andreas Kapardis
Abstract:
The paper discusses regulatory and legislative measures implemented by various nations in an effort to avert another financial crisis. More specifically, to address the financial crisis, the European Commission followed the practice of other developed countries and implemented a European Economic Recovery Plan in an attempt to overhaul the regulatory and supervisory framework of the financial sector. In 2010 the Commission introduced the European Systemic Risk Board and in 2011 the European System of Financial Supervision. Some experts advocated that the type and extent of financial regulation introduced in the European crisis in the wake of the 2008 crisis has been excessive and counterproductive. In considering how different countries responded to the financial crisis, global regulators have shown a more focused commitment to combat industry misconduct and to pre-empt abusive behavior. Regulators have also increased funding and resources at their disposal; have increased regulatory fines, with an increasing trend towards action against individuals; and, finally, have focused on market abuse and market conduct issues. Financial regulation can be effected, first of all, through legislation. However, neither ex ante or ex post regulation is by itself effective in reducing systemic risk. Consequently, to avert a financial crisis, in their endeavor to achieve both economic efficiency and financial stability, governments need to balance the two approaches to financial regulation. Fiduciary duty is another means by which the behavior of actors in the financial world is constrained and, thus, regulated. Furthermore, fiduciary duties extend over and above other existing requirements set out by statute and/or common law and cover allegations of breach of fiduciary duty, negligence or fraud. Careful analysis of the etiology of the 2008 financial crisis demonstrates the great importance of corporate governance as a way of regulating boardroom behavior. In addition, the regulation of professions including accountants and auditors plays a crucial role as far as the financial management of companies is concerned. In the US, the Sarbanes-Oxley Act of 2002 established the Public Company Accounting Oversight Board in order to protect investors from financial accounting fraud. In most countries around the world, however, accounting regulation consists of a legal framework, international standards, education, and licensure. Accounting regulation is necessary because of the information asymmetry and the conflict of interest that exists between managers and users of financial information. If a holistic approach is to be taken then one cannot ignore the regulation of legislators themselves which can take the form of hard or soft legislation. The science of averting a financial crisis is yet to be perfected and this, as shown by the preceding discussion, is unlikely to be achieved in the foreseeable future as ‘disaster myopia’ may be reduced but will not be eliminated. It is easier, of course, to be wise in hindsight and regulating unreasonably risky decisions and unethical or outright criminal behavior in the financial world remains major challenges for governments, corporations, and professions alike.Keywords: financial crisis, legislation, regulation, financial regulation
Procedia PDF Downloads 4003208 A Handheld Light Meter Device for Methamphetamine Detection in Oral Fluid
Authors: Anindita Sen
Abstract:
Oral fluid is a promising diagnostic matrix for drugs of abuse compared to urine and serum. Detection of methamphetamine in oral fluid would pave way for the easy evaluation of impairment in drivers during roadside drug testing as well as ensure safe working environments by facilitating evaluation of impairment in employees at workplaces. A membrane-based point-of-care (POC) friendly pre-treatment technique has been developed which aided elimination of interferences caused by salivary proteins and facilitated the demonstration of methamphetamine detection in saliva using a gold nanoparticle based colorimetric aptasensor platform. It was found that the colorimetric response in saliva was always suppressed owing to the matrix effects. By navigating the challenging interfering issues in saliva, we were successfully able to detect methamphetamine at nanomolar levels in saliva offering immense promise for the translation of these platforms for on-site diagnostic systems. This subsequently motivated the development of a handheld portable light meter device that can reliably transduce the aptasensors colorimetric response into absorbance, facilitating quantitative detection of analyte concentrations on-site. This is crucial due to the prevalent unreliability and sensitivity problems of the conventional drug testing kits. The fabricated light meter device response was validated against a standard UV-Vis spectrometer to confirm reliability. The portable and cost-effective handheld detector device features sensitivity comparable to the well-established UV-Vis benchtop instrument and the easy-to-use device could potentially serve as a prototype for a commercial device in the future.Keywords: aptasensors, colorimetric gold nanoparticle assay, point-of-care, oral fluid
Procedia PDF Downloads 623207 A Structure-Switching Electrochemical Aptasensor for Rapid, Reagentless and Single-Step, Nanomolar Detection of C-Reactive Protein
Authors: William L. Whitehouse, Louisa H. Y. Lo, Andrew B. Kinghorn, Simon C. C. Shiu, Julian. A. Tanner
Abstract:
C-reactive protein (CRP) is an acute-phase reactant and sensitive indicator for sepsis and other life-threatening pathologies, including systemic inflammatory response syndrome (SIRS). Currently, clinical turn-around times for established CRP detection methods take between 30 minutes to hours or even days from centralized laboratories. Here, we report the development of an electrochemical biosensor using redox probe-tagged DNA aptamers functionalized onto cheap, commercially available screen-printed electrodes. Binding-induced conformational switching of the CRP-targeting aptamer induces a specific and selective signal-ON event, which enables single-step and reagentless detection of CRP in as little as 1 minute. The aptasensor dynamic range spans 5-1000nM (R=0.97) or 5-500nM (R=0.99) in 50% diluted human serum, with a LOD of 3nM, corresponding to 2-orders of magnitude sensitivity under the clinically relevant cut-off for CRP. The sensor is stable for up to one week and can be reused numerous times, as judged from repeated real-time dosing and dose-response assays. By decoupling binding events from the signal induction mechanism, structure-switching electrochemical aptamer-based sensors (SS-EABs) provide considerable advantages over their adsorption-based counterparts. Our work expands on the retinue of such sensors reported in the literature and is the first instance of an SS-EAB for reagentless CRP detection. We hope this study can inspire further investigations into the suitability of SS-EABs for diagnostics, which will aid translational R&D toward fully realized devices aimed at point-of-care applications or for use more broadly by the public.Keywords: structure-switching, C-reactive protein, electrochemical, biosensor, aptasensor.
Procedia PDF Downloads 713206 Automatic Furrow Detection for Precision Agriculture
Authors: Manpreet Kaur, Cheol-Hong Min
Abstract:
The increasing advancement in the robotics equipped with machine vision sensors applied to precision agriculture is a demanding solution for various problems in the agricultural farms. An important issue related with the machine vision system concerns crop row and weed detection. This paper proposes an automatic furrow detection system based on real-time processing for identifying crop rows in maize fields in the presence of weed. This vision system is designed to be installed on the farming vehicles, that is, submitted to gyros, vibration and other undesired movements. The images are captured under image perspective, being affected by above undesired effects. The goal is to identify crop rows for vehicle navigation which includes weed removal, where weeds are identified as plants outside the crop rows. The images quality is affected by different lighting conditions and gaps along the crop rows due to lack of germination and wrong plantation. The proposed image processing method consists of four different processes. First, image segmentation based on HSV (Hue, Saturation, Value) decision tree. The proposed algorithm used HSV color space to discriminate crops, weeds and soil. The region of interest is defined by filtering each of the HSV channels between maximum and minimum threshold values. Then the noises in the images were eliminated by the means of hybrid median filter. Further, mathematical morphological processes, i.e., erosion to remove smaller objects followed by dilation to gradually enlarge the boundaries of regions of foreground pixels was applied. It enhances the image contrast. To accurately detect the position of crop rows, the region of interest is defined by creating a binary mask. The edge detection and Hough transform were applied to detect lines represented in polar coordinates and furrow directions as accumulations on the angle axis in the Hough space. The experimental results show that the method is effective.Keywords: furrow detection, morphological, HSV, Hough transform
Procedia PDF Downloads 2313205 Automated Fact-Checking by Incorporating Contextual Knowledge and Multi-Faceted Search
Authors: Wenbo Wang, Yi-Fang Brook Wu
Abstract:
The spread of misinformation and disinformation has become a major concern, particularly with the rise of social media as a primary source of information for many people. As a means to address this phenomenon, automated fact-checking has emerged as a safeguard against the spread of misinformation and disinformation. Existing fact-checking approaches aim to determine whether a news claim is true or false, and they have achieved decent veracity prediction accuracy. However, the state-of-the-art methods rely on manually verified external information to assist the checking model in making judgments, which requires significant human resources. This study introduces a framework, SAC, which focuses on 1) augmenting the representation of a claim by incorporating additional context using general-purpose, comprehensive, and authoritative data; 2) developing a search function to automatically select relevant, new, and credible references; 3) focusing on the important parts of the representations of a claim and its reference that are most relevant to the fact-checking task. The experimental results demonstrate that 1) Augmenting the representations of claims and references through the use of a knowledge base, combined with the multi-head attention technique, contributes to improved performance of fact-checking. 2) SAC with auto-selected references outperforms existing fact-checking approaches with manual selected references. Future directions of this study include I) exploring knowledge graphs in Wikidata to dynamically augment the representations of claims and references without introducing too much noise, II) exploring semantic relations in claims and references to further enhance fact-checking.Keywords: fact checking, claim verification, deep learning, natural language processing
Procedia PDF Downloads 623204 Impact of Capture Effect on Receiver Initiated Collision Detection with Sequential Resolution in WLAN
Authors: Sethu Lekshmi, Shahanas, Prettha P.
Abstract:
All existing protocols in wireless networks are mainly based on Carrier Sense Multiple Access with Collision avoidance. By applying collision detection in wireless networks, the time spent on collision can be reduced and thus improves system throughput. However in a real WLAN scenario due to the use of nonlinear modulation techniques only receiver can decided whether a packet loss take place, even there are multiple transmissions. In this proposed method, the receiver or Access Point detects the collision when multiple data packets are transmitted from different wireless stations. Whenever the receiver detects a collision, it transmits a jamming signal to all the transmitting stations so that they can immediately stop their on-going transmissions. We also provide preferential access to all collided packet to reduce unfairness and to increase system throughput by reducing contention. However, this preferential access will not block the channel for the long time. Here, an in-band transmission is considered in which both the data frames and control frames are transmitted in the same channel. We also provide a simple mathematical model for the proposed protocol and give the simulation result of WLAN scenario under various capture thresholds.Keywords: 802.11, WLAN, capture effect, collision detection, collision resolution, receiver initiated
Procedia PDF Downloads 3623203 Angle of Arrival Estimation Using Maximum Likelihood Method
Authors: Olomon Wu, Hung Lu, Nick Wilkins, Daniel Kerr, Zekeriya Aliyazicioglu, H. K. Hwang
Abstract:
Multiple Input Multiple Output (MIMO) radar has received increasing attention in recent years. MIMO radar has many advantages over conventional phased array radar such as target detection, resolution enhancement, and interference suppression. In this paper, the results are presented from a simulation study of MIMO Uniformly-Spaced Linear Array (ULA) antennas. The performance is investigated under varied parameters, including varied array size, Pseudo Random (PN) sequence length, number of snapshots, and Signal to Noise Ratio (SNR). The results of MIMO are compared to a traditional array antenna.Keywords: MIMO radar, phased array antenna, target detection, radar signal processing
Procedia PDF Downloads 5443202 Non-Destructive Static Damage Detection of Structures Using Genetic Algorithm
Authors: Amir Abbas Fatemi, Zahra Tabrizian, Kabir Sadeghi
Abstract:
To find the location and severity of damage that occurs in a structure, characteristics changes in dynamic and static can be used. The non-destructive techniques are more common, economic, and reliable to detect the global or local damages in structures. This paper presents a non-destructive method in structural damage detection and assessment using GA and static data. Thus, a set of static forces is applied to some of degrees of freedom and the static responses (displacements) are measured at another set of DOFs. An analytical model of the truss structure is developed based on the available specification and the properties derived from static data. The damages in structure produce changes to its stiffness so this method used to determine damage based on change in the structural stiffness parameter. Changes in the static response which structural damage caused choose to produce some simultaneous equations. Genetic Algorithms are powerful tools for solving large optimization problems. Optimization is considered to minimize objective function involve difference between the static load vector of damaged and healthy structure. Several scenarios defined for damage detection (single scenario and multiple scenarios). The static damage identification methods have many advantages, but some difficulties still exist. So it is important to achieve the best damage identification and if the best result is obtained it means that the method is Reliable. This strategy is applied to a plane truss. This method is used for a plane truss. Numerical results demonstrate the ability of this method in detecting damage in given structures. Also figures show damage detections in multiple damage scenarios have really efficient answer. Even existence of noise in the measurements doesn’t reduce the accuracy of damage detections method in these structures.Keywords: damage detection, finite element method, static data, non-destructive, genetic algorithm
Procedia PDF Downloads 2373201 Detecting and Thwarting Interest Flooding Attack in Information Centric Network
Authors: Vimala Rani P, Narasimha Malikarjunan, Mercy Shalinie S
Abstract:
Data Networking was brought forth as an instantiation of information-centric networking. The attackers can send a colossal number of spoofs to take hold of the Pending Interest Table (PIT) named an Interest Flooding attack (IFA) since the in- interests are recorded in the PITs of the intermediate routers until they receive corresponding Data Packets are go beyond the time limit. These attacks can be detrimental to network performance. PIT expiration rate or the Interest satisfaction rate, which cannot differentiate the IFA from attacks, is the criterion Traditional IFA detection techniques are concerned with. Threshold values can casually affect Threshold-based traditional methods. This article proposes an accurate IFA detection mechanism based on a Multiple Feature-based Extreme Learning Machine (MF-ELM). Accuracy of the attack detection can be increased by presenting the entropy of Internet names, Interest satisfaction rate and PIT usage as features extracted in the MF-ELM classifier. Furthermore, we deploy a queue-based hostile Interest prefix mitigation mechanism. The inference of this real-time test bed is that the mechanism can help the network to resist IFA with higher accuracy and efficiency.Keywords: information-centric network, pending interest table, interest flooding attack, MF-ELM classifier, queue-based mitigation strategy
Procedia PDF Downloads 2083200 Determination of Benzatropine in Hair by GC/MS after Liquid-Liquid Extraction (LLE)
Authors: Abdulsallam A. Bakdash, Aiyshah M. Alshehri, Hind M. Alenzi
Abstract:
Benzatropine (benztropine) is used to treat symptoms of Parkinson's disease or involuntary movements due to the side effects of certain psychiatric drugs. We report in this study, results of a procedure for the determination of benzatropine in hair using LLE, once with methanol and second with phosphate buffer (pH 6.0), followed by filtration and then re-extraction with dichloromethane. A GC/MS method was developed and validated for this determination using selected ion monitoring (SIM) detection without derivatization. Linearity established over the concentration range 0.1-20.0 ng/mg hair, and the correlation coefficients were greater than 0.99. Recoveries were 52.2% and 21.1% using methanol and phosphate buffer extraction, respectively. Detection limits of benzatropine in hair were between 0.65 and 3.0 ng/mg hair, while the accuracy were 10.4% and 18.5% (RSD), respectively. We also applied this method to the analysis of soaked hair samples and demonstrated that the LLE using methanol meets the requirement for the analysis of benzatropine in hair.Keywords: hair analysis, benzatropine, liquid-liquid extraction, GC/MS
Procedia PDF Downloads 4043199 ADCOR © Muscle Damage Rapid Detection Test Based on Skeletal Troponin I Immunochromatography Reaction
Authors: Muhammad Solikhudin Nafi, Wahyu Afif Mufida, Mita Erna Wati, Fitri Setyani Rokim, M. Al-Rizqi Dharma Fauzi
Abstract:
High dose activity without any pre-exercise will impact Delayed Onset Muscle Soreness (DOMS). DOMS known as delayed pain post-exercise and induce skeletal injury which will decrease athletes’ performances. From now on, post-exercise muscle damage can be detected by measuring skeletal troponin I (sTnI) concentration in serum using ELISA but this method needs more time and cost. To prevent decreased athletes performances, screening need to be done rapidly. We want to introduce our new prototype to detect DOMS acutely. Rapid detection tests are based on immunological reaction between skeletal troponin I antibodies and sTnI in human serum or whole blood. Chemical methods that are used in the manufacture of diagnostic test is lateral flow immunoassay. The material used is rat monoclonal antibody sTnI, colloidal gold, anti-mouse IgG, nitrocellulose membrane, conjugate pad, sample pad, wick and backing card. The procedure are made conjugate (colloidal gold and mAb sTnI) and insert into the conjugate pad, gives spray sTnI mAb and anti-mouse IgG into nitrocellulose membrane, and assemble RDT. RDT had been evaluated by measuring the sensitivity of positive human serum (n = 30) and negative human serum (n = 30). Overall sensitivity value was 93% and specificity value was 90%. ADCOR as the first rapid detection test qualitatively showed antigen-antibody reaction and showed good overall performances for screening of muscle damage. Furthermore, these finding still need more improvements to get best results.Keywords: DOMS, sTnI, rapid detection test, ELISA
Procedia PDF Downloads 5143198 Brain Tumor Detection and Classification Using Pre-Trained Deep Learning Models
Authors: Aditya Karade, Sharada Falane, Dhananjay Deshmukh, Vijaykumar Mantri
Abstract:
Brain tumors pose a significant challenge in healthcare due to their complex nature and impact on patient outcomes. The application of deep learning (DL) algorithms in medical imaging have shown promise in accurate and efficient brain tumour detection. This paper explores the performance of various pre-trained DL models ResNet50, Xception, InceptionV3, EfficientNetB0, DenseNet121, NASNetMobile, VGG19, VGG16, and MobileNet on a brain tumour dataset sourced from Figshare. The dataset consists of MRI scans categorizing different types of brain tumours, including meningioma, pituitary, glioma, and no tumour. The study involves a comprehensive evaluation of these models’ accuracy and effectiveness in classifying brain tumour images. Data preprocessing, augmentation, and finetuning techniques are employed to optimize model performance. Among the evaluated deep learning models for brain tumour detection, ResNet50 emerges as the top performer with an accuracy of 98.86%. Following closely is Xception, exhibiting a strong accuracy of 97.33%. These models showcase robust capabilities in accurately classifying brain tumour images. On the other end of the spectrum, VGG16 trails with the lowest accuracy at 89.02%.Keywords: brain tumour, MRI image, detecting and classifying tumour, pre-trained models, transfer learning, image segmentation, data augmentation
Procedia PDF Downloads 743197 Enhancing Precision Agriculture through Object Detection Algorithms: A Study of YOLOv5 and YOLOv8 in Detecting Armillaria spp.
Authors: Christos Chaschatzis, Chrysoula Karaiskou, Pantelis Angelidis, Sotirios K. Goudos, Igor Kotsiuba, Panagiotis Sarigiannidis
Abstract:
Over the past few decades, the rapid growth of the global population has led to the need to increase agricultural production and improve the quality of agricultural goods. There is a growing focus on environmentally eco-friendly solutions, sustainable production, and biologically minimally fertilized products in contemporary society. Precision agriculture has the potential to incorporate a wide range of innovative solutions with the development of machine learning algorithms. YOLOv5 and YOLOv8 are two of the most advanced object detection algorithms capable of accurately recognizing objects in real time. Detecting tree diseases is crucial for improving the food production rate and ensuring sustainability. This research aims to evaluate the efficacy of YOLOv5 and YOLOv8 in detecting the symptoms of Armillaria spp. in sweet cherry trees and determining their health status, with the goal of enhancing the robustness of precision agriculture. Additionally, this study will explore Computer Vision (CV) techniques with machine learning algorithms to improve the detection process’s efficiency.Keywords: Armillaria spp., machine learning, precision agriculture, smart farming, sweet cherries trees, YOLOv5, YOLOv8
Procedia PDF Downloads 1153196 Enhancing Fault Detection in Rotating Machinery Using Wiener-CNN Method
Authors: Mohamad R. Moshtagh, Ahmad Bagheri
Abstract:
Accurate fault detection in rotating machinery is of utmost importance to ensure optimal performance and prevent costly downtime in industrial applications. This study presents a robust fault detection system based on vibration data collected from rotating gears under various operating conditions. The considered scenarios include: (1) both gears being healthy, (2) one healthy gear and one faulty gear, and (3) introducing an imbalanced condition to a healthy gear. Vibration data was acquired using a Hentek 1008 device and stored in a CSV file. Python code implemented in the Spider environment was used for data preprocessing and analysis. Winner features were extracted using the Wiener feature selection method. These features were then employed in multiple machine learning algorithms, including Convolutional Neural Networks (CNN), Multilayer Perceptron (MLP), K-Nearest Neighbors (KNN), and Random Forest, to evaluate their performance in detecting and classifying faults in both the training and validation datasets. The comparative analysis of the methods revealed the superior performance of the Wiener-CNN approach. The Wiener-CNN method achieved a remarkable accuracy of 100% for both the two-class (healthy gear and faulty gear) and three-class (healthy gear, faulty gear, and imbalanced) scenarios in the training and validation datasets. In contrast, the other methods exhibited varying levels of accuracy. The Wiener-MLP method attained 100% accuracy for the two-class training dataset and 100% for the validation dataset. For the three-class scenario, the Wiener-MLP method demonstrated 100% accuracy in the training dataset and 95.3% accuracy in the validation dataset. The Wiener-KNN method yielded 96.3% accuracy for the two-class training dataset and 94.5% for the validation dataset. In the three-class scenario, it achieved 85.3% accuracy in the training dataset and 77.2% in the validation dataset. The Wiener-Random Forest method achieved 100% accuracy for the two-class training dataset and 85% for the validation dataset, while in the three-class training dataset, it attained 100% accuracy and 90.8% accuracy for the validation dataset. The exceptional accuracy demonstrated by the Wiener-CNN method underscores its effectiveness in accurately identifying and classifying fault conditions in rotating machinery. The proposed fault detection system utilizes vibration data analysis and advanced machine learning techniques to improve operational reliability and productivity. By adopting the Wiener-CNN method, industrial systems can benefit from enhanced fault detection capabilities, facilitating proactive maintenance and reducing equipment downtime.Keywords: fault detection, gearbox, machine learning, wiener method
Procedia PDF Downloads 813195 Towards a Conscious Design in AI by Overcoming Dark Patterns
Authors: Ayse Arslan
Abstract:
One of the important elements underpinning a conscious design is the degree of toxicity in communication. This study explores the mechanisms and strategies for identifying toxic content by avoiding dark patterns. Given the breadth of hate and harassment attacks, this study explores a threat model and taxonomy to assist in reasoning about strategies for detection, prevention, mitigation, and recovery. In addition to identifying some relevant techniques such as nudges, automatic detection, or human-ranking, the study suggests the use of major metrics such as the overhead and friction of solutions on platforms and users or balancing false positives (e.g., incorrectly penalizing legitimate users) against false negatives (e.g., users exposed to hate and harassment) to maintain a conscious design towards fairness.Keywords: AI, ML, algorithms, policy, system design
Procedia PDF Downloads 1213194 Immuno-field Effect Transistor Using Carbon Nanotubes Network – Based for Human Serum Albumin Highly Sensitive Detection
Authors: Muhamad Azuddin Hassan, Siti Shafura Karim, Ambri Mohamed, Iskandar Yahya
Abstract:
Human serum albumin plays a significant part in the physiological functions of the human body system (HSA).HSA level monitoring is critical for early detection of HSA-related illnesses. The goal of this study is to show that a field effect transistor (FET)-based immunosensor can assess HSA using high aspect ratio carbon nanotubes network (CNT) as a transducer. The CNT network were deposited using air brush technique, and the FET device was made using a shadow mask process. Field emission scanning electron microscopy and a current-voltage measurement system were used to examine the morphology and electrical properties of the CNT network, respectively. X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy were used to confirm the surface alteration of the CNT. The detection process is based on covalent binding interactions between an antibody and an HSA target, which resulted in a change in the manufactured biosensor's drain current (Id).In a linear range between 1 ng/ml and 10zg/ml, the biosensor has a high sensitivity of 0.826 mA (g/ml)-1 and a LOD value of 1.9zg/ml.HSA was also identified in a genuine serum despite interference from other biomolecules, demonstrating the CNT-FET immunosensor's ability to quantify HSA in a complex biological environment.Keywords: carbon nanotubes network, biosensor, human serum albumin
Procedia PDF Downloads 1373193 Intelligent Decision Support for Wind Park Operation: Machine-Learning Based Detection and Diagnosis of Anomalous Operating States
Authors: Angela Meyer
Abstract:
The operation and maintenance cost for wind parks make up a major fraction of the park’s overall lifetime cost. To minimize the cost and risk involved, an optimal operation and maintenance strategy requires continuous monitoring and analysis. In order to facilitate this, we present a decision support system that automatically scans the stream of telemetry sensor data generated from the turbines. By learning decision boundaries and normal reference operating states using machine learning algorithms, the decision support system can detect anomalous operating behavior in individual wind turbines and diagnose the involved turbine sub-systems. Operating personal can be alerted if a normal operating state boundary is exceeded. The presented decision support system and method are applicable for any turbine type and manufacturer providing telemetry data of the turbine operating state. We demonstrate the successful detection and diagnosis of anomalous operating states in a case study at a German onshore wind park comprised of Vestas V112 turbines.Keywords: anomaly detection, decision support, machine learning, monitoring, performance optimization, wind turbines
Procedia PDF Downloads 1673192 Detection of Intentional Attacks in Images Based on Watermarking
Authors: Hazem Munawer Al-Otum
Abstract:
In this work, an efficient watermarking technique is proposed and can be used for detecting intentional attacks in RGB color images. The proposed technique can be implemented for image authentication and exhibits high robustness against unintentional common image processing attacks. It deploys two measures to discern between intentional and unintentional attacks based on using a quantization-based technique in a modified 2D multi-pyramidal DWT transform. Simulations have shown high accuracy in detecting intentionally attacked regions while exhibiting high robustness under moderate to severe common image processing attacks.Keywords: image authentication, copyright protection, semi-fragile watermarking, tamper detection
Procedia PDF Downloads 2583191 An Electrochemical Enzymatic Biosensor Based on Multi-Walled Carbon Nanotubes and Poly (3,4 Ethylenedioxythiophene) Nanocomposites for Organophosphate Detection
Authors: Navpreet Kaur, Himkusha Thakur, Nirmal Prabhakar
Abstract:
The most controversial issue in crop production is the use of Organophosphate insecticides. This is evident in many reports that Organophosphate (OP) insecticides, among the broad range of pesticides are mainly involved in acute and chronic poisoning cases. OPs detection is of crucial importance for health protection, food and environmental safety. In our study, a nanocomposite of poly (3,4 ethylenedioxythiophene) (PEDOT) and multi-walled carbon nanotubes (MWCNTs) has been deposited electrochemically onto the surface of fluorine doped tin oxide sheets (FTO) for the analysis of malathion OP. The -COOH functionalization of MWCNTs has been done for the covalent binding with amino groups of AChE enzyme. The use of PEDOT-MWCNT films exhibited an excellent conductivity, enables fast transfer kinetics and provided a favourable biocompatible microenvironment for AChE, for the significant malathion OP detection. The prepared biosensors were characterized by Fourier transform infrared spectrometry (FTIR), Field emission-scanning electron microscopy (FE-SEM) and electrochemical studies. Various optimization studies were done for different parameters including pH (7.5), AChE concentration (50 mU), substrate concentration (0.3 mM) and inhibition time (10 min). Substrate kinetics has been performed and studied for the determination of Michaelis Menten constant. The detection limit for malathion OP was calculated to be 1 fM within the linear range 1 fM to 1 µM. The activity of inhibited AChE enzyme was restored to 98% of its original value by 2-pyridine aldoxime methiodide (2-PAM) (5 mM) treatment for 11 min. The oxime 2-PAM is able to remove malathion from the active site of AChE by means of trans-esterification reaction. The storage stability and reusability of the prepared biosensor is observed to be 30 days and seven times, respectively. The application of the developed biosensor has also been evaluated for spiked lettuce sample. Recoveries of malathion from the spiked lettuce sample ranged between 96-98%. The low detection limit obtained by the developed biosensor made them reliable, sensitive and a low cost process.Keywords: PEDOT-MWCNT, malathion, organophosphates, acetylcholinesterase, biosensor, oxime (2-PAM)
Procedia PDF Downloads 4463190 Power Line Communication Integrated in a Wireless Power Transfer System: Feasibility of Surveillance Movement
Authors: M. Hemnath, S. Kannan, R. Kiran, K. Thanigaivelu
Abstract:
This paper is based on exploring the possible opportunities and applications using Power Line Communication (PLC) for security and surveillance operations. Various research works are done for introducing PLC into onboard vehicle communication and networking (CAN, LIN etc.) and various international standards have been developed. Wireless power transfer (WPT) is also an emerging technology which is studied and tested for recharging purposes. In this work we present a system which embeds the detection and the response into one which eliminates the need for dedicated network for data transmission. Also we check the feasibility for integrating wireless power transfer system into this proposed security system for transmission of power to detection unit wirelessly from the response unit.Keywords: power line communication, wireless power transfer, surveillance
Procedia PDF Downloads 5353189 Analysis of Factors Influencing the Response Time of an Aspirating Gaseous Agent Concentration Detection Method
Authors: Yu Guan, Song Lu, Wei Yuan, Heping Zhang
Abstract:
Gas fire extinguishing system is widely used due to its cleanliness and efficiency, and since its spray will be affected by many factors such as convection and obstacles in jetting region, so in order to evaluate its effectiveness, detecting concentration distribution in the jetting area is indispensable, which is commonly achieved by aspirating concentration detection technique. During the concentration measurement, the response time of detector is a very important parameter, especially for those fire-extinguishing systems with rapid gas dispersion. Long response time will not only underestimate its concentration but also prolong the change of concentration with time. Therefore it is necessary to analyze the factors influencing the response time. In the paper, an aspirating concentration detection method was introduced, which is achieved by using a small critical nozzle and a laminar flowmeter, and because of the response time is mainly related to the gas transport process from sampling site to the sensor, the effects of exhaust pipe size, gas flow rate, and gas concentration on its response time were analyzed. During the research, Bromotrifluoromethane (CBrF₃) was used. The effect of the sampling tube was investigated with different length of 1, 2, 3, 4 and 5 m (5mm in pipe diameter) and different pipe diameter of 3, 4, 5, 6 and 8 mm (3m in length). The effect of gas flow rate was analyzed by changing the throat diameter of the critical nozzle with 0.5, 0.682, 0.75, 0.8, 0.84 and 0.88 mm. The effect of gas concentration on response time was studied with the concentration range of 0-25%. The result showed that the response time increased with the increase of both the length and diameter of the sampling pipe, and the effect of length on response time was linear, but for the effect of diameter, it was exponential. It was also found that as the throat diameter of critical nozzle increased, the response time reduced a lot, in other words, gas flow rate has a great influence on response time. For the effect of gas concentration, the response time increased with the increase of the CBrF₃ concentration, and the slope of the curve was reduced.Keywords: aspirating concentration detection, fire extinguishing, gaseous agent, response time
Procedia PDF Downloads 2713188 2D Convolutional Networks for Automatic Segmentation of Knee Cartilage in 3D MRI
Authors: Ananya Ananya, Karthik Rao
Abstract:
Accurate segmentation of knee cartilage in 3-D magnetic resonance (MR) images for quantitative assessment of volume is crucial for studying and diagnosing osteoarthritis (OA) of the knee, one of the major causes of disability in elderly people. Radiologists generally perform this task in slice-by-slice manner taking 15-20 minutes per 3D image, and lead to high inter and intra observer variability. Hence automatic methods for knee cartilage segmentation are desirable and are an active field of research. This paper presents design and experimental evaluation of 2D convolutional neural networks based fully automated methods for knee cartilage segmentation in 3D MRI. The architectures are validated based on 40 test images and 60 training images from SKI10 dataset. The proposed methods segment 2D slices one by one, which are then combined to give segmentation for whole 3D images. Proposed methods are modified versions of U-net and dilated convolutions, consisting of a single step that segments the given image to 5 labels: background, femoral cartilage, tibia cartilage, femoral bone and tibia bone; cartilages being the primary components of interest. U-net consists of a contracting path and an expanding path, to capture context and localization respectively. Dilated convolutions lead to an exponential expansion of receptive field with only a linear increase in a number of parameters. A combination of modified U-net and dilated convolutions has also been explored. These architectures segment one 3D image in 8 – 10 seconds giving average volumetric Dice Score Coefficients (DSC) of 0.950 - 0.962 for femoral cartilage and 0.951 - 0.966 for tibia cartilage, reference being the manual segmentation.Keywords: convolutional neural networks, dilated convolutions, 3 dimensional, fully automated, knee cartilage, MRI, segmentation, U-net
Procedia PDF Downloads 2623187 Normalizing Scientometric Indicators of Individual Publications Using Local Cluster Detection Methods on Citation Networks
Authors: Levente Varga, Dávid Deritei, Mária Ercsey-Ravasz, Răzvan Florian, Zsolt I. Lázár, István Papp, Ferenc Járai-Szabó
Abstract:
One of the major shortcomings of widely used scientometric indicators is that different disciplines cannot be compared with each other. The issue of cross-disciplinary normalization has been long discussed, but even the classification of publications into scientific domains poses problems. Structural properties of citation networks offer new possibilities, however, the large size and constant growth of these networks asks for precaution. Here we present a new tool that in order to perform cross-field normalization of scientometric indicators of individual publications relays on the structural properties of citation networks. Due to the large size of the networks, a systematic procedure for identifying scientific domains based on a local community detection algorithm is proposed. The algorithm is tested with different benchmark and real-world networks. Then, by the use of this algorithm, the mechanism of the scientometric indicator normalization process is shown for a few indicators like the citation number, P-index and a local version of the PageRank indicator. The fat-tail trend of the article indicator distribution enables us to successfully perform the indicator normalization process.Keywords: citation networks, cross-field normalization, local cluster detection, scientometric indicators
Procedia PDF Downloads 205